
MySQL and PHP

Abstract

This manual describes the PHP extensions and interfaces that can be used with MySQL.

For legal information, see the Legal Notices.

For help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists, where you can discuss
your issues with other MySQL users.

Document generated on: 2019-02-27 (revision: 61075)

http://forums.mysql.com
http://lists.mysql.com

iii

Table of Contents
Preface and Legal Notices ... xiii
1 Introduction to the MySQL PHP API .. 1
2 Overview of the MySQL PHP drivers ... 3

2.1 Introduction .. 3
2.2 Terminology overview ... 3
2.3 Choosing an API .. 4
2.4 Choosing a library .. 6
2.5 Concepts .. 7

2.5.1 Buffered and Unbuffered queries .. 7
2.5.2 Character sets ... 8

3 MySQL Improved Extension ... 11
3.1 Overview .. 14
3.2 Quick start guide .. 18

3.2.1 Dual procedural and object-oriented interface .. 18
3.2.2 Connections ... 20
3.2.3 Executing statements ... 22
3.2.4 Prepared Statements ... 26
3.2.5 Stored Procedures ... 33
3.2.6 Multiple Statements ... 37
3.2.7 API support for transactions ... 39
3.2.8 Metadata ... 40

3.3 Installing/Configuring ... 42
3.3.1 Requirements .. 42
3.3.2 Installation ... 42
3.3.3 Runtime Configuration .. 44
3.3.4 Resource Types .. 46

3.4 The mysqli Extension and Persistent Connections .. 46
3.5 Predefined Constants ... 47
3.6 Notes ... 50
3.7 The MySQLi Extension Function Summary .. 51
3.8 Examples ... 57

3.8.1 MySQLi extension basic examples ... 57
3.9 The mysqli class .. 59

3.9.1 mysqli::$affected_rows, mysqli_affected_rows ... 62
3.9.2 mysqli::autocommit, mysqli_autocommit ... 65
3.9.3 mysqli::begin_transaction, mysqli_begin_transaction 67
3.9.4 mysqli::change_user, mysqli_change_user ... 68
3.9.5 mysqli::character_set_name, mysqli_character_set_name 71
3.9.6 mysqli::close, mysqli_close ... 72
3.9.7 mysqli::commit, mysqli_commit ... 73
3.9.8 mysqli::$connect_errno, mysqli_connect_errno ... 75
3.9.9 mysqli::$connect_error, mysqli_connect_error ... 77
3.9.10 mysqli::__construct, mysqli::connect, mysqli_connect 78
3.9.11 mysqli::debug, mysqli_debug ... 82
3.9.12 mysqli::dump_debug_info, mysqli_dump_debug_info 83
3.9.13 mysqli::$errno, mysqli_errno ... 83
3.9.14 mysqli::$error_list, mysqli_error_list ... 85
3.9.15 mysqli::$error, mysqli_error ... 86
3.9.16 mysqli::$field_count, mysqli_field_count ... 88
3.9.17 mysqli::get_charset, mysqli_get_charset ... 90

MySQL and PHP

iv

3.9.18 mysqli::$client_info, mysqli::get_client_info,
mysqli_get_client_info .. 91
3.9.19 mysqli::$client_version, mysqli_get_client_version 92
3.9.20 mysqli::get_connection_stats, mysqli_get_connection_stats 93
3.9.21 mysqli::$host_info, mysqli_get_host_info ... 96
3.9.22 mysqli::$protocol_version, mysqli_get_proto_info 97
3.9.23 mysqli::$server_info, mysqli::get_server_info,
mysqli_get_server_info .. 99
3.9.24 mysqli::$server_version, mysqli_get_server_version 100
3.9.25 mysqli::get_warnings, mysqli_get_warnings .. 102
3.9.26 mysqli::$info, mysqli_info ... 102
3.9.27 mysqli::init, mysqli_init ... 104
3.9.28 mysqli::$insert_id, mysqli_insert_id .. 105
3.9.29 mysqli::kill, mysqli_kill ... 107
3.9.30 mysqli::more_results, mysqli_more_results .. 108
3.9.31 mysqli::multi_query, mysqli_multi_query .. 109
3.9.32 mysqli::next_result, mysqli_next_result .. 111
3.9.33 mysqli::options, mysqli_options ... 112
3.9.34 mysqli::ping, mysqli_ping ... 114
3.9.35 mysqli::poll, mysqli_poll ... 116
3.9.36 mysqli::prepare, mysqli_prepare ... 117
3.9.37 mysqli::query, mysqli_query ... 120
3.9.38 mysqli::real_connect, mysqli_real_connect .. 123
3.9.39 mysqli::real_escape_string, mysqli::escape_string,
mysqli_real_escape_string .. 127
3.9.40 mysqli::real_query, mysqli_real_query .. 130
3.9.41 mysqli::reap_async_query, mysqli_reap_async_query 130
3.9.42 mysqli::refresh, mysqli_refresh ... 131
3.9.43 mysqli::release_savepoint, mysqli_release_savepoint 132
3.9.44 mysqli::rollback, mysqli_rollback ... 132
3.9.45 mysqli::rpl_query_type, mysqli_rpl_query_type 135
3.9.46 mysqli::savepoint, mysqli_savepoint .. 136
3.9.47 mysqli::select_db, mysqli_select_db .. 136
3.9.48 mysqli::send_query, mysqli_send_query .. 138
3.9.49 mysqli::set_charset, mysqli_set_charset .. 139
3.9.50 mysqli::set_local_infile_default,
mysqli_set_local_infile_default .. 141
3.9.51 mysqli::set_local_infile_handler,
mysqli_set_local_infile_handler .. 141
3.9.52 mysqli::$sqlstate, mysqli_sqlstate ... 144
3.9.53 mysqli::ssl_set, mysqli_ssl_set ... 146
3.9.54 mysqli::stat, mysqli_stat ... 147
3.9.55 mysqli::stmt_init, mysqli_stmt_init .. 148
3.9.56 mysqli::store_result, mysqli_store_result .. 149
3.9.57 mysqli::$thread_id, mysqli_thread_id .. 150
3.9.58 mysqli::thread_safe, mysqli_thread_safe .. 152
3.9.59 mysqli::use_result, mysqli_use_result .. 152
3.9.60 mysqli::$warning_count, mysqli_warning_count 155

3.10 The mysqli_stmt class ... 157
3.10.1 mysqli_stmt::$affected_rows, mysqli_stmt_affected_rows 158
3.10.2 mysqli_stmt::attr_get, mysqli_stmt_attr_get .. 160
3.10.3 mysqli_stmt::attr_set, mysqli_stmt_attr_set .. 161
3.10.4 mysqli_stmt::bind_param, mysqli_stmt_bind_param 162
3.10.5 mysqli_stmt::bind_result, mysqli_stmt_bind_result 165

MySQL and PHP

v

3.10.6 mysqli_stmt::close, mysqli_stmt_close .. 167
3.10.7 mysqli_stmt::__construct ... 168
3.10.8 mysqli_stmt::data_seek, mysqli_stmt_data_seek 168
3.10.9 mysqli_stmt::$errno, mysqli_stmt_errno .. 171
3.10.10 mysqli_stmt::$error_list, mysqli_stmt_error_list 173
3.10.11 mysqli_stmt::$error, mysqli_stmt_error .. 175
3.10.12 mysqli_stmt::execute, mysqli_stmt_execute .. 177
3.10.13 mysqli_stmt::fetch, mysqli_stmt_fetch .. 180
3.10.14 mysqli_stmt::$field_count, mysqli_stmt_field_count 182
3.10.15 mysqli_stmt::free_result, mysqli_stmt_free_result 182
3.10.16 mysqli_stmt::get_result, mysqli_stmt_get_result 183
3.10.17 mysqli_stmt::get_warnings, mysqli_stmt_get_warnings 185
3.10.18 mysqli_stmt::$insert_id, mysqli_stmt_insert_id 186
3.10.19 mysqli_stmt::more_results, mysqli_stmt_more_results 186
3.10.20 mysqli_stmt::next_result, mysqli_stmt_next_result 187
3.10.21 mysqli_stmt::$num_rows, mysqli_stmt::num_rows,
mysqli_stmt_num_rows .. 188
3.10.22 mysqli_stmt::$param_count, mysqli_stmt_param_count 190
3.10.23 mysqli_stmt::prepare, mysqli_stmt_prepare .. 191
3.10.24 mysqli_stmt::reset, mysqli_stmt_reset .. 194
3.10.25 mysqli_stmt::result_metadata, mysqli_stmt_result_metadata 195
3.10.26 mysqli_stmt::send_long_data, mysqli_stmt_send_long_data 197
3.10.27 mysqli_stmt::$sqlstate, mysqli_stmt_sqlstate 198
3.10.28 mysqli_stmt::store_result, mysqli_stmt_store_result 200

3.11 The mysqli_result class ... 203
3.11.1 mysqli_result::$current_field, mysqli_field_tell 204
3.11.2 mysqli_result::data_seek, mysqli_data_seek .. 206
3.11.3 mysqli_result::fetch_all, mysqli_fetch_all .. 208
3.11.4 mysqli_result::fetch_array, mysqli_fetch_array 209
3.11.5 mysqli_result::fetch_assoc, mysqli_fetch_assoc 211
3.11.6 mysqli_result::fetch_field_direct, mysqli_fetch_field_direct 214
3.11.7 mysqli_result::fetch_field, mysqli_fetch_field 217
3.11.8 mysqli_result::fetch_fields, mysqli_fetch_fields 219
3.11.9 mysqli_result::fetch_object, mysqli_fetch_object 222
3.11.10 mysqli_result::fetch_row, mysqli_fetch_row .. 225
3.11.11 mysqli_result::$field_count, mysqli_num_fields 227
3.11.12 mysqli_result::field_seek, mysqli_field_seek 228
3.11.13 mysqli_result::free, mysqli_result::close,
mysqli_result::free_result, mysqli_free_result .. 230
3.11.14 mysqli_result::$lengths, mysqli_fetch_lengths 231
3.11.15 mysqli_result::$num_rows, mysqli_num_rows .. 233

3.12 The mysqli_driver class ... 235
3.12.1 mysqli_driver::embedded_server_end, mysqli_embedded_server_end .. 236
3.12.2 mysqli_driver::embedded_server_start,
mysqli_embedded_server_start .. 236
3.12.3 mysqli_driver::$report_mode, mysqli_report .. 237

3.13 The mysqli_warning class ... 239
3.13.1 mysqli_warning::__construct .. 240
3.13.2 mysqli_warning::next ... 240

3.14 The mysqli_sql_exception class ... 240
3.15 Aliases and deprecated Mysqli Functions ... 241

3.15.1 mysqli_bind_param ... 241
3.15.2 mysqli_bind_result ... 241
3.15.3 mysqli_client_encoding ... 242

MySQL and PHP

vi

3.15.4 mysqli_connect ... 242
3.15.5 mysqli::disable_reads_from_master,
mysqli_disable_reads_from_master .. 243
3.15.6 mysqli_disable_rpl_parse ... 243
3.15.7 mysqli_enable_reads_from_master .. 244
3.15.8 mysqli_enable_rpl_parse ... 244
3.15.9 mysqli_escape_string ... 245
3.15.10 mysqli_execute .. 245
3.15.11 mysqli_fetch .. 245
3.15.12 mysqli_get_cache_stats .. 245
3.15.13 mysqli_get_client_stats .. 246
3.15.14 mysqli_get_links_stats .. 249
3.15.15 mysqli_get_metadata .. 249
3.15.16 mysqli_master_query .. 249
3.15.17 mysqli_param_count .. 250
3.15.18 mysqli_report .. 250
3.15.19 mysqli_rpl_parse_enabled .. 250
3.15.20 mysqli_rpl_probe .. 251
3.15.21 mysqli_send_long_data .. 251
3.15.22 mysqli::set_opt, mysqli_set_opt .. 251
3.15.23 mysqli_slave_query .. 252

3.16 Changelog .. 252
4 MySQL Functions (PDO_MYSQL) .. 253

4.1 PDO_MYSQL DSN ... 256
5 Mysql_xdevapi ... 259

5.1 Installing/Configuring ... 263
5.1.1 Requirements .. 263
5.1.2 Installation ... 263
5.1.3 Runtime Configuration .. 264
5.1.4 Building / Compiling From Source ... 265

5.2 Predefined Constants .. 265
5.3 Examples ... 267
5.4 Mysql_xdevapi Functions .. 269

5.4.1 expression ... 269
5.4.2 getSession ... 270

5.5 BaseResult interface ... 272
5.5.1 BaseResult::getWarnings ... 273
5.5.2 BaseResult::getWarningsCount ... 274

5.6 Collection class .. 275
5.6.1 Collection::add ... 276
5.6.2 Collection::addOrReplaceOne ... 277
5.6.3 Collection::__construct ... 278
5.6.4 Collection::count ... 279
5.6.5 Collection::createIndex ... 280
5.6.6 Collection::dropIndex ... 282
5.6.7 Collection::existsInDatabase ... 283
5.6.8 Collection::find ... 284
5.6.9 Collection::getName ... 285
5.6.10 Collection::getOne ... 286
5.6.11 Collection::getSchema ... 287
5.6.12 Collection::getSession ... 288
5.6.13 Collection::modify ... 289
5.6.14 Collection::remove ... 290
5.6.15 Collection::removeOne ... 291

MySQL and PHP

vii

5.6.16 Collection::replaceOne ... 292
5.7 CollectionAdd class ... 293

5.7.1 CollectionAdd::__construct ... 293
5.7.2 CollectionAdd::execute ... 295

5.8 CollectionFind class .. 296
5.8.1 CollectionFind::bind ... 297
5.8.2 CollectionFind::__construct ... 298
5.8.3 CollectionFind::execute ... 299
5.8.4 CollectionFind::fields ... 300
5.8.5 CollectionFind::groupBy ... 301
5.8.6 CollectionFind::having ... 302
5.8.7 CollectionFind::limit ... 303
5.8.8 CollectionFind::lockExclusive ... 304
5.8.9 CollectionFind::lockShared ... 305
5.8.10 CollectionFind::offset ... 306
5.8.11 CollectionFind::sort ... 307

5.9 CollectionModify class ... 309
5.9.1 CollectionModify::arrayAppend ... 310
5.9.2 CollectionModify::arrayInsert ... 311
5.9.3 CollectionModify::bind ... 312
5.9.4 CollectionModify::__construct ... 314
5.9.5 CollectionModify::execute ... 315
5.9.6 CollectionModify::limit ... 315
5.9.7 CollectionModify::patch ... 317
5.9.8 CollectionModify::replace ... 317
5.9.9 CollectionModify::set ... 319
5.9.10 CollectionModify::skip ... 320
5.9.11 CollectionModify::sort ... 321
5.9.12 CollectionModify::unset ... 321

5.10 CollectionRemove class .. 322
5.10.1 CollectionRemove::bind ... 323
5.10.2 CollectionRemove::__construct .. 323
5.10.3 CollectionRemove::execute ... 324
5.10.4 CollectionRemove::limit ... 325
5.10.5 CollectionRemove::sort ... 326

5.11 ColumnResult class .. 326
5.11.1 ColumnResult::__construct ... 327
5.11.2 ColumnResult::getCharacterSetName .. 328
5.11.3 ColumnResult::getCollationName .. 329
5.11.4 ColumnResult::getColumnLabel .. 330
5.11.5 ColumnResult::getColumnName .. 330
5.11.6 ColumnResult::getFractionalDigits .. 331
5.11.7 ColumnResult::getLength ... 332
5.11.8 ColumnResult::getSchemaName .. 332
5.11.9 ColumnResult::getTableLabel .. 333
5.11.10 ColumnResult::getTableName .. 333
5.11.11 ColumnResult::getType .. 334
5.11.12 ColumnResult::isNumberSigned .. 335
5.11.13 ColumnResult::isPadded .. 335

5.12 CrudOperationBindable interface ... 336
5.12.1 CrudOperationBindable::bind .. 336

5.13 CrudOperationLimitable interface ... 337
5.13.1 CrudOperationLimitable::limit .. 337

5.14 CrudOperationSkippable interface .. 338

MySQL and PHP

viii

5.14.1 CrudOperationSkippable::skip .. 338
5.15 CrudOperationSortable interface .. 339

5.15.1 CrudOperationSortable::sort .. 339
5.16 DatabaseObject interface .. 340

5.16.1 DatabaseObject::existsInDatabase .. 340
5.16.2 DatabaseObject::getName ... 341
5.16.3 DatabaseObject::getSession ... 341

5.17 DocResult class .. 342
5.17.1 DocResult::__construct ... 342
5.17.2 DocResult::fetchAll ... 343
5.17.3 DocResult::fetchOne ... 345
5.17.4 DocResult::getWarnings ... 346
5.17.5 DocResult::getWarningsCount .. 347

5.18 Driver class .. 349
5.18.1 Driver::__construct ... 349

5.19 Exception class ... 350
5.20 Executable interface .. 350

5.20.1 Executable::execute ... 350
5.21 ExecutionStatus class ... 351

5.21.1 ExecutionStatus::__construct .. 352
5.22 Expression class ... 352

5.22.1 Expression::__construct ... 353
5.23 FieldMetadata class .. 353

5.23.1 FieldMetadata::__construct ... 355
5.24 Result class .. 356

5.24.1 Result::__construct ... 356
5.24.2 Result::getAutoIncrementValue .. 357
5.24.3 Result::getGeneratedIds ... 358
5.24.4 Result::getWarnings ... 359
5.24.5 Result::getWarningsCount ... 360

5.25 RowResult class ... 361
5.25.1 RowResult::__construct ... 362
5.25.2 RowResult::fetchAll ... 362
5.25.3 RowResult::fetchOne ... 363
5.25.4 RowResult::getColumnCount ... 364
5.25.5 RowResult::getColumnNames ... 365
5.25.6 RowResult::getColumns ... 366
5.25.7 RowResult::getWarnings ... 368
5.25.8 RowResult::getWarningsCount .. 369

5.26 Schema class ... 370
5.26.1 Schema::__construct ... 370
5.26.2 Schema::createCollection ... 371
5.26.3 Schema::dropCollection ... 372
5.26.4 Schema::existsInDatabase ... 373
5.26.5 Schema::getCollection ... 374
5.26.6 Schema::getCollectionAsTable .. 375
5.26.7 Schema::getCollections ... 376
5.26.8 Schema::getName ... 377
5.26.9 Schema::getSession ... 378
5.26.10 Schema::getTable .. 379
5.26.11 Schema::getTables .. 380

5.27 SchemaObject interface .. 381
5.27.1 SchemaObject::getSchema ... 381

5.28 Session class ... 382

MySQL and PHP

ix

5.28.1 Session::close ... 383
5.28.2 Session::commit ... 384
5.28.3 Session::__construct ... 384
5.28.4 Session::createSchema ... 385
5.28.5 Session::dropSchema ... 386
5.28.6 Session::executeSql ... 386
5.28.7 Session::generateUUID ... 387
5.28.8 Session::getClientId ... 388
5.28.9 Session::getSchema ... 388
5.28.10 Session::getSchemas .. 389
5.28.11 Session::getServerVersion .. 390
5.28.12 Session::killClient .. 391
5.28.13 Session::listClients .. 391
5.28.14 Session::quoteName .. 392
5.28.15 Session::releaseSavepoint .. 393
5.28.16 Session::rollback .. 394
5.28.17 Session::rollbackTo .. 395
5.28.18 Session::setSavepoint .. 395
5.28.19 Session::sql .. 396
5.28.20 Session::startTransaction .. 397

5.29 SqlStatement class ... 398
5.29.1 SqlStatement::bind ... 398
5.29.2 SqlStatement::__construct ... 399
5.29.3 SqlStatement::execute ... 400
5.29.4 SqlStatement::getNextResult .. 400
5.29.5 SqlStatement::getResult ... 401
5.29.6 SqlStatement::hasMoreResults .. 401

5.30 SqlStatementResult class .. 402
5.30.1 SqlStatementResult::__construct .. 403
5.30.2 SqlStatementResult::fetchAll .. 403
5.30.3 SqlStatementResult::fetchOne .. 404
5.30.4 SqlStatementResult::getAffectedItemsCount .. 405
5.30.5 SqlStatementResult::getColumnCount .. 405
5.30.6 SqlStatementResult::getColumnNames .. 406
5.30.7 SqlStatementResult::getColumns .. 406
5.30.8 SqlStatementResult::getGeneratedIds .. 407
5.30.9 SqlStatementResult::getLastInsertId .. 408
5.30.10 SqlStatementResult::getWarnings .. 408
5.30.11 SqlStatementResult::getWarningsCount .. 409
5.30.12 SqlStatementResult::hasData .. 410
5.30.13 SqlStatementResult::nextResult .. 410

5.31 Statement class .. 411
5.31.1 Statement::__construct ... 411
5.31.2 Statement::getNextResult ... 412
5.31.3 Statement::getResult ... 413
5.31.4 Statement::hasMoreResults ... 413

5.32 Table class ... 414
5.32.1 Table::__construct ... 415
5.32.2 Table::count ... 415
5.32.3 Table::delete ... 416
5.32.4 Table::existsInDatabase ... 417
5.32.5 Table::getName ... 418
5.32.6 Table::getSchema ... 418
5.32.7 Table::getSession ... 419

MySQL and PHP

x

5.32.8 Table::insert ... 420
5.32.9 Table::isView ... 421
5.32.10 Table::select .. 422
5.32.11 Table::update .. 423

5.33 TableDelete class ... 424
5.33.1 TableDelete::bind ... 424
5.33.2 TableDelete::__construct ... 425
5.33.3 TableDelete::execute ... 426
5.33.4 TableDelete::limit ... 427
5.33.5 TableDelete::offset ... 427
5.33.6 TableDelete::orderby ... 428
5.33.7 TableDelete::where ... 429

5.34 TableInsert class ... 430
5.34.1 TableInsert::__construct ... 430
5.34.2 TableInsert::execute ... 431
5.34.3 TableInsert::values ... 431

5.35 TableSelect class .. 432
5.35.1 TableSelect::bind ... 433
5.35.2 TableSelect::__construct ... 434
5.35.3 TableSelect::execute ... 435
5.35.4 TableSelect::groupBy ... 436
5.35.5 TableSelect::having ... 437
5.35.6 TableSelect::limit ... 438
5.35.7 TableSelect::lockExclusive ... 439
5.35.8 TableSelect::lockShared ... 440
5.35.9 TableSelect::offset ... 441
5.35.10 TableSelect::orderby .. 442
5.35.11 TableSelect::where .. 443

5.36 TableUpdate class .. 444
5.36.1 TableUpdate::bind ... 445
5.36.2 TableUpdate::__construct ... 446
5.36.3 TableUpdate::execute ... 446
5.36.4 TableUpdate::limit ... 447
5.36.5 TableUpdate::orderby ... 448
5.36.6 TableUpdate::set ... 449
5.36.7 TableUpdate::where ... 449

5.37 Warning class ... 450
5.37.1 Warning::__construct ... 451

5.38 XSession class ... 451
5.38.1 XSession::__construct ... 451

6 Original MySQL API .. 453
6.1 Installing/Configuring ... 454

6.1.1 Requirements .. 454
6.1.2 Installation ... 454
6.1.3 Runtime Configuration .. 456
6.1.4 Resource Types ... 457

6.2 Changelog .. 457
6.3 Predefined Constants .. 458
6.4 Examples ... 459

6.4.1 MySQL extension overview example ... 459
6.5 MySQL Functions ... 460

6.5.1 mysql_affected_rows ... 460
6.5.2 mysql_client_encoding ... 462
6.5.3 mysql_close ... 463

MySQL and PHP

xi

6.5.4 mysql_connect ... 464
6.5.5 mysql_create_db ... 467
6.5.6 mysql_data_seek ... 469
6.5.7 mysql_db_name ... 470
6.5.8 mysql_db_query ... 472
6.5.9 mysql_drop_db ... 473
6.5.10 mysql_errno ... 475
6.5.11 mysql_error ... 476
6.5.12 mysql_escape_string ... 477
6.5.13 mysql_fetch_array ... 479
6.5.14 mysql_fetch_assoc ... 481
6.5.15 mysql_fetch_field ... 483
6.5.16 mysql_fetch_lengths ... 485
6.5.17 mysql_fetch_object ... 486
6.5.18 mysql_fetch_row ... 488
6.5.19 mysql_field_flags ... 489
6.5.20 mysql_field_len ... 491
6.5.21 mysql_field_name ... 492
6.5.22 mysql_field_seek ... 493
6.5.23 mysql_field_table ... 494
6.5.24 mysql_field_type ... 495
6.5.25 mysql_free_result ... 497
6.5.26 mysql_get_client_info ... 498
6.5.27 mysql_get_host_info ... 499
6.5.28 mysql_get_proto_info ... 500
6.5.29 mysql_get_server_info ... 501
6.5.30 mysql_info ... 502
6.5.31 mysql_insert_id ... 504
6.5.32 mysql_list_dbs ... 505
6.5.33 mysql_list_fields ... 506
6.5.34 mysql_list_processes ... 508
6.5.35 mysql_list_tables ... 509
6.5.36 mysql_num_fields ... 511
6.5.37 mysql_num_rows ... 512
6.5.38 mysql_pconnect ... 513
6.5.39 mysql_ping ... 515
6.5.40 mysql_query ... 516
6.5.41 mysql_real_escape_string ... 518
6.5.42 mysql_result ... 521
6.5.43 mysql_select_db ... 523
6.5.44 mysql_set_charset ... 524
6.5.45 mysql_stat ... 525
6.5.46 mysql_tablename ... 527
6.5.47 mysql_thread_id ... 528
6.5.48 mysql_unbuffered_query ... 529

7 MySQL Native Driver ... 531
7.1 Overview .. 531
7.2 Installation .. 532
7.3 Runtime Configuration ... 533
7.4 Incompatibilities .. 538
7.5 Persistent Connections ... 538
7.6 Statistics ... 539
7.7 Notes ... 552
7.8 Memory management ... 553

MySQL and PHP

xii

7.9 MySQL Native Driver Plugin API ... 554
7.9.1 A comparison of mysqlnd plugins with MySQL Proxy ... 556
7.9.2 Obtaining the mysqlnd plugin API ... 557
7.9.3 MySQL Native Driver Plugin Architecture .. 557
7.9.4 The mysqlnd plugin API ... 562
7.9.5 Getting started building a mysqlnd plugin .. 564

8 Common Problems with MySQL and PHP .. 569

xiii

Preface and Legal Notices
This manual describes the PHP extensions and interfaces that can be used with MySQL.

Legal Notices

Copyright © 1997, 2019, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

Access to Oracle Support

xiv

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish
or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1

Chapter 1 Introduction to the MySQL PHP API
PHP is a server-side, HTML-embedded scripting language that may be used to create dynamic Web
pages. It is available for most operating systems and Web servers, and can access most common
databases, including MySQL. PHP may be run as a separate program or compiled as a module for use
with a Web server.

PHP provides four different MySQL API extensions:

• Chapter 3, MySQL Improved Extension: Stands for “MySQL, Improved”; this extension is available
as of PHP 5.0.0. It is intended for use with MySQL 4.1.1 and later. This extension fully supports the
authentication protocol used in MySQL 5.0, as well as the Prepared Statements and Multiple Statements
APIs. In addition, this extension provides an advanced, object-oriented programming interface.

• Chapter 4, MySQL Functions (PDO_MYSQL): Not its own API, but instead it's a MySQL driver for the
PHP database abstraction layer PDO (PHP Data Objects). The PDO MySQL driver sits in the layer
below PDO itself, and provides MySQL-specific functionality. This extension is available as of PHP 5.1.0.

• Chapter 5, Mysql_xdevapi: This extension uses MySQL's X DevAPI and is available as a PECL
extension named mysql_xdevapi. For general concepts and X DevAPI usage details, see X DevAPI User
Guide.

• Chapter 6, Original MySQL API: Available for PHP versions 4 and 5, this extension is intended for use
with MySQL versions prior to MySQL 4.1. This extension does not support the improved authentication
protocol used in MySQL 4.1, nor does it support prepared statements or multiple statements. To use
this extension with MySQL 4.1, you will likely configure the MySQL server to set the old_passwords
system variable to 1 (see Client does not support authentication protocol).

Warning

This extension was removed from PHP 5.5.0. All users must migrate to either
mysqli, PDO_MySQL, or mysql_xdevapi. For further information, see
Section 2.3, “Choosing an API”.

Note

This documentation, and other publications, sometimes uses the term Connector/
PHP. This term refers to the full set of MySQL related functionality in PHP, which
includes the three APIs that are described in the preceding discussion, along with
the mysqlnd core library and all of its plugins.

The PHP distribution and documentation are available from the PHP website.

Portions of this section are Copyright (c) 1997-2019 the PHP Documentation Group This material may
be distributed only subject to the terms and conditions set forth in the Creative Commons Attribution 3.0
License or later. A copy of the Creative Commons Attribution 3.0 license is distributed with this manual.
The latest version is presently available at http://creativecommons.org/licenses/by/3.0/.

https://pecl.php.net/package/mysql_xdevapi
http://dev.mysql.com/doc/x-devapi-userguide/en/
http://dev.mysql.com/doc/x-devapi-userguide/en/
http://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_old_passwords
http://dev.mysql.com/doc/refman/5.6/en/old-client.html
http://www.php.net/
http://creativecommons.org/licenses/by/3.0/

2

3

Chapter 2 Overview of the MySQL PHP drivers

Table of Contents
2.1 Introduction .. 3
2.2 Terminology overview ... 3
2.3 Choosing an API .. 4
2.4 Choosing a library .. 6
2.5 Concepts .. 7

2.5.1 Buffered and Unbuffered queries .. 7
2.5.2 Character sets ... 8

Copyright 1997-2019 the PHP Documentation Group.

2.1 Introduction
Depending on the version of PHP, there are either two or three PHP APIs for accessing the MySQL database. PHP
5 users can choose between the deprecated mysql extension, mysqli, or PDO_MySQL. PHP 7 removes the mysql
extension, leaving only the latter two options.

This guide explains the terminology used to describe each API, information about choosing which API to use, and
also information to help choose which MySQL library to use with the API.

2.2 Terminology overview
Copyright 1997-2019 the PHP Documentation Group.

This section provides an introduction to the options available to you when developing a PHP application
that needs to interact with a MySQL database.

What is an API?

An Application Programming Interface, or API, defines the classes, methods, functions and variables that
your application will need to call in order to carry out its desired task. In the case of PHP applications that
need to communicate with databases the necessary APIs are usually exposed via PHP extensions.

APIs can be procedural or object-oriented. With a procedural API you call functions to carry out tasks, with
the object-oriented API you instantiate classes and then call methods on the resulting objects. Of the two
the latter is usually the preferred interface, as it is more modern and leads to better organized code.

When writing PHP applications that need to connect to the MySQL server there are several API options
available. This document discusses what is available and how to select the best solution for your
application.

What is a Connector?

In the MySQL documentation, the term connector refers to a piece of software that allows your application
to connect to the MySQL database server. MySQL provides connectors for a variety of languages,
including PHP.

If your PHP application needs to communicate with a database server you will need to write PHP code to
perform such activities as connecting to the database server, querying the database and other database-
related functions. Software is required to provide the API that your PHP application will use, and also
handle the communication between your application and the database server, possibly using other

Choosing an API

4

intermediate libraries where necessary. This software is known generically as a connector, as it allows your
application to connect to a database server.

What is a Driver?

A driver is a piece of software designed to communicate with a specific type of database server. The driver
may also call a library, such as the MySQL Client Library or the MySQL Native Driver. These libraries
implement the low-level protocol used to communicate with the MySQL database server.

By way of an example, the PHP Data Objects (PDO) database abstraction layer may use one of several
database-specific drivers. One of the drivers it has available is the PDO MYSQL driver, which allows it to
interface with the MySQL server.

Sometimes people use the terms connector and driver interchangeably, this can be confusing. In the
MySQL-related documentation the term “driver” is reserved for software that provides the database-specific
part of a connector package.

What is an Extension?

In the PHP documentation you will come across another term - extension. The PHP code consists of a
core, with optional extensions to the core functionality. PHP's MySQL-related extensions, such as the
mysqli extension, and the mysql extension, are implemented using the PHP extension framework.

An extension typically exposes an API to the PHP programmer, to allow its facilities to be used
programmatically. However, some extensions which use the PHP extension framework do not expose an
API to the PHP programmer.

The PDO MySQL driver extension, for example, does not expose an API to the PHP programmer, but
provides an interface to the PDO layer above it.

The terms API and extension should not be taken to mean the same thing, as an extension may not
necessarily expose an API to the programmer.

2.3 Choosing an API
Copyright 1997-2019 the PHP Documentation Group.

PHP offers three different APIs to connect to MySQL. Below we show the APIs provided by the mysql,
mysqli, and PDO extensions. Each code snippet creates a connection to a MySQL server running on
"example.com" using the username "user" and the password "password". And a query is run to greet the
user.

Example 2.1 Comparing the three MySQL APIs

<?php
// mysqli
$mysqli = new mysqli("example.com", "user", "password", "database");
$result = $mysqli->query("SELECT 'Hello, dear MySQL user!' AS _message FROM DUAL");
$row = $result->fetch_assoc();
echo htmlentities($row['_message']);

// PDO
$pdo = new PDO('mysql:host=example.com;dbname=database', 'user', 'password');
$statement = $pdo->query("SELECT 'Hello, dear MySQL user!' AS _message FROM DUAL");
$row = $statement->fetch(PDO::FETCH_ASSOC);
echo htmlentities($row['_message']);

// mysql
$c = mysql_connect("example.com", "user", "password");

Choosing an API

5

mysql_select_db("database");
$result = mysql_query("SELECT 'Hello, dear MySQL user!' AS _message FROM DUAL");
$row = mysql_fetch_assoc($result);
echo htmlentities($row['_message']);
?>

Recommended API

It is recommended to use either the mysqli or PDO_MySQL extensions. It is not recommended to use the
old mysql extension for new development, as it was deprecated in PHP 5.5.0 and was removed in PHP 7.
A detailed feature comparison matrix is provided below. The overall performance of all three extensions is
considered to be about the same. Although the performance of the extension contributes only a fraction of
the total run time of a PHP web request. Often, the impact is as low as 0.1%.

Feature comparison

 ext/mysqli PDO_MySQL ext/mysql

PHP version introduced 5.0 5.1 2.0

Included with PHP 5.x Yes Yes Yes

Included with PHP 7.x Yes Yes No

Development status Active Active Maintenance only in 5.x;
removed in 7.x

Lifecycle Active Active Deprecated in 5.x;
removed in 7.x

Recommended for new
projects

Yes Yes No

OOP Interface Yes Yes No

Procedural Interface Yes No Yes

API supports non-
blocking, asynchronous
queries with mysqlnd

Yes No No

Persistent Connections Yes Yes Yes

API supports Charsets Yes Yes Yes

API supports server-side
Prepared Statements

Yes Yes No

API supports client-side
Prepared Statements

No Yes No

API supports Stored
Procedures

Yes Yes No

API supports Multiple
Statements

Yes Most No

API supports
Transactions

Yes Yes No

Transactions can be
controlled with SQL

Yes Yes Yes

Supports all MySQL 5.1+
functionality

Yes Most No

Choosing a library

6

2.4 Choosing a library

Copyright 1997-2019 the PHP Documentation Group.

The mysqli, PDO_MySQL and mysql PHP extensions are lightweight wrappers on top of a C client library.
The extensions can either use the mysqlnd library or the libmysqlclient library. Choosing a library is a
compile time decision.

The mysqlnd library is part of the PHP distribution since 5.3.0. It offers features like lazy connections and
query caching, features that are not available with libmysqlclient, so using the built-in mysqlnd library is
highly recommended. See the mysqlnd documentation for additional details, and a listing of features and
functionality that it offers.

Example 2.2 Configure commands for using mysqlnd or libmysqlclient

// Recommended, compiles with mysqlnd
$./configure --with-mysqli=mysqlnd --with-pdo-mysql=mysqlnd --with-mysql=mysqlnd

// Alternatively recommended, compiles with mysqlnd as of PHP 5.4
$./configure --with-mysqli --with-pdo-mysql --with-mysql

// Not recommended, compiles with libmysqlclient
$./configure --with-mysqli=/path/to/mysql_config --with-pdo-mysql=/path/to/mysql_config --with-mysql=/path/to/mysql_config

Library feature comparison

It is recommended to use the mysqlnd library instead of the MySQL Client Server library (libmysqlclient).
Both libraries are supported and constantly being improved.

 MySQL native driver (mysqlnd) MySQL client server library
(libmysqlclient)

Part of the PHP distribution Yes No

PHP version introduced 5.3.0 N/A

License PHP License 3.01 Dual-License

Development status Active Active

Lifecycle No end announced No end announced

PHP 5.4 and above; compile
default (for all MySQL extensions)

Yes No

PHP 5.3; compile default (for all
MySQL extensions)

No Yes

Compression protocol support Yes (5.3.1+) Yes

SSL support Yes (5.3.3+) Yes

Named pipe support Yes (5.3.4+) Yes

Non-blocking, asynchronous
queries

Yes No

Performance statistics Yes No

LOAD LOCAL INFILE respects
the open_basedir directive

Yes No

http://www.php.net/ini.open-basedir

Concepts

7

 MySQL native driver (mysqlnd) MySQL client server library
(libmysqlclient)

Uses PHP's native memory
management system (e.g., follows
PHP memory limits)

Yes No

Return numeric column as double
(COM_QUERY)

Yes No

Return numeric column as string
(COM_QUERY)

Yes Yes

Plugin API Yes Limited

Read/Write splitting for MySQL
Replication

Yes, with plugin No

Load Balancing Yes, with plugin No

Fail over Yes, with plugin No

Lazy connections Yes, with plugin No

Query caching Yes, with plugin No

Transparent query manipulations
(E.g., auto-EXPLAIN or
monitoring)

Yes, with plugin No

Automatic reconnect No Optional

2.5 Concepts

Copyright 1997-2019 the PHP Documentation Group.

These concepts are specific to the MySQL drivers for PHP.

2.5.1 Buffered and Unbuffered queries

Copyright 1997-2019 the PHP Documentation Group.

Queries are using the buffered mode by default. This means that query results are immediately transferred
from the MySQL Server to PHP and then are kept in the memory of the PHP process. This allows
additional operations like counting the number of rows, and moving (seeking) the current result pointer. It
also allows issuing further queries on the same connection while working on the result set. The downside
of the buffered mode is that larger result sets might require quite a lot memory. The memory will be
kept occupied till all references to the result set are unset or the result set was explicitly freed, which will
automatically happen during request end the latest. The terminology "store result" is also used for buffered
mode, as the whole result set is stored at once.

Note

When using libmysqlclient as library PHP's memory limit won't count the memory
used for result sets unless the data is fetched into PHP variables. With mysqlnd the
memory accounted for will include the full result set.

Unbuffered MySQL queries execute the query and then return a resource while the data is still waiting on
the MySQL server for being fetched. This uses less memory on the PHP-side, but can increase the load
on the server. Unless the full result set was fetched from the server no further queries can be sent over the
same connection. Unbuffered queries can also be referred to as "use result".

Character sets

8

Following these characteristics buffered queries should be used in cases where you expect only a limited
result set or need to know the amount of returned rows before reading all rows. Unbuffered mode should
be used when you expect larger results.

Because buffered queries are the default, the examples below will demonstrate how to execute unbuffered
queries with each API.

Example 2.3 Unbuffered query example: mysqli

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
$uresult = $mysqli->query("SELECT Name FROM City", MYSQLI_USE_RESULT);

if ($uresult) {
 while ($row = $uresult->fetch_assoc()) {
 echo $row['Name'] . PHP_EOL;
 }
}
$uresult->close();
?>

Example 2.4 Unbuffered query example: pdo_mysql

<?php
$pdo = new PDO("mysql:host=localhost;dbname=world", 'my_user', 'my_pass');
$pdo->setAttribute(PDO::MYSQL_ATTR_USE_BUFFERED_QUERY, false);

$uresult = $pdo->query("SELECT Name FROM City");
if ($uresult) {
 while ($row = $uresult->fetch(PDO::FETCH_ASSOC)) {
 echo $row['Name'] . PHP_EOL;
 }
}
?>

Example 2.5 Unbuffered query example: mysql

<?php
$conn = mysql_connect("localhost", "my_user", "my_pass");
$db = mysql_select_db("world");

$uresult = mysql_unbuffered_query("SELECT Name FROM City");
if ($uresult) {
 while ($row = mysql_fetch_assoc($uresult)) {
 echo $row['Name'] . PHP_EOL;
 }
}
?>

2.5.2 Character sets

Copyright 1997-2019 the PHP Documentation Group.

Character sets

9

Ideally a proper character set will be set at the server level, and doing this is described within the Character
Set Configuration section of the MySQL Server manual. Alternatively, each MySQL API offers a method to
set the character set at runtime.

The character set and character escaping

The character set should be understood and defined, as it has an affect on every
action, and includes security implications. For example, the escaping mechanism
(e.g., mysqli_real_escape_string for mysqli, mysql_real_escape_string
for mysql, and PDO::quote for PDO_MySQL) will adhere to this setting. It is
important to realize that these functions will not use the character set that is defined
with a query, so for example the following will not have an effect on them:

Example 2.6 Problems with setting the character set with SQL

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

// Will NOT affect $mysqli->real_escape_string();
$mysqli->query("SET NAMES utf8");

// Will NOT affect $mysqli->real_escape_string();
$mysqli->query("SET CHARACTER SET utf8");

// But, this will affect $mysqli->real_escape_string();
$mysqli->set_charset('utf8');

// But, this will NOT affect it (utf-8 vs utf8) -- don't use dashes here
$mysqli->set_charset('utf-8');

?>

Below are examples that demonstrate how to properly alter the character set at runtime using each API.

Possible UTF-8 confusion

Because character set names in MySQL do not contain dashes, the string "utf8" is
valid in MySQL to set the character set to UTF-8. The string "utf-8" is not valid, as
using "utf-8" will fail to change the character set.

Example 2.7 Setting the character set example: mysqli

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

printf("Initial character set: %s\n", $mysqli->character_set_name());

if (!$mysqli->set_charset('utf8')) {
 printf("Error loading character set utf8: %s\n", $mysqli->error);
 exit;
}

echo "New character set information:\n";
print_r($mysqli->get_charset());

?>

http://dev.mysql.com/doc/mysql/en/charset-configuration.html
http://dev.mysql.com/doc/mysql/en/charset-configuration.html
http://www.php.net/PDO::quote

Character sets

10

Example 2.8 Setting the character set example: pdo_mysql

Note: This only works as of PHP 5.3.6.

<?php
$pdo = new PDO("mysql:host=localhost;dbname=world;charset=utf8", 'my_user', 'my_pass');
?>

Example 2.9 Setting the character set example: mysql

<?php
$conn = mysql_connect("localhost", "my_user", "my_pass");
$db = mysql_select_db("world");

echo 'Initial character set: ' . mysql_client_encoding($conn) . "\n";

if (!mysql_set_charset('utf8', $conn)) {
 echo "Error: Unable to set the character set.\n";
 exit;
}

echo 'Your current character set is: ' . mysql_client_encoding($conn);
?>

11

Chapter 3 MySQL Improved Extension

Table of Contents
3.1 Overview .. 14
3.2 Quick start guide .. 18

3.2.1 Dual procedural and object-oriented interface .. 18
3.2.2 Connections ... 20
3.2.3 Executing statements ... 22
3.2.4 Prepared Statements ... 26
3.2.5 Stored Procedures ... 33
3.2.6 Multiple Statements ... 37
3.2.7 API support for transactions ... 39
3.2.8 Metadata ... 40

3.3 Installing/Configuring ... 42
3.3.1 Requirements .. 42
3.3.2 Installation ... 42
3.3.3 Runtime Configuration .. 44
3.3.4 Resource Types .. 46

3.4 The mysqli Extension and Persistent Connections .. 46
3.5 Predefined Constants ... 47
3.6 Notes ... 50
3.7 The MySQLi Extension Function Summary .. 51
3.8 Examples ... 57

3.8.1 MySQLi extension basic examples ... 57
3.9 The mysqli class .. 59

3.9.1 mysqli::$affected_rows, mysqli_affected_rows ... 62
3.9.2 mysqli::autocommit, mysqli_autocommit ... 65
3.9.3 mysqli::begin_transaction, mysqli_begin_transaction 67
3.9.4 mysqli::change_user, mysqli_change_user ... 68
3.9.5 mysqli::character_set_name, mysqli_character_set_name 71
3.9.6 mysqli::close, mysqli_close ... 72
3.9.7 mysqli::commit, mysqli_commit ... 73
3.9.8 mysqli::$connect_errno, mysqli_connect_errno ... 75
3.9.9 mysqli::$connect_error, mysqli_connect_error ... 77
3.9.10 mysqli::__construct, mysqli::connect, mysqli_connect 78
3.9.11 mysqli::debug, mysqli_debug ... 82
3.9.12 mysqli::dump_debug_info, mysqli_dump_debug_info ... 83
3.9.13 mysqli::$errno, mysqli_errno ... 83
3.9.14 mysqli::$error_list, mysqli_error_list ... 85
3.9.15 mysqli::$error, mysqli_error ... 86
3.9.16 mysqli::$field_count, mysqli_field_count ... 88
3.9.17 mysqli::get_charset, mysqli_get_charset ... 90
3.9.18 mysqli::$client_info, mysqli::get_client_info,
mysqli_get_client_info .. 91
3.9.19 mysqli::$client_version, mysqli_get_client_version 92
3.9.20 mysqli::get_connection_stats, mysqli_get_connection_stats 93
3.9.21 mysqli::$host_info, mysqli_get_host_info ... 96
3.9.22 mysqli::$protocol_version, mysqli_get_proto_info 97
3.9.23 mysqli::$server_info, mysqli::get_server_info,
mysqli_get_server_info .. 99
3.9.24 mysqli::$server_version, mysqli_get_server_version 100

12

3.9.25 mysqli::get_warnings, mysqli_get_warnings .. 102
3.9.26 mysqli::$info, mysqli_info ... 102
3.9.27 mysqli::init, mysqli_init ... 104
3.9.28 mysqli::$insert_id, mysqli_insert_id ... 105
3.9.29 mysqli::kill, mysqli_kill ... 107
3.9.30 mysqli::more_results, mysqli_more_results .. 108
3.9.31 mysqli::multi_query, mysqli_multi_query .. 109
3.9.32 mysqli::next_result, mysqli_next_result .. 111
3.9.33 mysqli::options, mysqli_options ... 112
3.9.34 mysqli::ping, mysqli_ping ... 114
3.9.35 mysqli::poll, mysqli_poll ... 116
3.9.36 mysqli::prepare, mysqli_prepare ... 117
3.9.37 mysqli::query, mysqli_query ... 120
3.9.38 mysqli::real_connect, mysqli_real_connect .. 123
3.9.39 mysqli::real_escape_string, mysqli::escape_string,
mysqli_real_escape_string .. 127
3.9.40 mysqli::real_query, mysqli_real_query .. 130
3.9.41 mysqli::reap_async_query, mysqli_reap_async_query 130
3.9.42 mysqli::refresh, mysqli_refresh ... 131
3.9.43 mysqli::release_savepoint, mysqli_release_savepoint 132
3.9.44 mysqli::rollback, mysqli_rollback ... 132
3.9.45 mysqli::rpl_query_type, mysqli_rpl_query_type .. 135
3.9.46 mysqli::savepoint, mysqli_savepoint ... 136
3.9.47 mysqli::select_db, mysqli_select_db ... 136
3.9.48 mysqli::send_query, mysqli_send_query .. 138
3.9.49 mysqli::set_charset, mysqli_set_charset .. 139
3.9.50 mysqli::set_local_infile_default, mysqli_set_local_infile_default 141
3.9.51 mysqli::set_local_infile_handler, mysqli_set_local_infile_handler 141
3.9.52 mysqli::$sqlstate, mysqli_sqlstate ... 144
3.9.53 mysqli::ssl_set, mysqli_ssl_set ... 146
3.9.54 mysqli::stat, mysqli_stat ... 147
3.9.55 mysqli::stmt_init, mysqli_stmt_init ... 148
3.9.56 mysqli::store_result, mysqli_store_result .. 149
3.9.57 mysqli::$thread_id, mysqli_thread_id ... 150
3.9.58 mysqli::thread_safe, mysqli_thread_safe .. 152
3.9.59 mysqli::use_result, mysqli_use_result .. 152
3.9.60 mysqli::$warning_count, mysqli_warning_count .. 155

3.10 The mysqli_stmt class ... 157
3.10.1 mysqli_stmt::$affected_rows, mysqli_stmt_affected_rows 158
3.10.2 mysqli_stmt::attr_get, mysqli_stmt_attr_get .. 160
3.10.3 mysqli_stmt::attr_set, mysqli_stmt_attr_set .. 161
3.10.4 mysqli_stmt::bind_param, mysqli_stmt_bind_param .. 162
3.10.5 mysqli_stmt::bind_result, mysqli_stmt_bind_result 165
3.10.6 mysqli_stmt::close, mysqli_stmt_close .. 167
3.10.7 mysqli_stmt::__construct ... 168
3.10.8 mysqli_stmt::data_seek, mysqli_stmt_data_seek .. 168
3.10.9 mysqli_stmt::$errno, mysqli_stmt_errno .. 171
3.10.10 mysqli_stmt::$error_list, mysqli_stmt_error_list 173
3.10.11 mysqli_stmt::$error, mysqli_stmt_error .. 175
3.10.12 mysqli_stmt::execute, mysqli_stmt_execute .. 177
3.10.13 mysqli_stmt::fetch, mysqli_stmt_fetch .. 180
3.10.14 mysqli_stmt::$field_count, mysqli_stmt_field_count 182
3.10.15 mysqli_stmt::free_result, mysqli_stmt_free_result 182
3.10.16 mysqli_stmt::get_result, mysqli_stmt_get_result 183

13

3.10.17 mysqli_stmt::get_warnings, mysqli_stmt_get_warnings 185
3.10.18 mysqli_stmt::$insert_id, mysqli_stmt_insert_id .. 186
3.10.19 mysqli_stmt::more_results, mysqli_stmt_more_results 186
3.10.20 mysqli_stmt::next_result, mysqli_stmt_next_result 187
3.10.21 mysqli_stmt::$num_rows, mysqli_stmt::num_rows,
mysqli_stmt_num_rows .. 188
3.10.22 mysqli_stmt::$param_count, mysqli_stmt_param_count 190
3.10.23 mysqli_stmt::prepare, mysqli_stmt_prepare .. 191
3.10.24 mysqli_stmt::reset, mysqli_stmt_reset .. 194
3.10.25 mysqli_stmt::result_metadata, mysqli_stmt_result_metadata 195
3.10.26 mysqli_stmt::send_long_data, mysqli_stmt_send_long_data 197
3.10.27 mysqli_stmt::$sqlstate, mysqli_stmt_sqlstate .. 198
3.10.28 mysqli_stmt::store_result, mysqli_stmt_store_result 200

3.11 The mysqli_result class ... 203
3.11.1 mysqli_result::$current_field, mysqli_field_tell 204
3.11.2 mysqli_result::data_seek, mysqli_data_seek .. 206
3.11.3 mysqli_result::fetch_all, mysqli_fetch_all .. 208
3.11.4 mysqli_result::fetch_array, mysqli_fetch_array .. 209
3.11.5 mysqli_result::fetch_assoc, mysqli_fetch_assoc .. 211
3.11.6 mysqli_result::fetch_field_direct, mysqli_fetch_field_direct 214
3.11.7 mysqli_result::fetch_field, mysqli_fetch_field .. 217
3.11.8 mysqli_result::fetch_fields, mysqli_fetch_fields 219
3.11.9 mysqli_result::fetch_object, mysqli_fetch_object 222
3.11.10 mysqli_result::fetch_row, mysqli_fetch_row .. 225
3.11.11 mysqli_result::$field_count, mysqli_num_fields .. 227
3.11.12 mysqli_result::field_seek, mysqli_field_seek .. 228
3.11.13 mysqli_result::free, mysqli_result::close,
mysqli_result::free_result, mysqli_free_result .. 230
3.11.14 mysqli_result::$lengths, mysqli_fetch_lengths .. 231
3.11.15 mysqli_result::$num_rows, mysqli_num_rows .. 233

3.12 The mysqli_driver class ... 235
3.12.1 mysqli_driver::embedded_server_end, mysqli_embedded_server_end 236
3.12.2 mysqli_driver::embedded_server_start, mysqli_embedded_server_start .. 236
3.12.3 mysqli_driver::$report_mode, mysqli_report .. 237

3.13 The mysqli_warning class ... 239
3.13.1 mysqli_warning::__construct ... 240
3.13.2 mysqli_warning::next ... 240

3.14 The mysqli_sql_exception class ... 240
3.15 Aliases and deprecated Mysqli Functions ... 241

3.15.1 mysqli_bind_param ... 241
3.15.2 mysqli_bind_result ... 241
3.15.3 mysqli_client_encoding ... 242
3.15.4 mysqli_connect ... 242
3.15.5 mysqli::disable_reads_from_master,
mysqli_disable_reads_from_master .. 243
3.15.6 mysqli_disable_rpl_parse ... 243
3.15.7 mysqli_enable_reads_from_master .. 244
3.15.8 mysqli_enable_rpl_parse ... 244
3.15.9 mysqli_escape_string ... 245
3.15.10 mysqli_execute .. 245
3.15.11 mysqli_fetch .. 245
3.15.12 mysqli_get_cache_stats .. 245
3.15.13 mysqli_get_client_stats .. 246
3.15.14 mysqli_get_links_stats .. 249

Overview

14

3.15.15 mysqli_get_metadata .. 249
3.15.16 mysqli_master_query .. 249
3.15.17 mysqli_param_count .. 250
3.15.18 mysqli_report .. 250
3.15.19 mysqli_rpl_parse_enabled .. 250
3.15.20 mysqli_rpl_probe .. 251
3.15.21 mysqli_send_long_data .. 251
3.15.22 mysqli::set_opt, mysqli_set_opt .. 251
3.15.23 mysqli_slave_query .. 252

3.16 Changelog .. 252

Copyright 1997-2019 the PHP Documentation Group.

The mysqli extension allows you to access the functionality provided by MySQL 4.1 and above. More
information about the MySQL Database server can be found at http://www.mysql.com/

An overview of software available for using MySQL from PHP can be found at Section 3.1, “Overview”

Documentation for MySQL can be found at http://dev.mysql.com/doc/.

Parts of this documentation included from MySQL manual with permissions of Oracle Corporation.

Examples use either the world or sakila database, which are freely available.

3.1 Overview

Copyright 1997-2019 the PHP Documentation Group.

This section provides an introduction to the options available to you when developing a PHP application
that needs to interact with a MySQL database.

What is an API?

An Application Programming Interface, or API, defines the classes, methods, functions and variables that
your application will need to call in order to carry out its desired task. In the case of PHP applications that
need to communicate with databases the necessary APIs are usually exposed via PHP extensions.

APIs can be procedural or object-oriented. With a procedural API you call functions to carry out tasks, with
the object-oriented API you instantiate classes and then call methods on the resulting objects. Of the two
the latter is usually the preferred interface, as it is more modern and leads to better organized code.

When writing PHP applications that need to connect to the MySQL server there are several API options
available. This document discusses what is available and how to select the best solution for your
application.

What is a Connector?

In the MySQL documentation, the term connector refers to a piece of software that allows your application
to connect to the MySQL database server. MySQL provides connectors for a variety of languages,
including PHP.

If your PHP application needs to communicate with a database server you will need to write PHP code to
perform such activities as connecting to the database server, querying the database and other database-
related functions. Software is required to provide the API that your PHP application will use, and also
handle the communication between your application and the database server, possibly using other

http://www.mysql.com/
http://dev.mysql.com/doc/
http://dev.mysql.com/doc/world-setup/en/index.html
http://dev.mysql.com/doc/sakila/en/index.html

Overview

15

intermediate libraries where necessary. This software is known generically as a connector, as it allows your
application to connect to a database server.

What is a Driver?

A driver is a piece of software designed to communicate with a specific type of database server. The driver
may also call a library, such as the MySQL Client Library or the MySQL Native Driver. These libraries
implement the low-level protocol used to communicate with the MySQL database server.

By way of an example, the PHP Data Objects (PDO) database abstraction layer may use one of several
database-specific drivers. One of the drivers it has available is the PDO MYSQL driver, which allows it to
interface with the MySQL server.

Sometimes people use the terms connector and driver interchangeably, this can be confusing. In the
MySQL-related documentation the term “driver” is reserved for software that provides the database-specific
part of a connector package.

What is an Extension?

In the PHP documentation you will come across another term - extension. The PHP code consists of a
core, with optional extensions to the core functionality. PHP's MySQL-related extensions, such as the
mysqli extension, and the mysql extension, are implemented using the PHP extension framework.

An extension typically exposes an API to the PHP programmer, to allow its facilities to be used
programmatically. However, some extensions which use the PHP extension framework do not expose an
API to the PHP programmer.

The PDO MySQL driver extension, for example, does not expose an API to the PHP programmer, but
provides an interface to the PDO layer above it.

The terms API and extension should not be taken to mean the same thing, as an extension may not
necessarily expose an API to the programmer.

What are the main PHP API offerings for using MySQL?

There are three main API options when considering connecting to a MySQL database server:

• PHP's MySQL Extension

• PHP's mysqli Extension

• PHP Data Objects (PDO)

Each has its own advantages and disadvantages. The following discussion aims to give a brief introduction
to the key aspects of each API.

What is PHP's MySQL Extension?

This is the original extension designed to allow you to develop PHP applications that interact with a MySQL
database. The mysql extension provides a procedural interface and is intended for use only with MySQL
versions older than 4.1.3. This extension can be used with versions of MySQL 4.1.3 or newer, but not all of
the latest MySQL server features will be available.

Note

If you are using MySQL versions 4.1.3 or later it is strongly recommended that you
use the mysqli extension instead.

Overview

16

The mysql extension source code is located in the PHP extension directory ext/mysql.

For further information on the mysql extension, see Chapter 6, Original MySQL API.

What is PHP's mysqli Extension?

The mysqli extension, or as it is sometimes known, the MySQL improved extension, was developed
to take advantage of new features found in MySQL systems versions 4.1.3 and newer. The mysqli
extension is included with PHP versions 5 and later.

The mysqli extension has a number of benefits, the key enhancements over the mysql extension being:

• Object-oriented interface

• Support for Prepared Statements

• Support for Multiple Statements

• Support for Transactions

• Enhanced debugging capabilities

• Embedded server support

Note

If you are using MySQL versions 4.1.3 or later it is strongly recommended that you
use this extension.

As well as the object-oriented interface the extension also provides a procedural interface.

The mysqli extension is built using the PHP extension framework, its source code is located in the
directory ext/mysqli.

For further information on the mysqli extension, see Chapter 3, MySQL Improved Extension.

What is PDO?

PHP Data Objects, or PDO, is a database abstraction layer specifically for PHP applications. PDO provides
a consistent API for your PHP application regardless of the type of database server your application will
connect to. In theory, if you are using the PDO API, you could switch the database server you used, from
say Firebird to MySQL, and only need to make minor changes to your PHP code.

Other examples of database abstraction layers include JDBC for Java applications and DBI for Perl.

While PDO has its advantages, such as a clean, simple, portable API, its main disadvantage is that it
doesn't allow you to use all of the advanced features that are available in the latest versions of MySQL
server. For example, PDO does not allow you to use MySQL's support for Multiple Statements.

PDO is implemented using the PHP extension framework, its source code is located in the directory ext/
pdo.

For further information on PDO, see the http://www.php.net/book.pdo.

What is the PDO MYSQL driver?

The PDO MYSQL driver is not an API as such, at least from the PHP programmer's perspective. In fact
the PDO MYSQL driver sits in the layer below PDO itself and provides MySQL-specific functionality. The

http://www.php.net/book.pdo

Overview

17

programmer still calls the PDO API, but PDO uses the PDO MYSQL driver to carry out communication with
the MySQL server.

The PDO MYSQL driver is one of several available PDO drivers. Other PDO drivers available include
those for the Firebird and PostgreSQL database servers.

The PDO MYSQL driver is implemented using the PHP extension framework. Its source code is located in
the directory ext/pdo_mysql. It does not expose an API to the PHP programmer.

For further information on the PDO MYSQL driver, see Chapter 4, MySQL Functions (PDO_MYSQL).

What is PHP's MySQL Native Driver?

In order to communicate with the MySQL database server the mysql extension, mysqli and the PDO
MYSQL driver each use a low-level library that implements the required protocol. In the past, the only
available library was the MySQL Client Library, otherwise known as libmysqlclient.

However, the interface presented by libmysqlclient was not optimized for communication with PHP
applications, as libmysqlclient was originally designed with C applications in mind. For this reason
the MySQL Native Driver, mysqlnd, was developed as an alternative to libmysqlclient for PHP
applications.

The mysql extension, the mysqli extension and the PDO MySQL driver can each be individually
configured to use either libmysqlclient or mysqlnd. As mysqlnd is designed specifically to be utilised
in the PHP system it has numerous memory and speed enhancements over libmysqlclient. You are
strongly encouraged to take advantage of these improvements.

Note

The MySQL Native Driver can only be used with MySQL server versions 4.1.3 and
later.

The MySQL Native Driver is implemented using the PHP extension framework. The source code is located
in ext/mysqlnd. It does not expose an API to the PHP programmer.

Comparison of Features

The following table compares the functionality of the three main methods of connecting to MySQL from
PHP:

Table 3.1 Comparison of MySQL API options for PHP

 PHP's mysqli Extension PDO (Using PDO
MySQL Driver and
MySQL Native Driver)

PHP's MySQL
Extension

PHP version introduced 5.0 5.0 Prior to 3.0

Included with PHP 5.x yes yes Yes

MySQL development
status

Active development Active development as of
PHP 5.3

Maintenance only

Recommended by
MySQL for new projects

Yes - preferred option Yes No

API supports Charsets Yes Yes No

API supports server-side
Prepared Statements

Yes Yes No

Quick start guide

18

 PHP's mysqli Extension PDO (Using PDO
MySQL Driver and
MySQL Native Driver)

PHP's MySQL
Extension

API supports client-side
Prepared Statements

No Yes No

API supports Stored
Procedures

Yes Yes No

API supports Multiple
Statements

Yes Most No

Supports all MySQL 4.1+
functionality

Yes Most No

3.2 Quick start guide
Copyright 1997-2019 the PHP Documentation Group.

This quick start guide will help with choosing and gaining familiarity with the PHP MySQL API.

This quick start gives an overview on the mysqli extension. Code examples are provided for all major
aspects of the API. Database concepts are explained to the degree needed for presenting concepts
specific to MySQL.

Required: A familiarity with the PHP programming language, the SQL language, and basic knowledge of
the MySQL server.

3.2.1 Dual procedural and object-oriented interface

Copyright 1997-2019 the PHP Documentation Group.

The mysqli extension features a dual interface. It supports the procedural and object-oriented programming
paradigm.

Users migrating from the old mysql extension may prefer the procedural interface. The procedural interface
is similar to that of the old mysql extension. In many cases, the function names differ only by prefix. Some
mysqli functions take a connection handle as their first argument, whereas matching functions in the old
mysql interface take it as an optional last argument.

Example 3.1 Easy migration from the old mysql extension

<?php
$mysqli = mysqli_connect("example.com", "user", "password", "database");
$res = mysqli_query($mysqli, "SELECT 'Please, do not use ' AS _msg FROM DUAL");
$row = mysqli_fetch_assoc($res);
echo $row['_msg'];

$mysql = mysql_connect("example.com", "user", "password");
mysql_select_db("test");
$res = mysql_query("SELECT 'the mysql extension for new developments.' AS _msg FROM DUAL", $mysql);
$row = mysql_fetch_assoc($res);
echo $row['_msg'];
?>

The above example will output:

Dual procedural and object-oriented interface

19

Please, do not use the mysql extension for new developments.

The object-oriented interface

In addition to the classical procedural interface, users can choose to use the object-oriented interface.
The documentation is organized using the object-oriented interface. The object-oriented interface shows
functions grouped by their purpose, making it easier to get started. The reference section gives examples
for both syntax variants.

There are no significant performance differences between the two interfaces. Users can base their choice
on personal preference.

Example 3.2 Object-oriented and procedural interface

<?php
$mysqli = mysqli_connect("example.com", "user", "password", "database");
if (mysqli_connect_errno($mysqli)) {
 echo "Failed to connect to MySQL: " . mysqli_connect_error();
}

$res = mysqli_query($mysqli, "SELECT 'A world full of ' AS _msg FROM DUAL");
$row = mysqli_fetch_assoc($res);
echo $row['_msg'];

$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: " . $mysqli->connect_error;
}

$res = $mysqli->query("SELECT 'choices to please everybody.' AS _msg FROM DUAL");
$row = $res->fetch_assoc();
echo $row['_msg'];
?>

The above example will output:

A world full of choices to please everybody.

The object oriented interface is used for the quickstart because the reference section is organized that
way.

Mixing styles

It is possible to switch between styles at any time. Mixing both styles is not recommended for code clarity
and coding style reasons.

Example 3.3 Bad coding style

<?php

Connections

20

$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: " . $mysqli->connect_error;
}

$res = mysqli_query($mysqli, "SELECT 'Possible but bad style.' AS _msg FROM DUAL");
if (!$res) {
 echo "Failed to run query: (" . $mysqli->errno . ") " . $mysqli->error;
}

if ($row = $res->fetch_assoc()) {
 echo $row['_msg'];
}
?>

The above example will output:

Possible but bad style.

See also

mysqli::__construct
mysqli::query
mysqli_result::fetch_assoc
$mysqli::connect_errno
$mysqli::connect_error
$mysqli::errno
$mysqli::error
The MySQLi Extension Function Summary

3.2.2 Connections

Copyright 1997-2019 the PHP Documentation Group.

The MySQL server supports the use of different transport layers for connections. Connections use TCP/IP,
Unix domain sockets or Windows named pipes.

The hostname localhost has a special meaning. It is bound to the use of Unix domain sockets. It is not
possible to open a TCP/IP connection using the hostname localhost you must use 127.0.0.1 instead.

Example 3.4 Special meaning of localhost

<?php
$mysqli = new mysqli("localhost", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}
echo $mysqli->host_info . "\n";

$mysqli = new mysqli("127.0.0.1", "user", "password", "database", 3306);
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

Connections

21

echo $mysqli->host_info . "\n";
?>

The above example will output:

Localhost via UNIX socket
127.0.0.1 via TCP/IP

Connection parameter defaults

Depending on the connection function used, assorted parameters can be omitted. If a parameter is not
provided, then the extension attempts to use the default values that are set in the PHP configuration file.

Example 3.5 Setting defaults

mysqli.default_host=192.168.2.27
mysqli.default_user=root
mysqli.default_pw=""
mysqli.default_port=3306
mysqli.default_socket=/tmp/mysql.sock

The resulting parameter values are then passed to the client library that is used by the extension. If the
client library detects empty or unset parameters, then it may default to the library built-in values.

Built-in connection library defaults

If the host value is unset or empty, then the client library will default to a Unix socket connection on
localhost. If socket is unset or empty, and a Unix socket connection is requested, then a connection to
the default socket on /tmp/mysql.sock is attempted.

On Windows systems, the host name . is interpreted by the client library as an attempt to open a Windows
named pipe based connection. In this case the socket parameter is interpreted as the pipe name. If not
given or empty, then the socket (pipe name) defaults to \\.\pipe\MySQL.

If neither a Unix domain socket based not a Windows named pipe based connection is to be established
and the port parameter value is unset, the library will default to port 3306.

The mysqlnd library and the MySQL Client Library (libmysqlclient) implement the same logic for
determining defaults.

Connection options

Connection options are available to, for example, set init commands which are executed upon connect,
or for requesting use of a certain charset. Connection options must be set before a network connection is
established.

For setting a connection option, the connect operation has to be performed in three steps: creating a
connection handle with mysqli_init, setting the requested options using mysqli_options, and
establishing the network connection with mysqli_real_connect.

Connection pooling

Executing statements

22

The mysqli extension supports persistent database connections, which are a special kind of pooled
connections. By default, every database connection opened by a script is either explicitly closed by the
user during runtime or released automatically at the end of the script. A persistent connection is not.
Instead it is put into a pool for later reuse, if a connection to the same server using the same username,
password, socket, port and default database is opened. Reuse saves connection overhead.

Every PHP process is using its own mysqli connection pool. Depending on the web server deployment
model, a PHP process may serve one or multiple requests. Therefore, a pooled connection may be used
by one or more scripts subsequently.

Persistent connection

If a unused persistent connection for a given combination of host, username, password, socket, port and
default database can not be found in the connection pool, then mysqli opens a new connection. The use
of persistent connections can be enabled and disabled using the PHP directive mysqli.allow_persistent.
The total number of connections opened by a script can be limited with mysqli.max_links. The maximum
number of persistent connections per PHP process can be restricted with mysqli.max_persistent. Please
note, that the web server may spawn many PHP processes.

A common complain about persistent connections is that their state is not reset before reuse. For example,
open and unfinished transactions are not automatically rolled back. But also, authorization changes which
happened in the time between putting the connection into the pool and reusing it are not reflected. This
may be seen as an unwanted side-effect. On the contrary, the name persistent may be understood as
a promise that the state is persisted.

The mysqli extension supports both interpretations of a persistent connection: state persisted, and state
reset before reuse. The default is reset. Before a persistent connection is reused, the mysqli extension
implicitly calls mysqli_change_user to reset the state. The persistent connection appears to the user as
if it was just opened. No artifacts from previous usages are visible.

The mysqli_change_user function is an expensive operation. For best performance, users may want to
recompile the extension with the compile flag MYSQLI_NO_CHANGE_USER_ON_PCONNECT being set.

It is left to the user to choose between safe behavior and best performance. Both are valid optimization
goals. For ease of use, the safe behavior has been made the default at the expense of maximum
performance.

See also

mysqli::__construct
mysqli::init
mysqli::options
mysqli::real_connect
mysqli::change_user
$mysqli::host_info
MySQLi Configuration Options
Persistent Database Connections

3.2.3 Executing statements

Copyright 1997-2019 the PHP Documentation Group.

Statements can be executed with the mysqli_query, mysqli_real_query and
mysqli_multi_query functions. The mysqli_query function is the most common, and combines the
executing statement with a buffered fetch of its result set, if any, in one call. Calling mysqli_query is
identical to calling mysqli_real_query followed by mysqli_store_result.

http://www.php.net/manual/en/features.persistent-connections

Executing statements

23

Example 3.6 Connecting to MySQL

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

if (!$mysqli->query("DROP TABLE IF EXISTS test") ||
 !$mysqli->query("CREATE TABLE test(id INT)") ||
 !$mysqli->query("INSERT INTO test(id) VALUES (1)")) {
 echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
?>

Buffered result sets

After statement execution results can be retrieved at once to be buffered by the client or by read row by
row. Client-side result set buffering allows the server to free resources associated with the statement
results as early as possible. Generally speaking, clients are slow consuming result sets. Therefore, it is
recommended to use buffered result sets. mysqli_query combines statement execution and result set
buffering.

PHP applications can navigate freely through buffered results. Navigation is fast because the result sets
are held in client memory. Please, keep in mind that it is often easier to scale by client than it is to scale the
server.

Example 3.7 Navigation through buffered results

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

if (!$mysqli->query("DROP TABLE IF EXISTS test") ||
 !$mysqli->query("CREATE TABLE test(id INT)") ||
 !$mysqli->query("INSERT INTO test(id) VALUES (1), (2), (3)")) {
 echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

$res = $mysqli->query("SELECT id FROM test ORDER BY id ASC");

echo "Reverse order...\n";
for ($row_no = $res->num_rows - 1; $row_no >= 0; $row_no--) {
 $res->data_seek($row_no);
 $row = $res->fetch_assoc();
 echo " id = " . $row['id'] . "\n";
}

echo "Result set order...\n";
$res->data_seek(0);
while ($row = $res->fetch_assoc()) {
 echo " id = " . $row['id'] . "\n";
}
?>

Executing statements

24

The above example will output:

Reverse order...
 id = 3
 id = 2
 id = 1
Result set order...
 id = 1
 id = 2
 id = 3

Unbuffered result sets

If client memory is a short resource and freeing server resources as early as possible to keep server load
low is not needed, unbuffered results can be used. Scrolling through unbuffered results is not possible
before all rows have been read.

Example 3.8 Navigation through unbuffered results

<?php
$mysqli->real_query("SELECT id FROM test ORDER BY id ASC");
$res = $mysqli->use_result();

echo "Result set order...\n";
while ($row = $res->fetch_assoc()) {
 echo " id = " . $row['id'] . "\n";
}
?>

Result set values data types

The mysqli_query, mysqli_real_query and mysqli_multi_query functions are used to execute
non-prepared statements. At the level of the MySQL Client Server Protocol, the command COM_QUERY
and the text protocol are used for statement execution. With the text protocol, the MySQL server converts
all data of a result sets into strings before sending. This conversion is done regardless of the SQL result
set column data type. The mysql client libraries receive all column values as strings. No further client-side
casting is done to convert columns back to their native types. Instead, all values are provided as PHP
strings.

Example 3.9 Text protocol returns strings by default

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

if (!$mysqli->query("DROP TABLE IF EXISTS test") ||
 !$mysqli->query("CREATE TABLE test(id INT, label CHAR(1))") ||
 !$mysqli->query("INSERT INTO test(id, label) VALUES (1, 'a')")) {
 echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

Executing statements

25

$res = $mysqli->query("SELECT id, label FROM test WHERE id = 1");
$row = $res->fetch_assoc();

printf("id = %s (%s)\n", $row['id'], gettype($row['id']));
printf("label = %s (%s)\n", $row['label'], gettype($row['label']));
?>

The above example will output:

id = 1 (string)
label = a (string)

It is possible to convert integer and float columns back to PHP numbers by setting the
MYSQLI_OPT_INT_AND_FLOAT_NATIVE connection option, if using the mysqlnd library. If set, the
mysqlnd library will check the result set meta data column types and convert numeric SQL columns to
PHP numbers, if the PHP data type value range allows for it. This way, for example, SQL INT columns are
returned as integers.

Example 3.10 Native data types with mysqlnd and connection option

<?php
$mysqli = mysqli_init();
$mysqli->options(MYSQLI_OPT_INT_AND_FLOAT_NATIVE, 1);
$mysqli->real_connect("example.com", "user", "password", "database");

if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

if (!$mysqli->query("DROP TABLE IF EXISTS test") ||
 !$mysqli->query("CREATE TABLE test(id INT, label CHAR(1))") ||
 !$mysqli->query("INSERT INTO test(id, label) VALUES (1, 'a')")) {
 echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

$res = $mysqli->query("SELECT id, label FROM test WHERE id = 1");
$row = $res->fetch_assoc();

printf("id = %s (%s)\n", $row['id'], gettype($row['id']));
printf("label = %s (%s)\n", $row['label'], gettype($row['label']));
?>

The above example will output:

id = 1 (integer)
label = a (string)

See also

mysqli::__construct

Prepared Statements

26

mysqli::init
mysqli::options
mysqli::real_connect
mysqli::query
mysqli::multi_query
mysqli::use_result
mysqli::store_result
mysqli_result::free

3.2.4 Prepared Statements

Copyright 1997-2019 the PHP Documentation Group.

The MySQL database supports prepared statements. A prepared statement or a parameterized statement
is used to execute the same statement repeatedly with high efficiency.

Basic workflow

The prepared statement execution consists of two stages: prepare and execute. At the prepare stage
a statement template is sent to the database server. The server performs a syntax check and initializes
server internal resources for later use.

The MySQL server supports using anonymous, positional placeholder with ?.

Example 3.11 First stage: prepare

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

/* Non-prepared statement */
if (!$mysqli->query("DROP TABLE IF EXISTS test") || !$mysqli->query("CREATE TABLE test(id INT)")) {
 echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

/* Prepared statement, stage 1: prepare */
if (!($stmt = $mysqli->prepare("INSERT INTO test(id) VALUES (?)"))) {
 echo "Prepare failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
?>

Prepare is followed by execute. During execute the client binds parameter values and sends them to the
server. The server creates a statement from the statement template and the bound values to execute it
using the previously created internal resources.

Example 3.12 Second stage: bind and execute

<?php
/* Prepared statement, stage 2: bind and execute */
$id = 1;
if (!$stmt->bind_param("i", $id)) {
 echo "Binding parameters failed: (" . $stmt->errno . ") " . $stmt->error;
}

Prepared Statements

27

if (!$stmt->execute()) {
 echo "Execute failed: (" . $stmt->errno . ") " . $stmt->error;
}
?>

Repeated execution

A prepared statement can be executed repeatedly. Upon every execution the current value of the bound
variable is evaluated and sent to the server. The statement is not parsed again. The statement template is
not transferred to the server again.

Example 3.13 INSERT prepared once, executed multiple times

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

/* Non-prepared statement */
if (!$mysqli->query("DROP TABLE IF EXISTS test") || !$mysqli->query("CREATE TABLE test(id INT)")) {
 echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

/* Prepared statement, stage 1: prepare */
if (!($stmt = $mysqli->prepare("INSERT INTO test(id) VALUES (?)"))) {
 echo "Prepare failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

/* Prepared statement, stage 2: bind and execute */
$id = 1;
if (!$stmt->bind_param("i", $id)) {
 echo "Binding parameters failed: (" . $stmt->errno . ") " . $stmt->error;
}

if (!$stmt->execute()) {
 echo "Execute failed: (" . $stmt->errno . ") " . $stmt->error;
}

/* Prepared statement: repeated execution, only data transferred from client to server */
for ($id = 2; $id < 5; $id++) {
 if (!$stmt->execute()) {
 echo "Execute failed: (" . $stmt->errno . ") " . $stmt->error;
 }
}

/* explicit close recommended */
$stmt->close();

/* Non-prepared statement */
$res = $mysqli->query("SELECT id FROM test");
var_dump($res->fetch_all());
?>

The above example will output:

array(4) {

Prepared Statements

28

 [0]=>
 array(1) {
 [0]=>
 string(1) "1"
 }
 [1]=>
 array(1) {
 [0]=>
 string(1) "2"
 }
 [2]=>
 array(1) {
 [0]=>
 string(1) "3"
 }
 [3]=>
 array(1) {
 [0]=>
 string(1) "4"
 }
}

Every prepared statement occupies server resources. Statements should be closed explicitly immediately
after use. If not done explicitly, the statement will be closed when the statement handle is freed by PHP.

Using a prepared statement is not always the most efficient way of executing a statement. A prepared
statement executed only once causes more client-server round-trips than a non-prepared statement. This
is why the SELECT is not run as a prepared statement above.

Also, consider the use of the MySQL multi-INSERT SQL syntax for INSERTs. For the example, multi-
INSERT requires less round-trips between the server and client than the prepared statement shown above.

Example 3.14 Less round trips using multi-INSERT SQL

<?php
if (!$mysqli->query("INSERT INTO test(id) VALUES (1), (2), (3), (4)")) {
 echo "Multi-INSERT failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
?>

Result set values data types

The MySQL Client Server Protocol defines a different data transfer protocol for prepared statements and
non-prepared statements. Prepared statements are using the so called binary protocol. The MySQL server
sends result set data "as is" in binary format. Results are not serialized into strings before sending. The
client libraries do not receive strings only. Instead, they will receive binary data and try to convert the
values into appropriate PHP data types. For example, results from an SQL INT column will be provided as
PHP integer variables.

Example 3.15 Native datatypes

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;

Prepared Statements

29

}

if (!$mysqli->query("DROP TABLE IF EXISTS test") ||
 !$mysqli->query("CREATE TABLE test(id INT, label CHAR(1))") ||
 !$mysqli->query("INSERT INTO test(id, label) VALUES (1, 'a')")) {
 echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

$stmt = $mysqli->prepare("SELECT id, label FROM test WHERE id = 1");
$stmt->execute();
$res = $stmt->get_result();
$row = $res->fetch_assoc();

printf("id = %s (%s)\n", $row['id'], gettype($row['id']));
printf("label = %s (%s)\n", $row['label'], gettype($row['label']));
?>

The above example will output:

id = 1 (integer)
label = a (string)

This behavior differs from non-prepared statements. By default, non-prepared statements return all results
as strings. This default can be changed using a connection option. If the connection option is used, there
are no differences.

Fetching results using bound variables

Results from prepared statements can either be retrieved by binding output variables, or by requesting a
mysqli_result object.

Output variables must be bound after statement execution. One variable must be bound for every column
of the statements result set.

Example 3.16 Output variable binding

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

if (!$mysqli->query("DROP TABLE IF EXISTS test") ||
 !$mysqli->query("CREATE TABLE test(id INT, label CHAR(1))") ||
 !$mysqli->query("INSERT INTO test(id, label) VALUES (1, 'a')")) {
 echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

if (!($stmt = $mysqli->prepare("SELECT id, label FROM test"))) {
 echo "Prepare failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

if (!$stmt->execute()) {
 echo "Execute failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

$out_id = NULL;

Prepared Statements

30

$out_label = NULL;
if (!$stmt->bind_result($out_id, $out_label)) {
 echo "Binding output parameters failed: (" . $stmt->errno . ") " . $stmt->error;
}

while ($stmt->fetch()) {
 printf("id = %s (%s), label = %s (%s)\n", $out_id, gettype($out_id), $out_label, gettype($out_label));
}
?>

The above example will output:

id = 1 (integer), label = a (string)

Prepared statements return unbuffered result sets by default. The results of the statement are not implicitly
fetched and transferred from the server to the client for client-side buffering. The result set takes server
resources until all results have been fetched by the client. Thus it is recommended to consume results
timely. If a client fails to fetch all results or the client closes the statement before having fetched all data,
the data has to be fetched implicitly by mysqli.

It is also possible to buffer the results of a prepared statement using mysqli_stmt_store_result.

Fetching results using mysqli_result interface

Instead of using bound results, results can also be retrieved through the mysqli_result interface.
mysqli_stmt_get_result returns a buffered result set.

Example 3.17 Using mysqli_result to fetch results

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

if (!$mysqli->query("DROP TABLE IF EXISTS test") ||
 !$mysqli->query("CREATE TABLE test(id INT, label CHAR(1))") ||
 !$mysqli->query("INSERT INTO test(id, label) VALUES (1, 'a')")) {
 echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

if (!($stmt = $mysqli->prepare("SELECT id, label FROM test ORDER BY id ASC"))) {
 echo "Prepare failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

if (!$stmt->execute()) {
 echo "Execute failed: (" . $stmt->errno . ") " . $stmt->error;
}

if (!($res = $stmt->get_result())) {
 echo "Getting result set failed: (" . $stmt->errno . ") " . $stmt->error;
}

var_dump($res->fetch_all());
?>

Prepared Statements

31

The above example will output:

array(1) {
 [0]=>
 array(2) {
 [0]=>
 int(1)
 [1]=>
 string(1) "a"
 }
}

Using the mysqli_result interface offers the additional benefit of flexible client-side result set
navigation.

Example 3.18 Buffered result set for flexible read out

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

if (!$mysqli->query("DROP TABLE IF EXISTS test") ||
 !$mysqli->query("CREATE TABLE test(id INT, label CHAR(1))") ||
 !$mysqli->query("INSERT INTO test(id, label) VALUES (1, 'a'), (2, 'b'), (3, 'c')")) {
 echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

if (!($stmt = $mysqli->prepare("SELECT id, label FROM test"))) {
 echo "Prepare failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

if (!$stmt->execute()) {
 echo "Execute failed: (" . $stmt->errno . ") " . $stmt->error;
}

if (!($res = $stmt->get_result())) {
 echo "Getting result set failed: (" . $stmt->errno . ") " . $stmt->error;
}

for ($row_no = ($res->num_rows - 1); $row_no >= 0; $row_no--) {
 $res->data_seek($row_no);
 var_dump($res->fetch_assoc());
}
$res->close();
?>

The above example will output:

array(2) {
 ["id"]=>
 int(3)
 ["label"]=>

Prepared Statements

32

 string(1) "c"
}
array(2) {
 ["id"]=>
 int(2)
 ["label"]=>
 string(1) "b"
}
array(2) {
 ["id"]=>
 int(1)
 ["label"]=>
 string(1) "a"
}

Escaping and SQL injection

Bound variables are sent to the server separately from the query and thus cannot interfere with it. The
server uses these values directly at the point of execution, after the statement template is parsed. Bound
parameters do not need to be escaped as they are never substituted into the query string directly. A hint
must be provided to the server for the type of bound variable, to create an appropriate conversion. See the
mysqli_stmt_bind_param function for more information.

Such a separation sometimes considered as the only security feature to prevent SQL injection, but the
same degree of security can be achieved with non-prepared statements, if all the values are formatted
correctly. It should be noted that correct formatting is not the same as escaping and involves more logic
than simple escaping. Thus, prepared statements are simply a more convenient and less error-prone
approach to this element of database security.

Client-side prepared statement emulation

The API does not include emulation for client-side prepared statement emulation.

Quick prepared - non-prepared statement comparison

The table below compares server-side prepared and non-prepared statements.

Table 3.2 Comparison of prepared and non-prepared statements

 Prepared Statement Non-prepared statement

Client-server round trips,
SELECT, single execution

2 1

Statement string transferred from
client to server

1 1

Client-server round trips,
SELECT, repeated (n) execution

1 + n n

Statement string transferred from
client to server

1 template, n times bound
parameter, if any

n times together with parameter, if
any

Input parameter binding API Yes, automatic input escaping No, manual input escaping

Output variable binding API Yes No

Supports use of mysqli_result API Yes, use
mysqli_stmt_get_result

Yes

Buffered result sets Yes, use
mysqli_stmt_get_result

Yes, default of mysqli_query

Stored Procedures

33

 Prepared Statement Non-prepared statement
or binding with
mysqli_stmt_store_result

Unbuffered result sets Yes, use output binding API Yes, use mysqli_real_query
with mysqli_use_result

MySQL Client Server protocol
data transfer flavor

Binary protocol Text protocol

Result set values SQL data types Preserved when fetching Converted to string or preserved
when fetching

Supports all SQL statements Recent MySQL versions support
most but not all

Yes

See also

mysqli::__construct
mysqli::query
mysqli::prepare
mysqli_stmt::prepare
mysqli_stmt::execute
mysqli_stmt::bind_param
mysqli_stmt::bind_result

3.2.5 Stored Procedures

Copyright 1997-2019 the PHP Documentation Group.

The MySQL database supports stored procedures. A stored procedure is a subroutine stored in the
database catalog. Applications can call and execute the stored procedure. The CALL SQL statement is
used to execute a stored procedure.

Parameter

Stored procedures can have IN, INOUT and OUT parameters, depending on the MySQL version. The
mysqli interface has no special notion for the different kinds of parameters.

IN parameter

Input parameters are provided with the CALL statement. Please, make sure values are escaped correctly.

Example 3.19 Calling a stored procedure

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

if (!$mysqli->query("DROP TABLE IF EXISTS test") || !$mysqli->query("CREATE TABLE test(id INT)")) {
 echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

if (!$mysqli->query("DROP PROCEDURE IF EXISTS p") ||
 !$mysqli->query("CREATE PROCEDURE p(IN id_val INT) BEGIN INSERT INTO test(id) VALUES(id_val); END;")) {
 echo "Stored procedure creation failed: (" . $mysqli->errno . ") " . $mysqli->error;

Stored Procedures

34

}

if (!$mysqli->query("CALL p(1)")) {
 echo "CALL failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

if (!($res = $mysqli->query("SELECT id FROM test"))) {
 echo "SELECT failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

var_dump($res->fetch_assoc());
?>

The above example will output:

array(1) {
 ["id"]=>
 string(1) "1"
}

INOUT/OUT parameter

The values of INOUT/OUT parameters are accessed using session variables.

Example 3.20 Using session variables

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

if (!$mysqli->query("DROP PROCEDURE IF EXISTS p") ||
 !$mysqli->query('CREATE PROCEDURE p(OUT msg VARCHAR(50)) BEGIN SELECT "Hi!" INTO msg; END;')) {
 echo "Stored procedure creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

if (!$mysqli->query("SET @msg = ''") || !$mysqli->query("CALL p(@msg)")) {
 echo "CALL failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

if (!($res = $mysqli->query("SELECT @msg as _p_out"))) {
 echo "Fetch failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

$row = $res->fetch_assoc();
echo $row['_p_out'];
?>

The above example will output:

Hi!

Stored Procedures

35

Application and framework developers may be able to provide a more convenient API using a mix of
session variables and databased catalog inspection. However, please note the possible performance
impact of a custom solution based on catalog inspection.

Handling result sets

Stored procedures can return result sets. Result sets returned from a stored procedure cannot be fetched
correctly using mysqli_query. The mysqli_query function combines statement execution and fetching
the first result set into a buffered result set, if any. However, there are additional stored procedure result
sets hidden from the user which cause mysqli_query to fail returning the user expected result sets.

Result sets returned from a stored procedure are fetched using mysqli_real_query or
mysqli_multi_query. Both functions allow fetching any number of result sets returned by a statement,
such as CALL. Failing to fetch all result sets returned by a stored procedure causes an error.

Example 3.21 Fetching results from stored procedures

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

if (!$mysqli->query("DROP TABLE IF EXISTS test") ||
 !$mysqli->query("CREATE TABLE test(id INT)") ||
 !$mysqli->query("INSERT INTO test(id) VALUES (1), (2), (3)")) {
 echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

if (!$mysqli->query("DROP PROCEDURE IF EXISTS p") ||
 !$mysqli->query('CREATE PROCEDURE p() READS SQL DATA BEGIN SELECT id FROM test; SELECT id + 1 FROM test; END;')) {
 echo "Stored procedure creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

if (!$mysqli->multi_query("CALL p()")) {
 echo "CALL failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

do {
 if ($res = $mysqli->store_result()) {
 printf("---\n");
 var_dump($res->fetch_all());
 $res->free();
 } else {
 if ($mysqli->errno) {
 echo "Store failed: (" . $mysqli->errno . ") " . $mysqli->error;
 }
 }
} while ($mysqli->more_results() && $mysqli->next_result());
?>

The above example will output:

array(3) {
 [0]=>

Stored Procedures

36

 array(1) {
 [0]=>
 string(1) "1"
 }
 [1]=>
 array(1) {
 [0]=>
 string(1) "2"
 }
 [2]=>
 array(1) {
 [0]=>
 string(1) "3"
 }
}

array(3) {
 [0]=>
 array(1) {
 [0]=>
 string(1) "2"
 }
 [1]=>
 array(1) {
 [0]=>
 string(1) "3"
 }
 [2]=>
 array(1) {
 [0]=>
 string(1) "4"
 }
}

Use of prepared statements

No special handling is required when using the prepared statement interface for fetching results from
the same stored procedure as above. The prepared statement and non-prepared statement interfaces
are similar. Please note, that not every MYSQL server version may support preparing the CALL SQL
statement.

Example 3.22 Stored Procedures and Prepared Statements

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

if (!$mysqli->query("DROP TABLE IF EXISTS test") ||
 !$mysqli->query("CREATE TABLE test(id INT)") ||
 !$mysqli->query("INSERT INTO test(id) VALUES (1), (2), (3)")) {
 echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

if (!$mysqli->query("DROP PROCEDURE IF EXISTS p") ||
 !$mysqli->query('CREATE PROCEDURE p() READS SQL DATA BEGIN SELECT id FROM test; SELECT id + 1 FROM test; END;')) {
 echo "Stored procedure creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

if (!($stmt = $mysqli->prepare("CALL p()"))) {
 echo "Prepare failed: (" . $mysqli->errno . ") " . $mysqli->error;

Multiple Statements

37

}

if (!$stmt->execute()) {
 echo "Execute failed: (" . $stmt->errno . ") " . $stmt->error;
}

do {
 if ($res = $stmt->get_result()) {
 printf("---\n");
 var_dump(mysqli_fetch_all($res));
 mysqli_free_result($res);
 } else {
 if ($stmt->errno) {
 echo "Store failed: (" . $stmt->errno . ") " . $stmt->error;
 }
 }
} while ($stmt->more_results() && $stmt->next_result());
?>

Of course, use of the bind API for fetching is supported as well.

Example 3.23 Stored Procedures and Prepared Statements using bind API

<?php
if (!($stmt = $mysqli->prepare("CALL p()"))) {
 echo "Prepare failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

if (!$stmt->execute()) {
 echo "Execute failed: (" . $stmt->errno . ") " . $stmt->error;
}

do {

 $id_out = NULL;
 if (!$stmt->bind_result($id_out)) {
 echo "Bind failed: (" . $stmt->errno . ") " . $stmt->error;
 }

 while ($stmt->fetch()) {
 echo "id = $id_out\n";
 }
} while ($stmt->more_results() && $stmt->next_result());
?>

See also

mysqli::query
mysqli::multi_query
mysqli_result::next-result
mysqli_result::more-results

3.2.6 Multiple Statements

Copyright 1997-2019 the PHP Documentation Group.

MySQL optionally allows having multiple statements in one statement string. Sending multiple statements
at once reduces client-server round trips but requires special handling.

http://www.php.net/mysqli_result::next-result
http://www.php.net/mysqli_result::more-results

Multiple Statements

38

Multiple statements or multi queries must be executed with mysqli_multi_query. The individual
statements of the statement string are separated by semicolon. Then, all result sets returned by the
executed statements must be fetched.

The MySQL server allows having statements that do return result sets and statements that do not return
result sets in one multiple statement.

Example 3.24 Multiple Statements

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

if (!$mysqli->query("DROP TABLE IF EXISTS test") || !$mysqli->query("CREATE TABLE test(id INT)")) {
 echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

$sql = "SELECT COUNT(*) AS _num FROM test; ";
$sql.= "INSERT INTO test(id) VALUES (1); ";
$sql.= "SELECT COUNT(*) AS _num FROM test; ";

if (!$mysqli->multi_query($sql)) {
 echo "Multi query failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

do {
 if ($res = $mysqli->store_result()) {
 var_dump($res->fetch_all(MYSQLI_ASSOC));
 $res->free();
 }
} while ($mysqli->more_results() && $mysqli->next_result());
?>

The above example will output:

array(1) {
 [0]=>
 array(1) {
 ["_num"]=>
 string(1) "0"
 }
}
array(1) {
 [0]=>
 array(1) {
 ["_num"]=>
 string(1) "1"
 }
}

Security considerations

The API functions mysqli_query and mysqli_real_query do not set a connection flag necessary
for activating multi queries in the server. An extra API call is used for multiple statements to reduce the
likeliness of accidental SQL injection attacks. An attacker may try to add statements such as ; DROP

API support for transactions

39

DATABASE mysql or ; SELECT SLEEP(999). If the attacker succeeds in adding SQL to the statement
string but mysqli_multi_query is not used, the server will not execute the second, injected and
malicious SQL statement.

Example 3.25 SQL Injection

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
$res = $mysqli->query("SELECT 1; DROP TABLE mysql.user");
if (!$res) {
 echo "Error executing query: (" . $mysqli->errno . ") " . $mysqli->error;
}
?>

The above example will output:

Error executing query: (1064) You have an error in your SQL syntax;
check the manual that corresponds to your MySQL server version for the right syntax
to use near 'DROP TABLE mysql.user' at line 1

Prepared statements

Use of the multiple statement with prepared statements is not supported.

See also

mysqli::query
mysqli::multi_query
mysqli_result::next-result
mysqli_result::more-results

3.2.7 API support for transactions

Copyright 1997-2019 the PHP Documentation Group.

The MySQL server supports transactions depending on the storage engine used. Since MySQL 5.5, the
default storage engine is InnoDB. InnoDB has full ACID transaction support.

Transactions can either be controlled using SQL or API calls. It is recommended to use API calls for
enabling and disabling the auto commit mode and for committing and rolling back transactions.

Example 3.26 Setting auto commit mode with SQL and through the API

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

/* Recommended: using API to control transactional settings */
$mysqli->autocommit(false);

http://www.php.net/mysqli_result::next-result
http://www.php.net/mysqli_result::more-results

Metadata

40

/* Won't be monitored and recognized by the replication and the load balancing plugin */
if (!$mysqli->query('SET AUTOCOMMIT = 0')) {
 echo "Query failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
?>

Optional feature packages, such as the replication and load balancing plugin, can easily monitor API calls.
The replication plugin offers transaction aware load balancing, if transactions are controlled with API calls.
Transaction aware load balancing is not available if SQL statements are used for setting auto commit
mode, committing or rolling back a transaction.

Example 3.27 Commit and rollback

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
$mysqli->autocommit(false);

$mysqli->query("INSERT INTO test(id) VALUES (1)");
$mysqli->rollback();

$mysqli->query("INSERT INTO test(id) VALUES (2)");
$mysqli->commit();
?>

Please note, that the MySQL server cannot roll back all statements. Some statements cause an implicit
commit.

See also

mysqli::autocommit
mysqli_result::commit
mysqli_result::rollback

3.2.8 Metadata

Copyright 1997-2019 the PHP Documentation Group.

A MySQL result set contains metadata. The metadata describes the columns found in the result set. All
metadata sent by MySQL is accessible through the mysqli interface. The extension performs no or
negligible changes to the information it receives. Differences between MySQL server versions are not
aligned.

Meta data is access through the mysqli_result interface.

Example 3.28 Accessing result set meta data

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

http://www.php.net/mysqli_result::commit
http://www.php.net/mysqli_result::rollback

Metadata

41

$res = $mysqli->query("SELECT 1 AS _one, 'Hello' AS _two FROM DUAL");
var_dump($res->fetch_fields());
?>

The above example will output:

array(2) {
 [0]=>
 object(stdClass)#3 (13) {
 ["name"]=>
 string(4) "_one"
 ["orgname"]=>
 string(0) ""
 ["table"]=>
 string(0) ""
 ["orgtable"]=>
 string(0) ""
 ["def"]=>
 string(0) ""
 ["db"]=>
 string(0) ""
 ["catalog"]=>
 string(3) "def"
 ["max_length"]=>
 int(1)
 ["length"]=>
 int(1)
 ["charsetnr"]=>
 int(63)
 ["flags"]=>
 int(32897)
 ["type"]=>
 int(8)
 ["decimals"]=>
 int(0)
 }
 [1]=>
 object(stdClass)#4 (13) {
 ["name"]=>
 string(4) "_two"
 ["orgname"]=>
 string(0) ""
 ["table"]=>
 string(0) ""
 ["orgtable"]=>
 string(0) ""
 ["def"]=>
 string(0) ""
 ["db"]=>
 string(0) ""
 ["catalog"]=>
 string(3) "def"
 ["max_length"]=>
 int(5)
 ["length"]=>
 int(5)
 ["charsetnr"]=>
 int(8)
 ["flags"]=>
 int(1)
 ["type"]=>
 int(253)
 ["decimals"]=>

Installing/Configuring

42

 int(31)
 }
}

Prepared statements

Meta data of result sets created using prepared statements are accessed the same way. A suitable
mysqli_result handle is returned by mysqli_stmt_result_metadata.

Example 3.29 Prepared statements metadata

<?php
$stmt = $mysqli->prepare("SELECT 1 AS _one, 'Hello' AS _two FROM DUAL");
$stmt->execute();
$res = $stmt->result_metadata();
var_dump($res->fetch_fields());
?>

See also

mysqli::query
mysqli_result::fetch_fields

3.3 Installing/Configuring

Copyright 1997-2019 the PHP Documentation Group.

3.3.1 Requirements

Copyright 1997-2019 the PHP Documentation Group.

In order to have these functions available, you must compile PHP with support for the mysqli extension.

MySQL 8

When running a PHP version before 7.1.16, or PHP 7.2 before 7.2.4, set MySQL 8 Server's
default password plugin to mysql_native_password or else you will see errors similar to The server
requested authentication method unknown to the client [caching_sha2_password] even when
caching_sha2_password is not used.

This is because MySQL 8 defaults to caching_sha2_password, a plugin that is
not recognized by the older PHP (mysqlnd) releases. Instead, change it by setting
default_authentication_plugin=mysql_native_password in my.cnf. The
caching_sha2_password plugin will be supported in a future PHP release. In the meantime, the
mysql_xdevapi extension does support it.

3.3.2 Installation

Copyright 1997-2019 the PHP Documentation Group.

The mysqli extension was introduced with PHP version 5.0.0. The MySQL Native Driver was included in
PHP version 5.3.0.

Installation

43

3.3.2.1 Installation on Linux

Copyright 1997-2019 the PHP Documentation Group.

The common Unix distributions include binary versions of PHP that can be installed. Although these binary
versions are typically built with support for the MySQL extensions, the extension libraries themselves
may need to be installed using an additional package. Check the package manager that comes with your
chosen distribution for availability.

For example, on Ubuntu the php5-mysql package installs the ext/mysql, ext/mysqli, and pdo_mysql PHP
extensions. On CentOS, the php-mysql package also installs these three PHP extensions.

Alternatively, you can compile this extension yourself. Building PHP from source allows you to specify the
MySQL extensions you want to use, as well as your choice of client library for each extension.

The MySQL Native Driver is the recommended client library option, as it results in improved performance
and gives access to features not available when using the MySQL Client Library. Refer to What is PHP's
MySQL Native Driver? for a brief overview of the advantages of MySQL Native Driver.

The /path/to/mysql_config represents the location of the mysql_config program that comes with
MySQL Server.

Table 3.3 mysqli compile time support matrix

PHP Version Default Configure
Options: mysqlnd

Configure
Options:
libmysqlclient

Changelog

5.4.x and above mysqlnd --with-mysqli --with-mysqli=/
path/to/
mysql_config

mysqlnd is the
default

5.3.x libmysqlclient --with-
mysqli=mysqlnd

--with-mysqli=/
path/to/
mysql_config

mysqlnd is
supported

5.0.x, 5.1.x, 5.2.x libmysqlclient Not Available --with-mysqli=/
path/to/
mysql_config

mysqlnd is not
supported

Note that it is possible to freely mix MySQL extensions and client libraries. For example, it is possible
to enable the MySQL extension to use the MySQL Client Library (libmysqlclient), while configuring the
mysqli extension to use the MySQL Native Driver. However, all permutations of extension and client
library are possible.

3.3.2.2 Installation on Windows Systems

Copyright 1997-2019 the PHP Documentation Group.

On Windows, PHP is most commonly installed using the binary installer.

PHP 5.3.0 and newer

Copyright 1997-2019 the PHP Documentation Group.

On Windows, for PHP versions 5.3 and newer, the mysqli extension is enabled and uses the MySQL
Native Driver by default. This means you don't need to worry about configuring access to libmysql.dll.

Runtime Configuration

44

PHP 5.0, 5.1, 5.2

Copyright 1997-2019 the PHP Documentation Group.

On these old unsupported PHP versions (PHP 5.2 reached EOL on '6 Jan 2011'), additional configuration
procedures are required to enable mysqli and specify the client library you want it to use.

The mysqli extension is not enabled by default, so the php_mysqli.dll DLL must be enabled inside
of php.ini. In order to do this you need to find the php.ini file (typically located in c:\php), and make
sure you remove the comment (semi-colon) from the start of the line extension=php_mysqli.dll, in
the section marked [PHP_MYSQLI].

Also, if you want to use the MySQL Client Library with mysqli, you need to make sure PHP can access
the client library file. The MySQL Client Library is included as a file named libmysql.dll in the Windows
PHP distribution. This file needs to be available in the Windows system's PATH environment variable, so
that it can be successfully loaded. See the FAQ titled "How do I add my PHP directory to the PATH on
Windows" for information on how to do this. Copying libmysql.dll to the Windows system directory
(typically c:\Windows\system) also works, as the system directory is by default in the system's PATH.
However, this practice is strongly discouraged.

As with enabling any PHP extension (such as php_mysqli.dll), the PHP directive extension_dir should
be set to the directory where the PHP extensions are located. See also the Manual Windows Installation
Instructions. An example extension_dir value for PHP 5 is c:\php\ext.

Note

If when starting the web server an error similar to the following occurs: "Unable
to load dynamic library './php_mysqli.dll'", this is because
php_mysqli.dll and/or libmysql.dll cannot be found by the system.

3.3.3 Runtime Configuration

Copyright 1997-2019 the PHP Documentation Group.

The behaviour of these functions is affected by settings in php.ini.

Table 3.4 MySQLi Configuration Options

Name Default Changeable Changelog

mysqli.allow_local_infile "1" PHP_INI_SYSTEM Available since PHP
5.2.4.

mysqli.allow_persistent "1" PHP_INI_SYSTEM Available since PHP
5.3.0.

mysqli.max_persistent "-1" PHP_INI_SYSTEM Available since PHP
5.3.0.

mysqli.max_links "-1" PHP_INI_SYSTEM Available since PHP
5.0.0.

mysqli.default_port "3306" PHP_INI_ALL Available since PHP
5.0.0.

mysqli.default_socket NULL PHP_INI_ALL Available since PHP
5.0.0.

mysqli.default_host NULL PHP_INI_ALL Available since PHP
5.0.0.

http://www.php.net/manual/en/faq.installation.php#faq.installation.addtopath
http://www.php.net/manual/en/faq.installation.php#faq.installation.addtopath
http://www.php.net/manual/en/ini.core.php#ini.extension-dir
http://www.php.net/manual/en/install.windows.manual
http://www.php.net/manual/en/install.windows.manual

Runtime Configuration

45

Name Default Changeable Changelog

mysqli.default_user NULL PHP_INI_ALL Available since PHP
5.0.0.

mysqli.default_pw NULL PHP_INI_ALL Available since PHP
5.0.0.

mysqli.reconnect "0" PHP_INI_SYSTEM Available since PHP
4.3.5.

mysqli.rollback_on_cached_plinkTRUE PHP_INI_SYSTEM Available since PHP
5.6.0.

For further details and definitions of the preceding PHP_INI_* constants, see the chapter on configuration
changes.

Here's a short explanation of the configuration directives.

mysqli.allow_local_infile
integer

Allow accessing, from PHP's perspective, local files with LOAD DATA
statements

mysqli.allow_persistent
integer

Enable the ability to create persistent connections using
mysqli_connect.

mysqli.max_persistent
integer

Maximum of persistent connections that can be made. Set to 0 for
unlimited.

mysqli.max_links integer The maximum number of MySQL connections per process.

mysqli.default_port
integer

The default TCP port number to use when connecting to the database
server if no other port is specified. If no default is specified, the
port will be obtained from the MYSQL_TCP_PORT environment
variable, the mysql-tcp entry in /etc/services or the compile-
time MYSQL_PORT constant, in that order. Win32 will only use the
MYSQL_PORT constant.

mysqli.default_socket
string

The default socket name to use when connecting to a local database
server if no other socket name is specified.

mysqli.default_host string The default server host to use when connecting to the database server
if no other host is specified. Doesn't apply in safe mode.

mysqli.default_user string The default user name to use when connecting to the database server if
no other name is specified. Doesn't apply in safe mode.

mysqli.default_pw string The default password to use when connecting to the database server if
no other password is specified. Doesn't apply in safe mode.

mysqli.reconnect integer Automatically reconnect if the connection was lost.

Note

This php.ini setting is ignored by the mysqlnd
driver.

mysqli.rollback_on_cached_plink
bool

If this option is enabled, closing a persistent connection will rollback
any pending transactions of this connection before it is put back into
the persistent connection pool. Otherwise, pending transactions will be

http://www.php.net/manual/en/configuration.changes
http://www.php.net/manual/en/configuration.changes
http://www.php.net/manual/en/ini.core.php#ini.safe-mode
http://www.php.net/manual/en/ini.core.php#ini.safe-mode
http://www.php.net/manual/en/ini.core.php#ini.safe-mode

Resource Types

46

rolled back only when the connection is reused, or when it is actually
closed.

Users cannot set MYSQL_OPT_READ_TIMEOUT through an API call or runtime configuration setting. Note
that if it were possible there would be differences between how libmysqlclient and streams would
interpret the value of MYSQL_OPT_READ_TIMEOUT.

3.3.4 Resource Types

Copyright 1997-2019 the PHP Documentation Group.

This extension has no resource types defined.

3.4 The mysqli Extension and Persistent Connections
Copyright 1997-2019 the PHP Documentation Group.

Persistent connection support was introduced in PHP 5.3 for the mysqli extension. Support was already
present in PDO MYSQL and ext/mysql. The idea behind persistent connections is that a connection
between a client process and a database can be reused by a client process, rather than being created
and destroyed multiple times. This reduces the overhead of creating fresh connections every time one is
required, as unused connections are cached and ready to be reused.

Unlike the mysql extension, mysqli does not provide a separate function for opening persistent
connections. To open a persistent connection you must prepend p: to the hostname when connecting.

The problem with persistent connections is that they can be left in unpredictable states by clients. For
example, a table lock might be activated before a client terminates unexpectedly. A new client process
reusing this persistent connection will get the connection “as is”. Any cleanup would need to be done by
the new client process before it could make good use of the persistent connection, increasing the burden
on the programmer.

The persistent connection of the mysqli extension however provides built-in cleanup handling code. The
cleanup carried out by mysqli includes:

• Rollback active transactions

• Close and drop temporary tables

• Unlock tables

• Reset session variables

• Close prepared statements (always happens with PHP)

• Close handler

• Release locks acquired with GET_LOCK

This ensures that persistent connections are in a clean state on return from the connection pool, before the
client process uses them.

The mysqli extension does this cleanup by automatically calling the C-API function
mysql_change_user().

The automatic cleanup feature has advantages and disadvantages though. The advantage is that the
programmer no longer needs to worry about adding cleanup code, as it is called automatically. However,

http://www.php.net/GET_LOCK

Predefined Constants

47

the disadvantage is that the code could potentially be a little slower, as the code to perform the cleanup
needs to run each time a connection is returned from the connection pool.

It is possible to switch off the automatic cleanup code, by compiling PHP with
MYSQLI_NO_CHANGE_USER_ON_PCONNECT defined.

Note

The mysqli extension supports persistent connections when using either MySQL
Native Driver or MySQL Client Library.

3.5 Predefined Constants
Copyright 1997-2019 the PHP Documentation Group.

The constants below are defined by this extension, and will only be available when the extension has either
been compiled into PHP or dynamically loaded at runtime.

MYSQLI_READ_DEFAULT_GROUP Read options from the named group from my.cnf or the file specified
with MYSQLI_READ_DEFAULT_FILE

MYSQLI_READ_DEFAULT_FILE Read options from the named option file instead of from my.cnf

MYSQLI_OPT_CONNECT_TIMEOUTConnect timeout in seconds

MYSQLI_OPT_LOCAL_INFILE Enables command LOAD LOCAL INFILE

MYSQLI_INIT_COMMAND Command to execute when connecting to MySQL server. Will
automatically be re-executed when reconnecting.

MYSQLI_CLIENT_SSL Use SSL (encrypted protocol). This option should not be set by
application programs; it is set internally in the MySQL client library

MYSQLI_CLIENT_COMPRESS Use compression protocol

MYSQLI_CLIENT_INTERACTIVE Allow interactive_timeout seconds (instead of wait_timeout
seconds) of inactivity before closing the connection. The client's
session wait_timeout variable will be set to the value of the session
interactive_timeout variable.

MYSQLI_CLIENT_IGNORE_SPACEAllow spaces after function names. Makes all functions names reserved
words.

MYSQLI_CLIENT_NO_SCHEMA Don't allow the db_name.tbl_name.col_name syntax.

MYSQLI_CLIENT_MULTI_QUERIESAllows multiple semicolon-delimited queries in a single mysqli_query
call.

MYSQLI_STORE_RESULT For using buffered resultsets

MYSQLI_USE_RESULT For using unbuffered resultsets

MYSQLI_ASSOC Columns are returned into the array having the fieldname as the array
index.

MYSQLI_NUM Columns are returned into the array having an enumerated index.

MYSQLI_BOTH Columns are returned into the array having both a numerical index and
the fieldname as the associative index.

Predefined Constants

48

MYSQLI_NOT_NULL_FLAG Indicates that a field is defined as NOT NULL

MYSQLI_PRI_KEY_FLAG Field is part of a primary index

MYSQLI_UNIQUE_KEY_FLAG Field is part of a unique index.

MYSQLI_MULTIPLE_KEY_FLAG Field is part of an index.

MYSQLI_BLOB_FLAG Field is defined as BLOB

MYSQLI_UNSIGNED_FLAG Field is defined as UNSIGNED

MYSQLI_ZEROFILL_FLAG Field is defined as ZEROFILL

MYSQLI_AUTO_INCREMENT_FLAGField is defined as AUTO_INCREMENT

MYSQLI_TIMESTAMP_FLAG Field is defined as TIMESTAMP

MYSQLI_SET_FLAG Field is defined as SET

MYSQLI_NUM_FLAG Field is defined as NUMERIC

MYSQLI_PART_KEY_FLAG Field is part of an multi-index

MYSQLI_GROUP_FLAG Field is part of GROUP BY

MYSQLI_TYPE_DECIMAL Field is defined as DECIMAL

MYSQLI_TYPE_NEWDECIMAL Precision math DECIMAL or NUMERIC field (MySQL 5.0.3 and up)

MYSQLI_TYPE_BIT Field is defined as BIT (MySQL 5.0.3 and up)

MYSQLI_TYPE_TINY Field is defined as TINYINT

MYSQLI_TYPE_SHORT Field is defined as SMALLINT

MYSQLI_TYPE_LONG Field is defined as INT

MYSQLI_TYPE_FLOAT Field is defined as FLOAT

MYSQLI_TYPE_DOUBLE Field is defined as DOUBLE

MYSQLI_TYPE_NULL Field is defined as DEFAULT NULL

MYSQLI_TYPE_TIMESTAMP Field is defined as TIMESTAMP

MYSQLI_TYPE_LONGLONG Field is defined as BIGINT

MYSQLI_TYPE_INT24 Field is defined as MEDIUMINT

MYSQLI_TYPE_DATE Field is defined as DATE

MYSQLI_TYPE_TIME Field is defined as TIME

MYSQLI_TYPE_DATETIME Field is defined as DATETIME

MYSQLI_TYPE_YEAR Field is defined as YEAR

MYSQLI_TYPE_NEWDATE Field is defined as DATE

Predefined Constants

49

MYSQLI_TYPE_INTERVAL Field is defined as INTERVAL

MYSQLI_TYPE_ENUM Field is defined as ENUM

MYSQLI_TYPE_SET Field is defined as SET

MYSQLI_TYPE_TINY_BLOB Field is defined as TINYBLOB

MYSQLI_TYPE_MEDIUM_BLOB Field is defined as MEDIUMBLOB

MYSQLI_TYPE_LONG_BLOB Field is defined as LONGBLOB

MYSQLI_TYPE_BLOB Field is defined as BLOB

MYSQLI_TYPE_VAR_STRING Field is defined as VARCHAR

MYSQLI_TYPE_STRING Field is defined as CHAR or BINARY

MYSQLI_TYPE_CHAR Field is defined as TINYINT. For CHAR, see MYSQLI_TYPE_STRING

MYSQLI_TYPE_GEOMETRY Field is defined as GEOMETRY

MYSQLI_NEED_DATA More data available for bind variable

MYSQLI_NO_DATA No more data available for bind variable

MYSQLI_DATA_TRUNCATED Data truncation occurred. Available since PHP 5.1.0 and MySQL 5.0.5.

MYSQLI_ENUM_FLAG Field is defined as ENUM. Available since PHP 5.3.0.

MYSQLI_BINARY_FLAG Field is defined as BINARY. Available since PHP 5.3.0.

MYSQLI_CURSOR_TYPE_FOR_UPDATE

MYSQLI_CURSOR_TYPE_NO_CURSOR

MYSQLI_CURSOR_TYPE_READ_ONLY

MYSQLI_CURSOR_TYPE_SCROLLABLE

MYSQLI_STMT_ATTR_CURSOR_TYPE

MYSQLI_STMT_ATTR_PREFETCH_ROWS

MYSQLI_STMT_ATTR_UPDATE_MAX_LENGTH

MYSQLI_SET_CHARSET_NAME

MYSQLI_REPORT_INDEX Report if no index or bad index was used in a query.

MYSQLI_REPORT_ERROR Report errors from mysqli function calls.

MYSQLI_REPORT_STRICT Throw a mysqli_sql_exception for errors instead of warnings.

MYSQLI_REPORT_ALL Set all options on (report all).

MYSQLI_REPORT_OFF Turns reporting off.

MYSQLI_DEBUG_TRACE_ENABLEDIs set to 1 if mysqli_debug functionality is enabled.

Notes

50

MYSQLI_SERVER_QUERY_NO_GOOD_INDEX_USED

MYSQLI_SERVER_QUERY_NO_INDEX_USED

MYSQLI_REFRESH_GRANT Refreshes the grant tables.

MYSQLI_REFRESH_LOG Flushes the logs, like executing the FLUSH LOGS SQL statement.

MYSQLI_REFRESH_TABLES Flushes the table cache, like executing the FLUSH TABLES SQL
statement.

MYSQLI_REFRESH_HOSTS Flushes the host cache, like executing the FLUSH HOSTS SQL
statement.

MYSQLI_REFRESH_STATUS Reset the status variables, like executing the FLUSH STATUS SQL
statement.

MYSQLI_REFRESH_THREADS Flushes the thread cache.

MYSQLI_REFRESH_SLAVE On a slave replication server: resets the master server information, and
restarts the slave. Like executing the RESET SLAVE SQL statement.

MYSQLI_REFRESH_MASTER On a master replication server: removes the binary log files listed in the
binary log index, and truncates the index file. Like executing the RESET
MASTER SQL statement.

MYSQLI_TRANS_COR_AND_CHAINAppends "AND CHAIN" to mysqli_commit or mysqli_rollback.

MYSQLI_TRANS_COR_AND_NO_CHAINAppends "AND NO CHAIN" to mysqli_commit or
mysqli_rollback.

MYSQLI_TRANS_COR_RELEASE Appends "RELEASE" to mysqli_commit or mysqli_rollback.

MYSQLI_TRANS_COR_NO_RELEASEAppends "NO RELEASE" to mysqli_commit or mysqli_rollback.

MYSQLI_TRANS_START_READ_ONLYStart the transaction as "START TRANSACTION READ ONLY" with
mysqli_begin_transaction.

MYSQLI_TRANS_START_READ_WRITEStart the transaction as "START TRANSACTION READ WRITE" with
mysqli_begin_transaction.

MYSQLI_TRANS_START_CONSISTENT_SNAPSHOTStart the transaction as "START TRANSACTION WITH CONSISTENT
SNAPSHOT" with mysqli_begin_transaction.

3.6 Notes

Copyright 1997-2019 the PHP Documentation Group.

Some implementation notes:

1. Support was added for MYSQL_TYPE_GEOMETRY to the MySQLi extension in PHP 5.3.

2. Note there are different internal implementations within libmysqlclient and mysqlnd for handling
columns of type MYSQL_TYPE_GEOMETRY. Generally speaking, mysqlnd will allocate significantly less
memory. For example, if there is a POINT column in a result set, libmysqlclient may pre-allocate
up to 4GB of RAM although less than 50 bytes are needed for holding a POINT column in memory.
Memory allocation is much lower, less than 50 bytes, if using mysqlnd.

The MySQLi Extension Function Summary

51

3.7 The MySQLi Extension Function Summary

Copyright 1997-2019 the PHP Documentation Group.

Table 3.5 Summary of mysqli methods

mysqli Class

OOP Interface Procedural Interface Alias (Do not use) Description

Properties

$mysqli::affected_rows mysqli_affected_rowsN/A Gets the number
of affected rows in
a previous MySQL
operation

$mysqli::client_info mysqli_get_client_infoN/A Returns the MySQL client
version as a string

$mysqli::client_version mysqli_get_client_versionN/A Returns MySQL client
version info as an integer

$mysqli::connect_errno mysqli_connect_errnoN/A Returns the error code
from last connect call

$mysqli::connect_error mysqli_connect_errorN/A Returns a string
description of the last
connect error

$mysqli::errno mysqli_errno N/A Returns the error code
for the most recent
function call

$mysqli::error mysqli_error N/A Returns a string
description of the last
error

$mysqli::field_count mysqli_field_count N/A Returns the number of
columns for the most
recent query

$mysqli::host_info mysqli_get_host_infoN/A Returns a string
representing the type of
connection used

$mysqli::protocol_version mysqli_get_proto_infoN/A Returns the version of
the MySQL protocol used

$mysqli::server_info mysqli_get_server_infoN/A Returns the version of
the MySQL server

$mysqli::server_version mysqli_get_server_versionN/A Returns the version of
the MySQL server as an
integer

$mysqli::info mysqli_info N/A Retrieves information
about the most recently
executed query

$mysqli::insert_id mysqli_insert_id N/A Returns the auto
generated id used in the
last query

The MySQLi Extension Function Summary

52

mysqli Class

OOP Interface Procedural Interface Alias (Do not use) Description

$mysqli::sqlstate mysqli_sqlstate N/A Returns the SQLSTATE
error from previous
MySQL operation

$mysqli::warning_count mysqli_warning_countN/A Returns the number of
warnings from the last
query for the given link

Methods

mysqli::autocommit mysqli_autocommit N/A Turns on or off auto-
committing database
modifications

mysqli::change_user mysqli_change_user N/A Changes the user of
the specified database
connection

mysqli::character_set_name,
mysqli::client_encoding

mysqli_character_set_namemysqli_client_encodingReturns the default
character set for the
database connection

mysqli::close mysqli_close N/A Closes a previously
opened database
connection

mysqli::commit mysqli_commit N/A Commits the current
transaction

mysqli::__construct mysqli_connect N/A Open a new connection
to the MySQL server
[Note: static (i.e. class)
method]

mysqli::debug mysqli_debug N/A Performs debugging
operations

mysqli::dump_debug_infomysqli_dump_debug_infoN/A Dump debugging
information into the log

mysqli::get_charset mysqli_get_charset N/A Returns a character set
object

mysqli::get_connection_statsmysqli_get_connection_statsN/A Returns client connection
statistics. Available only
with mysqlnd.

mysqli::get_client_infomysqli_get_client_infoN/A Returns the MySQL client
version as a string

mysqli::get_client_statsmysqli_get_client_statsN/A Returns client per-
process statistics.
Available only with
mysqlnd.

mysqli::get_cache_statsmysqli_get_cache_statsN/A Returns client Zval cache
statistics. Available only
with mysqlnd.

mysqli::get_server_infomysqli_get_server_infoN/A Returns a string
representing the version

The MySQLi Extension Function Summary

53

mysqli Class

OOP Interface Procedural Interface Alias (Do not use) Description
of the MySQL server that
the MySQLi extension is
connected to

mysqli::get_warningsmysqli_get_warnings N/A NOT DOCUMENTED

mysqli::init mysqli_init N/A Initializes MySQLi
and returns a
resource for use with
mysqli_real_connect.
[Not called on an object,
as it returns a $mysqli
object.]

mysqli::kill mysqli_kill N/A Asks the server to kill a
MySQL thread

mysqli::more_resultsmysqli_more_results N/A Check if there are any
more query results from a
multi query

mysqli::multi_query mysqli_multi_query N/A Performs a query on the
database

mysqli::next_result mysqli_next_result N/A Prepare next result from
multi_query

mysqli::options mysqli_options mysqli_set_opt Set options

mysqli::ping mysqli_ping N/A Pings a server
connection, or tries
to reconnect if the
connection has gone
down

mysqli::prepare mysqli_prepare N/A Prepare an SQL
statement for execution

mysqli::query mysqli_query N/A Performs a query on the
database

mysqli::real_connectmysqli_real_connect N/A Opens a connection to a
mysql server

mysqli::real_escape_string,
mysqli::escape_string

mysqli_real_escape_stringmysqli_escape_stringEscapes special
characters in a string for
use in an SQL statement,
taking into account the
current charset of the
connection

mysqli::real_query mysqli_real_query N/A Execute an SQL query

mysqli::refresh mysqli_refresh N/A Flushes tables or caches,
or resets the replication
server information

mysqli::rollback mysqli_rollback N/A Rolls back current
transaction

The MySQLi Extension Function Summary

54

mysqli Class

OOP Interface Procedural Interface Alias (Do not use) Description

mysqli::select_db mysqli_select_db N/A Selects the default
database for database
queries

mysqli::set_charset mysqli_set_charset N/A Sets the default client
character set

mysqli::set_local_infile_defaultmysqli_set_local_infile_defaultN/A Unsets user defined
handler for load local
infile command

mysqli::set_local_infile_handlermysqli_set_local_infile_handlerN/A Set callback function for
LOAD DATA LOCAL
INFILE command

mysqli::ssl_set mysqli_ssl_set N/A Used for establishing
secure connections using
SSL

mysqli::stat mysqli_stat N/A Gets the current system
status

mysqli::stmt_init mysqli_stmt_init N/A Initializes a statement
and returns an
object for use with
mysqli_stmt_prepare

mysqli::store_resultmysqli_store_result N/A Transfers a result set
from the last query

mysqli::thread_id mysqli_thread_id N/A Returns the thread ID for
the current connection

mysqli::thread_safe mysqli_thread_safe N/A Returns whether thread
safety is given or not

mysqli::use_result mysqli_use_result N/A Initiate a result set
retrieval

Table 3.6 Summary of mysqli_stmt methods

MySQL_STMT

OOP Interface Procedural Interface Alias (Do not use) Description

Properties

$mysqli_stmt::affected_rowsmysqli_stmt_affected_rowsN/A Returns the total number
of rows changed,
deleted, or inserted
by the last executed
statement

$mysqli_stmt::errno mysqli_stmt_errno N/A Returns the error code
for the most recent
statement call

$mysqli_stmt::error mysqli_stmt_error N/A Returns a string
description for last
statement error

The MySQLi Extension Function Summary

55

MySQL_STMT

OOP Interface Procedural Interface Alias (Do not use) Description

$mysqli_stmt::field_count mysqli_stmt_field_countN/A Returns the number
of field in the given
statement - not
documented

$mysqli_stmt::insert_id mysqli_stmt_insert_idN/A Get the ID generated
from the previous
INSERT operation

$mysqli_stmt::num_rows mysqli_stmt_num_rowsN/A Return the number of
rows in statements result
set

$mysqli_stmt::param_countmysqli_stmt_param_countmysqli_param_count Returns the number of
parameter for the given
statement

$mysqli_stmt::sqlstate mysqli_stmt_sqlstateN/A Returns SQLSTATE error
from previous statement
operation

Methods

mysqli_stmt::attr_getmysqli_stmt_attr_getN/A Used to get the current
value of a statement
attribute

mysqli_stmt::attr_setmysqli_stmt_attr_setN/A Used to modify the
behavior of a prepared
statement

mysqli_stmt::bind_parammysqli_stmt_bind_parammysqli_bind_param Binds variables to a
prepared statement as
parameters

mysqli_stmt::bind_resultmysqli_stmt_bind_resultmysqli_bind_result Binds variables to a
prepared statement for
result storage

mysqli_stmt::close mysqli_stmt_close N/A Closes a prepared
statement

mysqli_stmt::data_seekmysqli_stmt_data_seekN/A Seeks to an arbitrary row
in statement result set

mysqli_stmt::executemysqli_stmt_execute mysqli_execute Executes a prepared
Query

mysqli_stmt::fetch mysqli_stmt_fetch mysqli_fetch Fetch results from a
prepared statement into
the bound variables

mysqli_stmt::free_resultmysqli_stmt_free_resultN/A Frees stored result
memory for the given
statement handle

mysqli_stmt::get_resultmysqli_stmt_get_resultN/A Gets a result set from
a prepared statement.
Available only with
mysqlnd.

The MySQLi Extension Function Summary

56

MySQL_STMT

OOP Interface Procedural Interface Alias (Do not use) Description

mysqli_stmt::get_warningsmysqli_stmt_get_warningsN/A NOT DOCUMENTED

mysqli_stmt::more_resultsmysqli_stmt_more_resultsN/A Checks if there are more
query results from a
multiple query

mysqli_stmt::next_resultmysqli_stmt_next_resultN/A Reads the next result
from a multiple query

mysqli_stmt::num_rowsmysqli_stmt_num_rowsN/A See also property
$mysqli_stmt::num_rows

mysqli_stmt::preparemysqli_stmt_prepare N/A Prepare an SQL
statement for execution

mysqli_stmt::reset mysqli_stmt_reset N/A Resets a prepared
statement

mysqli_stmt::result_metadatamysqli_stmt_result_metadatamysqli_get_metadata Returns result set
metadata from a
prepared statement

mysqli_stmt::send_long_datamysqli_stmt_send_long_datamysqli_send_long_dataSend data in blocks

mysqli_stmt::store_resultmysqli_stmt_store_resultN/A Transfers a result
set from a prepared
statement

Table 3.7 Summary of mysqli_result methods

mysqli_result

OOP Interface Procedural Interface Alias (Do not use) Description

Properties

$mysqli_result::current_fieldmysqli_field_tell N/A Get current field offset of
a result pointer

$mysqli_result::field_countmysqli_num_fields N/A Get the number of fields
in a result

$mysqli_result::lengths mysqli_fetch_lengthsN/A Returns the lengths
of the columns of the
current row in the result
set

$mysqli_result::num_rows mysqli_num_rows N/A Gets the number of rows
in a result

Methods

mysqli_result::data_seekmysqli_data_seek N/A Adjusts the result pointer
to an arbitrary row in the
result

mysqli_result::fetch_allmysqli_fetch_all N/A Fetches all result rows
and returns the result
set as an associative
array, a numeric array, or
both. Available only with
mysqlnd.

Examples

57

mysqli_result

OOP Interface Procedural Interface Alias (Do not use) Description

mysqli_result::fetch_arraymysqli_fetch_array N/A Fetch a result row as an
associative, a numeric
array, or both

mysqli_result::fetch_assocmysqli_fetch_assoc N/A Fetch a result row as an
associative array

mysqli_result::fetch_field_directmysqli_fetch_field_directN/A Fetch meta-data for a
single field

mysqli_result::fetch_fieldmysqli_fetch_field N/A Returns the next field in
the result set

mysqli_result::fetch_fieldsmysqli_fetch_fields N/A Returns an array of
objects representing the
fields in a result set

mysqli_result::fetch_objectmysqli_fetch_object N/A Returns the current row
of a result set as an
object

mysqli_result::fetch_rowmysqli_fetch_row N/A Get a result row as an
enumerated array

mysqli_result::field_seekmysqli_field_seek N/A Set result pointer to a
specified field offset

mysqli_result::free,
mysqli_result::close,
mysqli_result::free_result

mysqli_free_result N/A Frees the memory
associated with a result

Table 3.8 Summary of mysqli_driver methods

MySQL_Driver

OOP Interface Procedural Interface Alias (Do not use) Description

Properties

N/A

Methods

mysqli_driver::embedded_server_endmysqli_embedded_server_endN/A NOT DOCUMENTED

mysqli_driver::embedded_server_startmysqli_embedded_server_startN/A NOT DOCUMENTED

Note

Alias functions are provided for backward compatibility purposes only. Do not use
them in new projects.

3.8 Examples

Copyright 1997-2019 the PHP Documentation Group.

3.8.1 MySQLi extension basic examples

Copyright 1997-2019 the PHP Documentation Group.

MySQLi extension basic examples

58

This example shows how to connect, execute a query, use basic error handling, print resulting rows, and
disconnect from a MySQL database.

This example uses the freely available Sakila database that can be downloaded from dev.mysql.com, as
described here. To get this example to work, (a) install sakila and (b) modify the connection variables (host,
your_user, your_pass).

Example 3.30 MySQLi extension overview example

<?php
// Let's pass in a $_GET variable to our example, in this case
// it's aid for actor_id in our Sakila database. Let's make it
// default to 1, and cast it to an integer as to avoid SQL injection
// and/or related security problems. Handling all of this goes beyond
// the scope of this simple example. Example:
// http://example.org/script.php?aid=42
if (isset($_GET['aid']) && is_numeric($_GET['aid'])) {
 $aid = (int) $_GET['aid'];
} else {
 $aid = 1;
}

// Connecting to and selecting a MySQL database named sakila
// Hostname: 127.0.0.1, username: your_user, password: your_pass, db: sakila
$mysqli = new mysqli('127.0.0.1', 'your_user', 'your_pass', 'sakila');

// Oh no! A connect_errno exists so the connection attempt failed!
if ($mysqli->connect_errno) {
 // The connection failed. What do you want to do?
 // You could contact yourself (email?), log the error, show a nice page, etc.
 // You do not want to reveal sensitive information

 // Let's try this:
 echo "Sorry, this website is experiencing problems.";

 // Something you should not do on a public site, but this example will show you
 // anyways, is print out MySQL error related information -- you might log this
 echo "Error: Failed to make a MySQL connection, here is why: \n";
 echo "Errno: " . $mysqli->connect_errno . "\n";
 echo "Error: " . $mysqli->connect_error . "\n";

 // You might want to show them something nice, but we will simply exit
 exit;
}

// Perform an SQL query
$sql = "SELECT actor_id, first_name, last_name FROM actor WHERE actor_id = $aid";
if (!$result = $mysqli->query($sql)) {
 // Oh no! The query failed.
 echo "Sorry, the website is experiencing problems.";

 // Again, do not do this on a public site, but we'll show you how
 // to get the error information
 echo "Error: Our query failed to execute and here is why: \n";
 echo "Query: " . $sql . "\n";
 echo "Errno: " . $mysqli->errno . "\n";
 echo "Error: " . $mysqli->error . "\n";
 exit;
}

// Phew, we made it. We know our MySQL connection and query
// succeeded, but do we have a result?
if ($result->num_rows === 0) {
 // Oh, no rows! Sometimes that's expected and okay, sometimes

http://dev.mysql.com/doc/sakila/en/index.html
http://dev.mysql.com/doc/sakila/en/index.html

The mysqli class

59

 // it is not. You decide. In this case, maybe actor_id was too
 // large?
 echo "We could not find a match for ID $aid, sorry about that. Please try again.";
 exit;
}

// Now, we know only one result will exist in this example so let's
// fetch it into an associated array where the array's keys are the
// table's column names
$actor = $result->fetch_assoc();
echo "Sometimes I see " . $actor['first_name'] . " " . $actor['last_name'] . " on TV.";

// Now, let's fetch five random actors and output their names to a list.
// We'll add less error handling here as you can do that on your own now
$sql = "SELECT actor_id, first_name, last_name FROM actor ORDER BY rand() LIMIT 5";
if (!$result = $mysqli->query($sql)) {
 echo "Sorry, the website is experiencing problems.";
 exit;
}

// Print our 5 random actors in a list, and link to each actor
echo "\n";
while ($actor = $result->fetch_assoc()) {
 echo "\n";
 echo $actor['first_name'] . ' ' . $actor['last_name'];
 echo "\n";
}
echo "\n";

// The script will automatically free the result and close the MySQL
// connection when it exits, but let's just do it anyways
$result->free();
$mysqli->close();
?>

3.9 The mysqli class
Copyright 1997-2019 the PHP Documentation Group.

Represents a connection between PHP and a MySQL database.

mysqli {
mysqli

 Properties

 int
 mysqli->affected_rows ;

 int
 mysqli->connect_errno ;

 string
 mysqli->connect_error ;

 int
 mysqli->errno ;

 array
 mysqli->error_list ;

 string

The mysqli class

60

 mysqli->error ;

 int
 mysqli->field_count ;

 string
 mysqli->client_info ;

 int
 mysqli->client_version ;

 string
 mysqli->host_info ;

 string
 mysqli->protocol_version ;

 string
 mysqli->server_info ;

 int
 mysqli->server_version ;

 string
 mysqli->info ;

 mixed
 mysqli->insert_id ;

 string
 mysqli->sqlstate ;

 int
 mysqli->thread_id ;

 int
 mysqli->warning_count ;

Methods

 mysqli::__construct(
 string host
 = =ini_get("mysqli.default_host"),
 string username
 = =ini_get("mysqli.default_user"),
 string passwd
 = =ini_get("mysqli.default_pw"),
 string dbname
 = ="",
 int port
 = =ini_get("mysqli.default_port"),
 string socket
 = =ini_get("mysqli.default_socket"));

 bool mysqli::autocommit(
 bool mode);

 bool mysqli::change_user(
 string user,
 string password,
 string database);

 string mysqli::character_set_name();

 bool mysqli::close();

 bool mysqli::commit(
 int flags

The mysqli class

61

 = =0,
 string name);

 void mysqli::connect(
 string host
 = =ini_get("mysqli.default_host"),
 string username
 = =ini_get("mysqli.default_user"),
 string passwd
 = =ini_get("mysqli.default_pw"),
 string dbname
 = ="",
 int port
 = =ini_get("mysqli.default_port"),
 string socket
 = =ini_get("mysqli.default_socket"));

 bool mysqli::debug(
 string message);

 bool mysqli::dump_debug_info();

 object mysqli::get_charset();

 string mysqli::get_client_info();

 bool mysqli::get_connection_stats();

 string mysqli_stmt::get_server_info();

 mysqli_warning mysqli::get_warnings();

 mysqli mysqli::init();

 bool mysqli::kill(
 int processid);

 bool mysqli::more_results();

 bool mysqli::multi_query(
 string query);

 bool mysqli::next_result();

 bool mysqli::options(
 int option,
 mixed value);

 bool mysqli::ping();

 public static int mysqli::poll(
 array read,
 array error,
 array reject,
 int sec,
 int usec
 = =0);

 mysqli_stmt mysqli::prepare(
 string query);

 mixed mysqli::query(
 string query,
 int resultmode
 = =MYSQLI_STORE_RESULT);

 bool mysqli::real_connect(

mysqli::$affected_rows, mysqli_affected_rows

62

 string host,
 string username,
 string passwd,
 string dbname,
 int port,
 string socket,
 int flags);

 string mysqli::escape_string(
 string escapestr);

 string mysqli::real_escape_string(
 string escapestr);

 bool mysqli::real_query(
 string query);

 public mysqli_result mysqli::reap_async_query();

 public bool mysqli::refresh(
 int options);

 bool mysqli::rollback(
 int flags
 = =0,
 string name);

 int mysqli::rpl_query_type(
 string query);

 bool mysqli::select_db(
 string dbname);

 bool mysqli::send_query(
 string query);

 bool mysqli::set_charset(
 string charset);

 bool mysqli::set_local_infile_handler(
 mysqli link,
 callable read_func);

 bool mysqli::ssl_set(
 string key,
 string cert,
 string ca,
 string capath,
 string cipher);

 string mysqli::stat();

 mysqli_stmt mysqli::stmt_init();

 mysqli_result mysqli::store_result(
 int option);

 mysqli_result mysqli::use_result();

}

3.9.1 mysqli::$affected_rows, mysqli_affected_rows

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::$affected_rows

mysqli::$affected_rows, mysqli_affected_rows

63

mysqli_affected_rows

Gets the number of affected rows in a previous MySQL operation

Description

Object oriented style

 int
 mysqli->affected_rows ;

Procedural style

 int mysqli_affected_rows(
 mysqli link);

Returns the number of rows affected by the last INSERT, UPDATE, REPLACE or DELETE query.

For SELECT statements mysqli_affected_rows works like mysqli_num_rows.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

An integer greater than zero indicates the number of rows affected or retrieved. Zero indicates that no
records were updated for an UPDATE statement, no rows matched the WHERE clause in the query or that
no query has yet been executed. -1 indicates that the query returned an error.

Note

If the number of affected rows is greater than the maximum integer value(
PHP_INT_MAX), the number of affected rows will be returned as a string.

Examples

Example 3.31 $mysqli->affected_rows example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* Insert rows */
$mysqli->query("CREATE TABLE Language SELECT * from CountryLanguage");
printf("Affected rows (INSERT): %d\n", $mysqli->affected_rows);

$mysqli->query("ALTER TABLE Language ADD Status int default 0");

/* update rows */
$mysqli->query("UPDATE Language SET Status=1 WHERE Percentage > 50");
printf("Affected rows (UPDATE): %d\n", $mysqli->affected_rows);

mysqli::$affected_rows, mysqli_affected_rows

64

/* delete rows */
$mysqli->query("DELETE FROM Language WHERE Percentage < 50");
printf("Affected rows (DELETE): %d\n", $mysqli->affected_rows);

/* select all rows */
$result = $mysqli->query("SELECT CountryCode FROM Language");
printf("Affected rows (SELECT): %d\n", $mysqli->affected_rows);

$result->close();

/* Delete table Language */
$mysqli->query("DROP TABLE Language");

/* close connection */
$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

if (!$link) {
 printf("Can't connect to localhost. Error: %s\n", mysqli_connect_error());
 exit();
}

/* Insert rows */
mysqli_query($link, "CREATE TABLE Language SELECT * from CountryLanguage");
printf("Affected rows (INSERT): %d\n", mysqli_affected_rows($link));

mysqli_query($link, "ALTER TABLE Language ADD Status int default 0");

/* update rows */
mysqli_query($link, "UPDATE Language SET Status=1 WHERE Percentage > 50");
printf("Affected rows (UPDATE): %d\n", mysqli_affected_rows($link));

/* delete rows */
mysqli_query($link, "DELETE FROM Language WHERE Percentage < 50");
printf("Affected rows (DELETE): %d\n", mysqli_affected_rows($link));

/* select all rows */
$result = mysqli_query($link, "SELECT CountryCode FROM Language");
printf("Affected rows (SELECT): %d\n", mysqli_affected_rows($link));

mysqli_free_result($result);

/* Delete table Language */
mysqli_query($link, "DROP TABLE Language");

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Affected rows (INSERT): 984
Affected rows (UPDATE): 168

mysqli::autocommit, mysqli_autocommit

65

Affected rows (DELETE): 815
Affected rows (SELECT): 169

See Also

mysqli_num_rows
mysqli_info

3.9.2 mysqli::autocommit, mysqli_autocommit

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::autocommit

mysqli_autocommit

Turns on or off auto-committing database modifications

Description

Object oriented style

 bool mysqli::autocommit(
 bool mode);

Procedural style

 bool mysqli_autocommit(
 mysqli link,
 bool mode);

Turns on or off auto-commit mode on queries for the database connection.

To determine the current state of autocommit use the SQL command SELECT @@autocommit.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

mode Whether to turn on auto-commit or not.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function doesn't work with non transactional table types (like MyISAM or
ISAM).

Examples

Example 3.32 mysqli::autocommit example

Object oriented style

mysqli::autocommit, mysqli_autocommit

66

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* turn autocommit on */
$mysqli->autocommit(TRUE);

if ($result = $mysqli->query("SELECT @@autocommit")) {
 $row = $result->fetch_row();
 printf("Autocommit is %s\n", $row[0]);
 $result->free();
}

/* close connection */
$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

if (!$link) {
 printf("Can't connect to localhost. Error: %s\n", mysqli_connect_error());
 exit();
}

/* turn autocommit on */
mysqli_autocommit($link, TRUE);

if ($result = mysqli_query($link, "SELECT @@autocommit")) {
 $row = mysqli_fetch_row($result);
 printf("Autocommit is %s\n", $row[0]);
 mysqli_free_result($result);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Autocommit is 1

See Also

mysqli_begin_transaction
mysqli_commit
mysqli_rollback

mysqli::begin_transaction, mysqli_begin_transaction

67

3.9.3 mysqli::begin_transaction, mysqli_begin_transaction

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::begin_transaction

mysqli_begin_transaction

Starts a transaction

Description

Object oriented style (method):

 public bool mysqli::begin_transaction(
 int flags
 = =0,
 string name);

Procedural style:

 bool mysqli_begin_transaction(
 mysqli link,
 int flags
 = =0,
 string name);

Begins a transaction. Requires the InnoDB engine (it is enabled by default). For additional details about
how MySQL transactions work, see http://dev.mysql.com/doc/mysql/en/commit.html.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

flags Valid flags are:

• MYSQLI_TRANS_START_READ_ONLY: Start the transaction as
"START TRANSACTION READ ONLY". Requires MySQL 5.6 and
above.

• MYSQLI_TRANS_START_READ_WRITE: Start the transaction as
"START TRANSACTION READ WRITE". Requires MySQL 5.6 and
above.

• MYSQLI_TRANS_START_WITH_CONSISTENT_SNAPSHOT: Start
the transaction as "START TRANSACTION WITH CONSISTENT
SNAPSHOT".

name Savepoint name for the transaction.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 3.33 $mysqli->begin_transaction example

Object oriented style

http://dev.mysql.com/doc/mysql/en/commit.html
http://www.php.net/$mysqli->begin_transaction

mysqli::change_user, mysqli_change_user

68

<?php
$mysqli = new mysqli("127.0.0.1", "my_user", "my_password", "sakila");

if ($mysqli->connect_errno) {
 printf("Connect failed: %s\n", $mysqli->connect_error);
 exit();
}

$mysqli->begin_transaction(MYSQLI_TRANS_START_READ_ONLY);

$mysqli->query("SELECT first_name, last_name FROM actor");
$mysqli->commit();

$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("127.0.0.1", "my_user", "my_password", "sakila");

if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

mysqli_begin_transaction($link, MYSQLI_TRANS_START_READ_ONLY);

mysqli_query($link, "SELECT first_name, last_name FROM actor LIMIT 1");
mysqli_commit($link);

mysqli_close($link);
?>

See Also

mysqli_autocommit
mysqli_commit
mysqli_rollback

3.9.4 mysqli::change_user, mysqli_change_user

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::change_user

mysqli_change_user

Changes the user of the specified database connection

Description

Object oriented style

 bool mysqli::change_user(
 string user,

mysqli::change_user, mysqli_change_user

69

 string password,
 string database);

Procedural style

 bool mysqli_change_user(
 mysqli link,
 string user,
 string password,
 string database);

Changes the user of the specified database connection and sets the current database.

In order to successfully change users a valid username and password parameters must be provided and
that user must have sufficient permissions to access the desired database. If for any reason authorization
fails, the current user authentication will remain.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

user The MySQL user name.

password The MySQL password.

database The database to change to.

If desired, the NULL value may be passed resulting in only changing the
user and not selecting a database. To select a database in this case
use the mysqli_select_db function.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

Using this command will always cause the current database connection to behave
as if was a completely new database connection, regardless of if the operation was
completed successfully. This reset includes performing a rollback on any active
transactions, closing all temporary tables, and unlocking all locked tables.

Examples

Example 3.34 mysqli::change_user example

Object oriented style

<?php

/* connect database test */
$mysqli = new mysqli("localhost", "my_user", "my_password", "test");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();

mysqli::change_user, mysqli_change_user

70

}

/* Set Variable a */
$mysqli->query("SET @a:=1");

/* reset all and select a new database */
$mysqli->change_user("my_user", "my_password", "world");

if ($result = $mysqli->query("SELECT DATABASE()")) {
 $row = $result->fetch_row();
 printf("Default database: %s\n", $row[0]);
 $result->close();
}

if ($result = $mysqli->query("SELECT @a")) {
 $row = $result->fetch_row();
 if ($row[0] === NULL) {
 printf("Value of variable a is NULL\n");
 }
 $result->close();
}

/* close connection */
$mysqli->close();
?>

Procedural style

<?php
/* connect database test */
$link = mysqli_connect("localhost", "my_user", "my_password", "test");

/* check connection */
if (!$link) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* Set Variable a */
mysqli_query($link, "SET @a:=1");

/* reset all and select a new database */
mysqli_change_user($link, "my_user", "my_password", "world");

if ($result = mysqli_query($link, "SELECT DATABASE()")) {
 $row = mysqli_fetch_row($result);
 printf("Default database: %s\n", $row[0]);
 mysqli_free_result($result);
}

if ($result = mysqli_query($link, "SELECT @a")) {
 $row = mysqli_fetch_row($result);
 if ($row[0] === NULL) {
 printf("Value of variable a is NULL\n");
 }
 mysqli_free_result($result);
}

/* close connection */
mysqli_close($link);
?>

mysqli::character_set_name, mysqli_character_set_name

71

The above examples will output:

Default database: world
Value of variable a is NULL

See Also

mysqli_connect
mysqli_select_db

3.9.5 mysqli::character_set_name, mysqli_character_set_name

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::character_set_name

mysqli_character_set_name

Returns the default character set for the database connection

Description

Object oriented style

 string mysqli::character_set_name();

Procedural style

 string mysqli_character_set_name(
 mysqli link);

Returns the current character set for the database connection.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

The default character set for the current connection

Examples

Example 3.35 mysqli::character_set_name example

Object oriented style

<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();

mysqli::close, mysqli_close

72

}

/* Print current character set */
$charset = $mysqli->character_set_name();
printf ("Current character set is %s\n", $charset);

$mysqli->close();
?>

Procedural style

<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (!$link) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* Print current character set */
$charset = mysqli_character_set_name($link);
printf ("Current character set is %s\n",$charset);

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Current character set is latin1_swedish_ci

See Also

mysqli_set_charset
mysqli_client_encoding
mysqli_real_escape_string

3.9.6 mysqli::close, mysqli_close

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::close

mysqli_close

Closes a previously opened database connection

Description

Object oriented style

 bool mysqli::close();

mysqli::commit, mysqli_commit

73

Procedural style

 bool mysqli_close(
 mysqli link);

Closes a previously opened database connection.

Open non-persistent MySQL connections and result sets are automatically destroyed when a PHP script
finishes its execution. So, while explicitly closing open connections and freeing result sets is optional,
doing so is recommended. This will immediately return resources to PHP and MySQL, which can improve
performance. For related information, see freeing resources

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

Returns TRUE on success or FALSE on failure.

Examples

See mysqli_connect.

Notes

Note

mysqli_close will not close persistent connections. For additional details, see the
manual page on persistent connections.

See Also

mysqli::__construct
mysqli_init
mysqli_real_connect
mysqli_free_result

3.9.7 mysqli::commit, mysqli_commit

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::commit

mysqli_commit

Commits the current transaction

Description

Object oriented style

 bool mysqli::commit(
 int flags
 = =0,
 string name);

Procedural style

http://www.php.net/manual/en/language.types.resource.php#language.types.resource.self-destruct
http://www.php.net/manual/en/features.persistent-connections

mysqli::commit, mysqli_commit

74

 bool mysqli_commit(
 mysqli link,
 int flags
 = =0,
 string name);

Commits the current transaction for the database connection.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

flags A bitmask of MYSQLI_TRANS_COR_* constants.

name If provided then COMMIT/*name*/ is executed.

Return Values

Returns TRUE on success or FALSE on failure.

Changelog

Version Description

5.5.0 Added flags and name parameters.

Examples

Example 3.36 mysqli::commit example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$mysqli->query("CREATE TABLE Language LIKE CountryLanguage");

/* set autocommit to off */
$mysqli->autocommit(FALSE);

/* Insert some values */
$mysqli->query("INSERT INTO Language VALUES ('DEU', 'Bavarian', 'F', 11.2)");
$mysqli->query("INSERT INTO Language VALUES ('DEU', 'Swabian', 'F', 9.4)");

/* commit transaction */
if (!$mysqli->commit()) {
 print("Transaction commit failed\n");
 exit();
}

/* drop table */
$mysqli->query("DROP TABLE Language");

/* close connection */
$mysqli->close();

mysqli::$connect_errno, mysqli_connect_errno

75

?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "test");

/* check connection */
if (!$link) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* set autocommit to off */
mysqli_autocommit($link, FALSE);

mysqli_query($link, "CREATE TABLE Language LIKE CountryLanguage");

/* Insert some values */
mysqli_query($link, "INSERT INTO Language VALUES ('DEU', 'Bavarian', 'F', 11.2)");
mysqli_query($link, "INSERT INTO Language VALUES ('DEU', 'Swabian', 'F', 9.4)");

/* commit transaction */
if (!mysqli_commit($link)) {
 print("Transaction commit failed\n");
 exit();
}

/* close connection */
mysqli_close($link);
?>

See Also

mysqli_autocommit
mysqli_begin_transaction
mysqli_rollback
mysqli_savepoint

3.9.8 mysqli::$connect_errno, mysqli_connect_errno

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::$connect_errno

mysqli_connect_errno

Returns the error code from last connect call

Description

Object oriented style

 int
 mysqli->connect_errno ;

Procedural style

mysqli::$connect_errno, mysqli_connect_errno

76

 int mysqli_connect_errno();

Returns the last error code number from the last call to mysqli_connect.

Note

Client error message numbers are listed in the MySQL errmsg.h header file,
server error message numbers are listed in mysqld_error.h. In the MySQL
source distribution you can find a complete list of error messages and error
numbers in the file Docs/mysqld_error.txt.

Return Values

An error code value for the last call to mysqli_connect, if it failed. zero means no error occurred.

Examples

Example 3.37 $mysqli->connect_errno example

Object oriented style

<?php
$mysqli = @new mysqli('localhost', 'fake_user', 'my_password', 'my_db');

if ($mysqli->connect_errno) {
 die('Connect Error: ' . $mysqli->connect_errno);
}
?>

Procedural style

<?php
$link = @mysqli_connect('localhost', 'fake_user', 'my_password', 'my_db');

if (!$link) {
 die('Connect Error: ' . mysqli_connect_errno());
}
?>

The above examples will output:

Connect Error: 1045

See Also

mysqli_connect
mysqli_connect_error
mysqli_errno
mysqli_error
mysqli_sqlstate

mysqli::$connect_error, mysqli_connect_error

77

3.9.9 mysqli::$connect_error, mysqli_connect_error

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::$connect_error

mysqli_connect_error

Returns a string description of the last connect error

Description

Object oriented style

 string
 mysqli->connect_error ;

Procedural style

 string mysqli_connect_error();

Returns the last error message string from the last call to mysqli_connect.

Return Values

A string that describes the error. NULL is returned if no error occurred.

Examples

Example 3.38 $mysqli->connect_error example

Object oriented style

<?php
$mysqli = @new mysqli('localhost', 'fake_user', 'my_password', 'my_db');

// Works as of PHP 5.2.9 and 5.3.0.
if ($mysqli->connect_error) {
 die('Connect Error: ' . $mysqli->connect_error);
}
?>

Procedural style

<?php
$link = @mysqli_connect('localhost', 'fake_user', 'my_password', 'my_db');

if (!$link) {
 die('Connect Error: ' . mysqli_connect_error());
}
?>

The above examples will output:

mysqli::__construct, mysqli::connect, mysqli_connect

78

Connect Error: Access denied for user 'fake_user'@'localhost' (using password: YES)

Notes

Warning

The mysqli->connect_error property only works properly as of PHP versions 5.2.9
and 5.3.0. Use the mysqli_connect_error function if compatibility with earlier
PHP versions is required.

See Also

mysqli_connect
mysqli_connect_errno
mysqli_errno
mysqli_error
mysqli_sqlstate

3.9.10 mysqli::__construct, mysqli::connect, mysqli_connect

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::__construct

mysqli::connect

mysqli_connect

Open a new connection to the MySQL server

Description

Object oriented style

 mysqli::__construct(
 string host
 = =ini_get("mysqli.default_host"),
 string username
 = =ini_get("mysqli.default_user"),
 string passwd
 = =ini_get("mysqli.default_pw"),
 string dbname
 = ="",
 int port
 = =ini_get("mysqli.default_port"),
 string socket
 = =ini_get("mysqli.default_socket"));

 void mysqli::connect(
 string host
 = =ini_get("mysqli.default_host"),
 string username
 = =ini_get("mysqli.default_user"),
 string passwd
 = =ini_get("mysqli.default_pw"),
 string dbname
 = ="",
 int port
 = =ini_get("mysqli.default_port"),
 string socket

mysqli::__construct, mysqli::connect, mysqli_connect

79

 = =ini_get("mysqli.default_socket"));

Procedural style

 mysqli mysqli_connect(
 string host
 = =ini_get("mysqli.default_host"),
 string username
 = =ini_get("mysqli.default_user"),
 string passwd
 = =ini_get("mysqli.default_pw"),
 string dbname
 = ="",
 int port
 = =ini_get("mysqli.default_port"),
 string socket
 = =ini_get("mysqli.default_socket"));

Opens a connection to the MySQL Server.

Parameters

host Can be either a host name or an IP address. Passing the NULL value or
the string "localhost" to this parameter, the local host is assumed. When
possible, pipes will be used instead of the TCP/IP protocol.

Prepending host by p: opens a persistent connection.
mysqli_change_user is automatically called on connections opened
from the connection pool.

username The MySQL user name.

passwd If not provided or NULL, the MySQL server will attempt to authenticate
the user against those user records which have no password only. This
allows one username to be used with different permissions (depending
on if a password is provided or not).

dbname If provided will specify the default database to be used when performing
queries.

port Specifies the port number to attempt to connect to the MySQL server.

socket Specifies the socket or named pipe that should be used.

Note

Specifying the socket parameter will not
explicitly determine the type of connection to
be used when connecting to the MySQL server.
How the connection is made to the MySQL
database is determined by the host parameter.

Return Values

Returns an object which represents the connection to a MySQL Server.

Changelog

Version Description

5.3.0 Added the ability of persistent connections.

mysqli::__construct, mysqli::connect, mysqli_connect

80

Examples

Example 3.39 mysqli::__construct example

Object oriented style

<?php
$mysqli = new mysqli('localhost', 'my_user', 'my_password', 'my_db');

/*
 * This is the "official" OO way to do it,
 * BUT $connect_error was broken until PHP 5.2.9 and 5.3.0.
 */
if ($mysqli->connect_error) {
 die('Connect Error (' . $mysqli->connect_errno . ') '
 . $mysqli->connect_error);
}

/*
 * Use this instead of $connect_error if you need to ensure
 * compatibility with PHP versions prior to 5.2.9 and 5.3.0.
 */
if (mysqli_connect_error()) {
 die('Connect Error (' . mysqli_connect_errno() . ') '
 . mysqli_connect_error());
}

echo 'Success... ' . $mysqli->host_info . "\n";

$mysqli->close();
?>

Object oriented style when extending mysqli class

<?php

class foo_mysqli extends mysqli {
 public function __construct($host, $user, $pass, $db) {
 parent::__construct($host, $user, $pass, $db);

 if (mysqli_connect_error()) {
 die('Connect Error (' . mysqli_connect_errno() . ') '
 . mysqli_connect_error());
 }
 }
}

$db = new foo_mysqli('localhost', 'my_user', 'my_password', 'my_db');

echo 'Success... ' . $db->host_info . "\n";

$db->close();
?>

Procedural style

mysqli::__construct, mysqli::connect, mysqli_connect

81

<?php
$link = mysqli_connect('localhost', 'my_user', 'my_password', 'my_db');

if (!$link) {
 die('Connect Error (' . mysqli_connect_errno() . ') '
 . mysqli_connect_error());
}

echo 'Success... ' . mysqli_get_host_info($link) . "\n";

mysqli_close($link);
?>

The above examples will output:

Success... MySQL host info: localhost via TCP/IP

Notes

Note

MySQLnd always assumes the server default charset. This charset is sent during
connection hand-shake/authentication, which mysqlnd will use.

Libmysqlclient uses the default charset set in the my.cnf or by an explicit
call to mysqli_options prior to calling mysqli_real_connect, but after
mysqli_init.

Note

OO syntax only: If a connection fails an object is still returned. To check if the
connection failed then use either the mysqli_connect_error function or the
mysqli->connect_error property as in the preceding examples.

Note

If it is necessary to set options, such as the connection timeout,
mysqli_real_connect must be used instead.

Note

Calling the constructor with no parameters is the same as calling mysqli_init.

Note

Error "Can't create TCP/IP socket (10106)" usually means that the variables_order
configure directive doesn't contain character E. On Windows, if the environment is
not copied the SYSTEMROOT environment variable won't be available and PHP will
have problems loading Winsock.

See Also

mysqli_real_connect
mysqli_options
mysqli_connect_errno

http://www.php.net/manual/en/ini.core.php#ini.variables-orde

mysqli::debug, mysqli_debug

82

mysqli_connect_error
mysqli_close

3.9.11 mysqli::debug, mysqli_debug

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::debug

mysqli_debug

Performs debugging operations

Description

Object oriented style

 bool mysqli::debug(
 string message);

Procedural style

 bool mysqli_debug(
 string message);

Performs debugging operations using the Fred Fish debugging library.

Parameters

message A string representing the debugging operation to perform

Return Values

Returns TRUE.

Notes

Note

To use the mysqli_debug function you must compile the MySQL client library to
support debugging.

Examples

Example 3.40 Generating a Trace File

<?php

/* Create a trace file in '/tmp/client.trace' on the local (client) machine: */
mysqli_debug("d:t:o,/tmp/client.trace");

?>

See Also

mysqli_dump_debug_info
mysqli_report

mysqli::dump_debug_info, mysqli_dump_debug_info

83

3.9.12 mysqli::dump_debug_info, mysqli_dump_debug_info

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::dump_debug_info

mysqli_dump_debug_info

Dump debugging information into the log

Description

Object oriented style

 bool mysqli::dump_debug_info();

Procedural style

 bool mysqli_dump_debug_info(
 mysqli link);

This function is designed to be executed by an user with the SUPER privilege and is used to dump
debugging information into the log for the MySQL Server relating to the connection.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

Returns TRUE on success or FALSE on failure.

See Also

mysqli_debug

3.9.13 mysqli::$errno, mysqli_errno

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::$errno

mysqli_errno

Returns the error code for the most recent function call

Description

Object oriented style

 int
 mysqli->errno ;

Procedural style

 int mysqli_errno(
 mysqli link);

Returns the last error code for the most recent MySQLi function call that can succeed or fail.

mysqli::$errno, mysqli_errno

84

Client error message numbers are listed in the MySQL errmsg.h header file, server error message
numbers are listed in mysqld_error.h. In the MySQL source distribution you can find a complete list of
error messages and error numbers in the file Docs/mysqld_error.txt.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

An error code value for the last call, if it failed. zero means no error occurred.

Examples

Example 3.41 $mysqli->errno example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if ($mysqli->connect_errno) {
 printf("Connect failed: %s\n", $mysqli->connect_error);
 exit();
}

if (!$mysqli->query("SET a=1")) {
 printf("Errorcode: %d\n", $mysqli->errno);
}

/* close connection */
$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

if (!mysqli_query($link, "SET a=1")) {
 printf("Errorcode: %d\n", mysqli_errno($link));
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

mysqli::$error_list, mysqli_error_list

85

Errorcode: 1193

See Also

mysqli_connect_errno
mysqli_connect_error
mysqli_error
mysqli_sqlstate

3.9.14 mysqli::$error_list, mysqli_error_list

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::$error_list

mysqli_error_list

Returns a list of errors from the last command executed

Description

Object oriented style

 array
 mysqli->error_list ;

Procedural style

 array mysqli_error_list(
 mysqli link);

Returns a array of errors for the most recent MySQLi function call that can succeed or fail.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

A list of errors, each as an associative array containing the errno, error, and sqlstate.

Examples

Example 3.42 $mysqli->error_list example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "nobody", "");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();

mysqli::$error, mysqli_error

86

}

if (!$mysqli->query("SET a=1")) {
 print_r($mysqli->error_list);
}

/* close connection */
$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

if (!mysqli_query($link, "SET a=1")) {
 print_r(mysqli_error_list($link));
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Array
(
 [0] => Array
 (
 [errno] => 1193
 [sqlstate] => HY000
 [error] => Unknown system variable 'a'
)

)

See Also

mysqli_connect_errno
mysqli_connect_error
mysqli_error
mysqli_sqlstate

3.9.15 mysqli::$error, mysqli_error

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::$error

mysqli::$error, mysqli_error

87

mysqli_error

Returns a string description of the last error

Description

Object oriented style

 string
 mysqli->error ;

Procedural style

 string mysqli_error(
 mysqli link);

Returns the last error message for the most recent MySQLi function call that can succeed or fail.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

A string that describes the error. An empty string if no error occurred.

Examples

Example 3.43 $mysqli->error example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if ($mysqli->connect_errno) {
 printf("Connect failed: %s\n", $mysqli->connect_error);
 exit();
}

if (!$mysqli->query("SET a=1")) {
 printf("Errormessage: %s\n", $mysqli->error);
}

/* close connection */
$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());

mysqli::$field_count, mysqli_field_count

88

 exit();
}

if (!mysqli_query($link, "SET a=1")) {
 printf("Errormessage: %s\n", mysqli_error($link));
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Errormessage: Unknown system variable 'a'

See Also

mysqli_connect_errno
mysqli_connect_error
mysqli_errno
mysqli_sqlstate

3.9.16 mysqli::$field_count, mysqli_field_count

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::$field_count

mysqli_field_count

Returns the number of columns for the most recent query

Description

Object oriented style

 int
 mysqli->field_count ;

Procedural style

 int mysqli_field_count(
 mysqli link);

Returns the number of columns for the most recent query on the connection represented by the link
parameter. This function can be useful when using the mysqli_store_result function to determine if
the query should have produced a non-empty result set or not without knowing the nature of the query.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

An integer representing the number of fields in a result set.

mysqli::$field_count, mysqli_field_count

89

Examples

Example 3.44 $mysqli->field_count example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "test");

$mysqli->query("DROP TABLE IF EXISTS friends");
$mysqli->query("CREATE TABLE friends (id int, name varchar(20))");

$mysqli->query("INSERT INTO friends VALUES (1,'Hartmut'), (2, 'Ulf')");

$mysqli->real_query("SELECT * FROM friends");

if ($mysqli->field_count) {
 /* this was a select/show or describe query */
 $result = $mysqli->store_result();

 /* process resultset */
 $row = $result->fetch_row();

 /* free resultset */
 $result->close();
}

/* close connection */
$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "test");

mysqli_query($link, "DROP TABLE IF EXISTS friends");
mysqli_query($link, "CREATE TABLE friends (id int, name varchar(20))");

mysqli_query($link, "INSERT INTO friends VALUES (1,'Hartmut'), (2, 'Ulf')");

mysqli_real_query($link, "SELECT * FROM friends");

if (mysqli_field_count($link)) {
 /* this was a select/show or describe query */
 $result = mysqli_store_result($link);

 /* process resultset */
 $row = mysqli_fetch_row($result);

 /* free resultset */
 mysqli_free_result($result);
}

/* close connection */
mysqli_close($link);
?>

mysqli::get_charset, mysqli_get_charset

90

3.9.17 mysqli::get_charset, mysqli_get_charset

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::get_charset

mysqli_get_charset

Returns a character set object

Description

Object oriented style

 object mysqli::get_charset();

Procedural style

 object mysqli_get_charset(
 mysqli link);

Returns a character set object providing several properties of the current active character set.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

The function returns a character set object with the following properties:

charset Character set name

collation Collation name

dir Directory the charset description was fetched from (?) or "" for built-in
character sets

min_length Minimum character length in bytes

max_length Maximum character length in bytes

number Internal character set number

state Character set status (?)

Examples

Example 3.45 mysqli::get_charset example

Object oriented style

<?php
 $db = mysqli_init();
 $db->real_connect("localhost","root","","test");
 var_dump($db->get_charset());
?>

mysqli::$client_info, mysqli::get_client_info, mysqli_get_client_info

91

Procedural style

<?php
 $db = mysqli_init();
 mysqli_real_connect($db, "localhost","root","","test");
 var_dump(mysqli_get_charset($db));
?>

The above examples will output:

object(stdClass)#2 (7) {
 ["charset"]=>
 string(6) "latin1"
 ["collation"]=>
 string(17) "latin1_swedish_ci"
 ["dir"]=>
 string(0) ""
 ["min_length"]=>
 int(1)
 ["max_length"]=>
 int(1)
 ["number"]=>
 int(8)
 ["state"]=>
 int(801)
}

See Also

mysqli_character_set_name
mysqli_set_charset

3.9.18 mysqli::$client_info, mysqli::get_client_info,
mysqli_get_client_info

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::$client_info

mysqli::get_client_info

mysqli_get_client_info

Get MySQL client info

Description

Object oriented style

 string
 mysqli->client_info ;

 string mysqli::get_client_info();

Procedural style

mysqli::$client_version, mysqli_get_client_version

92

 string mysqli_get_client_info(
 mysqli link);

Returns a string that represents the MySQL client library version.

Return Values

A string that represents the MySQL client library version

Examples

Example 3.46 mysqli_get_client_info

<?php

/* We don't need a connection to determine
 the version of mysql client library */

printf("Client library version: %s\n", mysqli_get_client_info());
?>

See Also

mysqli_get_client_version
mysqli_get_server_info
mysqli_get_server_version

3.9.19 mysqli::$client_version, mysqli_get_client_version

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::$client_version

mysqli_get_client_version

Returns the MySQL client version as an integer

Description

Object oriented style

 int
 mysqli->client_version ;

Procedural style

 int mysqli_get_client_version(
 mysqli link);

Returns client version number as an integer.

Return Values

A number that represents the MySQL client library version in format: main_version*10000 +
minor_version *100 + sub_version. For example, 4.1.0 is returned as 40100.

This is useful to quickly determine the version of the client library to know if some capability exists.

mysqli::get_connection_stats, mysqli_get_connection_stats

93

Examples

Example 3.47 mysqli_get_client_version

<?php

/* We don't need a connection to determine
 the version of mysql client library */

printf("Client library version: %d\n", mysqli_get_client_version());
?>

See Also

mysqli_get_client_info
mysqli_get_server_info
mysqli_get_server_version

3.9.20 mysqli::get_connection_stats, mysqli_get_connection_stats

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::get_connection_stats

mysqli_get_connection_stats

Returns statistics about the client connection

Description

Object oriented style

 bool mysqli::get_connection_stats();

Procedural style

 array mysqli_get_connection_stats(
 mysqli link);

Returns statistics about the client connection. Available only with mysqlnd.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

Returns an array with connection stats if success, FALSE otherwise.

Examples

Example 3.48 A mysqli_get_connection_stats example

<?php
$link = mysqli_connect();
print_r(mysqli_get_connection_stats($link));

mysqli::get_connection_stats, mysqli_get_connection_stats

94

?>

The above example will output something similar to:

Array
(
 [bytes_sent] => 43
 [bytes_received] => 80
 [packets_sent] => 1
 [packets_received] => 2
 [protocol_overhead_in] => 8
 [protocol_overhead_out] => 4
 [bytes_received_ok_packet] => 11
 [bytes_received_eof_packet] => 0
 [bytes_received_rset_header_packet] => 0
 [bytes_received_rset_field_meta_packet] => 0
 [bytes_received_rset_row_packet] => 0
 [bytes_received_prepare_response_packet] => 0
 [bytes_received_change_user_packet] => 0
 [packets_sent_command] => 0
 [packets_received_ok] => 1
 [packets_received_eof] => 0
 [packets_received_rset_header] => 0
 [packets_received_rset_field_meta] => 0
 [packets_received_rset_row] => 0
 [packets_received_prepare_response] => 0
 [packets_received_change_user] => 0
 [result_set_queries] => 0
 [non_result_set_queries] => 0
 [no_index_used] => 0
 [bad_index_used] => 0
 [slow_queries] => 0
 [buffered_sets] => 0
 [unbuffered_sets] => 0
 [ps_buffered_sets] => 0
 [ps_unbuffered_sets] => 0
 [flushed_normal_sets] => 0
 [flushed_ps_sets] => 0
 [ps_prepared_never_executed] => 0
 [ps_prepared_once_executed] => 0
 [rows_fetched_from_server_normal] => 0
 [rows_fetched_from_server_ps] => 0
 [rows_buffered_from_client_normal] => 0
 [rows_buffered_from_client_ps] => 0
 [rows_fetched_from_client_normal_buffered] => 0
 [rows_fetched_from_client_normal_unbuffered] => 0
 [rows_fetched_from_client_ps_buffered] => 0
 [rows_fetched_from_client_ps_unbuffered] => 0
 [rows_fetched_from_client_ps_cursor] => 0
 [rows_skipped_normal] => 0
 [rows_skipped_ps] => 0
 [copy_on_write_saved] => 0
 [copy_on_write_performed] => 0
 [command_buffer_too_small] => 0
 [connect_success] => 1
 [connect_failure] => 0
 [connection_reused] => 0
 [reconnect] => 0
 [pconnect_success] => 0
 [active_connections] => 1
 [active_persistent_connections] => 0
 [explicit_close] => 0
 [implicit_close] => 0

mysqli::get_connection_stats, mysqli_get_connection_stats

95

 [disconnect_close] => 0
 [in_middle_of_command_close] => 0
 [explicit_free_result] => 0
 [implicit_free_result] => 0
 [explicit_stmt_close] => 0
 [implicit_stmt_close] => 0
 [mem_emalloc_count] => 0
 [mem_emalloc_ammount] => 0
 [mem_ecalloc_count] => 0
 [mem_ecalloc_ammount] => 0
 [mem_erealloc_count] => 0
 [mem_erealloc_ammount] => 0
 [mem_efree_count] => 0
 [mem_malloc_count] => 0
 [mem_malloc_ammount] => 0
 [mem_calloc_count] => 0
 [mem_calloc_ammount] => 0
 [mem_realloc_count] => 0
 [mem_realloc_ammount] => 0
 [mem_free_count] => 0
 [proto_text_fetched_null] => 0
 [proto_text_fetched_bit] => 0
 [proto_text_fetched_tinyint] => 0
 [proto_text_fetched_short] => 0
 [proto_text_fetched_int24] => 0
 [proto_text_fetched_int] => 0
 [proto_text_fetched_bigint] => 0
 [proto_text_fetched_decimal] => 0
 [proto_text_fetched_float] => 0
 [proto_text_fetched_double] => 0
 [proto_text_fetched_date] => 0
 [proto_text_fetched_year] => 0
 [proto_text_fetched_time] => 0
 [proto_text_fetched_datetime] => 0
 [proto_text_fetched_timestamp] => 0
 [proto_text_fetched_string] => 0
 [proto_text_fetched_blob] => 0
 [proto_text_fetched_enum] => 0
 [proto_text_fetched_set] => 0
 [proto_text_fetched_geometry] => 0
 [proto_text_fetched_other] => 0
 [proto_binary_fetched_null] => 0
 [proto_binary_fetched_bit] => 0
 [proto_binary_fetched_tinyint] => 0
 [proto_binary_fetched_short] => 0
 [proto_binary_fetched_int24] => 0
 [proto_binary_fetched_int] => 0
 [proto_binary_fetched_bigint] => 0
 [proto_binary_fetched_decimal] => 0
 [proto_binary_fetched_float] => 0
 [proto_binary_fetched_double] => 0
 [proto_binary_fetched_date] => 0
 [proto_binary_fetched_year] => 0
 [proto_binary_fetched_time] => 0
 [proto_binary_fetched_datetime] => 0
 [proto_binary_fetched_timestamp] => 0
 [proto_binary_fetched_string] => 0
 [proto_binary_fetched_blob] => 0
 [proto_binary_fetched_enum] => 0
 [proto_binary_fetched_set] => 0
 [proto_binary_fetched_geometry] => 0
 [proto_binary_fetched_other] => 0
)

See Also

mysqli::$host_info, mysqli_get_host_info

96

Stats description

3.9.21 mysqli::$host_info, mysqli_get_host_info

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::$host_info

mysqli_get_host_info

Returns a string representing the type of connection used

Description

Object oriented style

 string
 mysqli->host_info ;

Procedural style

 string mysqli_get_host_info(
 mysqli link);

Returns a string describing the connection represented by the link parameter (including the server host
name).

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

A character string representing the server hostname and the connection type.

Examples

Example 3.49 $mysqli->host_info example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* print host information */
printf("Host info: %s\n", $mysqli->host_info);

/* close connection */
$mysqli->close();
?>

mysqli::$protocol_version, mysqli_get_proto_info

97

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* print host information */
printf("Host info: %s\n", mysqli_get_host_info($link));

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Host info: Localhost via UNIX socket

See Also

mysqli_get_proto_info

3.9.22 mysqli::$protocol_version, mysqli_get_proto_info

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::$protocol_version

mysqli_get_proto_info

Returns the version of the MySQL protocol used

Description

Object oriented style

 string
 mysqli->protocol_version ;

Procedural style

 int mysqli_get_proto_info(
 mysqli link);

Returns an integer representing the MySQL protocol version used by the connection represented by the
link parameter.

Parameters

mysqli::$protocol_version, mysqli_get_proto_info

98

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

Returns an integer representing the protocol version.

Examples

Example 3.50 $mysqli->protocol_version example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* print protocol version */
printf("Protocol version: %d\n", $mysqli->protocol_version);

/* close connection */
$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* print protocol version */
printf("Protocol version: %d\n", mysqli_get_proto_info($link));

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Protocol version: 10

See Also

mysqli::$server_info, mysqli::get_server_info, mysqli_get_server_info

99

mysqli_get_host_info

3.9.23 mysqli::$server_info, mysqli::get_server_info,
mysqli_get_server_info

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::$server_info

mysqli::get_server_info

mysqli_get_server_info

Returns the version of the MySQL server

Description

Object oriented style

 string
 mysqli->server_info ;

 string mysqli_stmt::get_server_info();

Procedural style

 string mysqli_get_server_info(
 mysqli link);

Returns a string representing the version of the MySQL server that the MySQLi extension is connected to.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

A character string representing the server version.

Examples

Example 3.51 $mysqli->server_info example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* print server version */
printf("Server version: %s\n", $mysqli->server_info);

mysqli::$server_version, mysqli_get_server_version

100

/* close connection */
$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* print server version */
printf("Server version: %s\n", mysqli_get_server_info($link));

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Server version: 4.1.2-alpha-debug

See Also

mysqli_get_client_info
mysqli_get_client_version
mysqli_get_server_version

3.9.24 mysqli::$server_version, mysqli_get_server_version

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::$server_version

mysqli_get_server_version

Returns the version of the MySQL server as an integer

Description

Object oriented style

 int
 mysqli->server_version ;

Procedural style

 int mysqli_get_server_version(

mysqli::$server_version, mysqli_get_server_version

101

 mysqli link);

The mysqli_get_server_version function returns the version of the server connected to (represented
by the link parameter) as an integer.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

An integer representing the server version.

The form of this version number is main_version * 10000 + minor_version * 100 +
sub_version (i.e. version 4.1.0 is 40100).

Examples

Example 3.52 $mysqli->server_version example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* print server version */
printf("Server version: %d\n", $mysqli->server_version);

/* close connection */
$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* print server version */
printf("Server version: %d\n", mysqli_get_server_version($link));

/* close connection */
mysqli_close($link);
?>

mysqli::get_warnings, mysqli_get_warnings

102

The above examples will output:

Server version: 40102

See Also

mysqli_get_client_info
mysqli_get_client_version
mysqli_get_server_info

3.9.25 mysqli::get_warnings, mysqli_get_warnings

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::get_warnings

mysqli_get_warnings

Get result of SHOW WARNINGS

Description

Object oriented style

 mysqli_warning mysqli::get_warnings();

Procedural style

 mysqli_warning mysqli_get_warnings(
 mysqli link);

Warning

This function is currently not documented; only its argument list is available.

3.9.26 mysqli::$info, mysqli_info

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::$info

mysqli_info

Retrieves information about the most recently executed query

Description

Object oriented style

 string
 mysqli->info ;

Procedural style

 string mysqli_info(
 mysqli link);

mysqli::$info, mysqli_info

103

The mysqli_info function returns a string providing information about the last query executed. The
nature of this string is provided below:

Table 3.9 Possible mysqli_info return values

Query type Example result string

INSERT INTO...SELECT... Records: 100 Duplicates: 0 Warnings: 0

INSERT INTO...VALUES (...),(...),(...) Records: 3 Duplicates: 0 Warnings: 0

LOAD DATA INFILE ... Records: 1 Deleted: 0 Skipped: 0 Warnings: 0

ALTER TABLE ... Records: 3 Duplicates: 0 Warnings: 0

UPDATE ... Rows matched: 40 Changed: 40 Warnings: 0

Note

Queries which do not fall into one of the preceding formats are not supported. In
these situations, mysqli_info will return an empty string.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

A character string representing additional information about the most recently executed query.

Examples

Example 3.53 $mysqli->info example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$mysqli->query("CREATE TEMPORARY TABLE t1 LIKE City");

/* INSERT INTO .. SELECT */
$mysqli->query("INSERT INTO t1 SELECT * FROM City ORDER BY ID LIMIT 150");
printf("%s\n", $mysqli->info);

/* close connection */
$mysqli->close();
?>

Procedural style

<?php

mysqli::init, mysqli_init

104

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

mysqli_query($link, "CREATE TEMPORARY TABLE t1 LIKE City");

/* INSERT INTO .. SELECT */
mysqli_query($link, "INSERT INTO t1 SELECT * FROM City ORDER BY ID LIMIT 150");
printf("%s\n", mysqli_info($link));

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Records: 150 Duplicates: 0 Warnings: 0

See Also

mysqli_affected_rows
mysqli_warning_count
mysqli_num_rows

3.9.27 mysqli::init, mysqli_init

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::init

mysqli_init

Initializes MySQLi and returns a resource for use with mysqli_real_connect()

Description

Object oriented style

 mysqli mysqli::init();

Procedural style

 mysqli mysqli_init();

Allocates or initializes a MYSQL object suitable for mysqli_options and mysqli_real_connect.

Note

Any subsequent calls to any mysqli function (except mysqli_options) will fail
until mysqli_real_connect was called.

Return Values

mysqli::$insert_id, mysqli_insert_id

105

Returns an object.

Examples

See mysqli_real_connect.

See Also

mysqli_options
mysqli_close
mysqli_real_connect
mysqli_connect

3.9.28 mysqli::$insert_id, mysqli_insert_id

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::$insert_id

mysqli_insert_id

Returns the auto generated id used in the latest query

Description

Object oriented style

 mixed
 mysqli->insert_id ;

Procedural style

 mixed mysqli_insert_id(
 mysqli link);

The mysqli_insert_id function returns the ID generated by a query (usually INSERT) on a table with
a column having the AUTO_INCREMENT attribute. If no INSERT or UPDATE statements were sent via
this connection, or if the modified table does not have a column with the AUTO_INCREMENT attribute, this
function will return zero.

Note

Performing an INSERT or UPDATE statement using the LAST_INSERT_ID()
function will also modify the value returned by the mysqli_insert_id function.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

The value of the AUTO_INCREMENT field that was updated by the previous query. Returns zero if there was
no previous query on the connection or if the query did not update an AUTO_INCREMENT value.

Note

If the number is greater than maximal int value, mysqli_insert_id will return a
string.

mysqli::$insert_id, mysqli_insert_id

106

Examples

Example 3.54 $mysqli->insert_id example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$mysqli->query("CREATE TABLE myCity LIKE City");

$query = "INSERT INTO myCity VALUES (NULL, 'Stuttgart', 'DEU', 'Stuttgart', 617000)";
$mysqli->query($query);

printf ("New Record has id %d.\n", $mysqli->insert_id);

/* drop table */
$mysqli->query("DROP TABLE myCity");

/* close connection */
$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

mysqli_query($link, "CREATE TABLE myCity LIKE City");

$query = "INSERT INTO myCity VALUES (NULL, 'Stuttgart', 'DEU', 'Stuttgart', 617000)";
mysqli_query($link, $query);

printf ("New Record has id %d.\n", mysqli_insert_id($link));

/* drop table */
mysqli_query($link, "DROP TABLE myCity");

/* close connection */
mysqli_close($link);
?>

The above examples will output:

mysqli::kill, mysqli_kill

107

New Record has id 1.

3.9.29 mysqli::kill, mysqli_kill

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::kill

mysqli_kill

Asks the server to kill a MySQL thread

Description

Object oriented style

 bool mysqli::kill(
 int processid);

Procedural style

 bool mysqli_kill(
 mysqli link,
 int processid);

This function is used to ask the server to kill a MySQL thread specified by the processid parameter. This
value must be retrieved by calling the mysqli_thread_id function.

To stop a running query you should use the SQL command KILL QUERY processid.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 3.55 mysqli::kill example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* determine our thread id */
$thread_id = $mysqli->thread_id;

mysqli::more_results, mysqli_more_results

108

/* Kill connection */
$mysqli->kill($thread_id);

/* This should produce an error */
if (!$mysqli->query("CREATE TABLE myCity LIKE City")) {
 printf("Error: %s\n", $mysqli->error);
 exit;
}

/* close connection */
$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* determine our thread id */
$thread_id = mysqli_thread_id($link);

/* Kill connection */
mysqli_kill($link, $thread_id);

/* This should produce an error */
if (!mysqli_query($link, "CREATE TABLE myCity LIKE City")) {
 printf("Error: %s\n", mysqli_error($link));
 exit;
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Error: MySQL server has gone away

See Also

mysqli_thread_id

3.9.30 mysqli::more_results, mysqli_more_results

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::more_results

mysqli_more_results

mysqli::multi_query, mysqli_multi_query

109

Check if there are any more query results from a multi query

Description

Object oriented style

 bool mysqli::more_results();

Procedural style

 bool mysqli_more_results(
 mysqli link);

Indicates if one or more result sets are available from a previous call to mysqli_multi_query.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

Returns TRUE if one or more result sets are available from a previous call to mysqli_multi_query,
otherwise FALSE.

Examples

See mysqli_multi_query.

See Also

mysqli_multi_query
mysqli_next_result
mysqli_store_result
mysqli_use_result

3.9.31 mysqli::multi_query, mysqli_multi_query

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::multi_query

mysqli_multi_query

Performs a query on the database

Description

Object oriented style

 bool mysqli::multi_query(
 string query);

Procedural style

 bool mysqli_multi_query(
 mysqli link,
 string query);

mysqli::multi_query, mysqli_multi_query

110

Executes one or multiple queries which are concatenated by a semicolon.

To retrieve the resultset from the first query you can use mysqli_use_result or
mysqli_store_result. All subsequent query results can be processed using mysqli_more_results
and mysqli_next_result.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

query The query, as a string.

Data inside the query should be properly escaped.

Return Values

Returns FALSE if the first statement failed. To retrieve subsequent errors from other statements you have
to call mysqli_next_result first.

Examples

Example 3.56 mysqli::multi_query example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT CURRENT_USER();";
$query .= "SELECT Name FROM City ORDER BY ID LIMIT 20, 5";

/* execute multi query */
if ($mysqli->multi_query($query)) {
 do {
 /* store first result set */
 if ($result = $mysqli->store_result()) {
 while ($row = $result->fetch_row()) {
 printf("%s\n", $row[0]);
 }
 $result->free();
 }
 /* print divider */
 if ($mysqli->more_results()) {
 printf("-----------------\n");
 }
 } while ($mysqli->next_result());
}

/* close connection */
$mysqli->close();
?>

Procedural style

mysqli::next_result, mysqli_next_result

111

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT CURRENT_USER();";
$query .= "SELECT Name FROM City ORDER BY ID LIMIT 20, 5";

/* execute multi query */
if (mysqli_multi_query($link, $query)) {
 do {
 /* store first result set */
 if ($result = mysqli_store_result($link)) {
 while ($row = mysqli_fetch_row($result)) {
 printf("%s\n", $row[0]);
 }
 mysqli_free_result($result);
 }
 /* print divider */
 if (mysqli_more_results($link)) {
 printf("-----------------\n");
 }
 } while (mysqli_next_result($link));
}

/* close connection */
mysqli_close($link);
?>

The above examples will output something similar to:

my_user@localhost

Amersfoort
Maastricht
Dordrecht
Leiden
Haarlemmermeer

See Also

mysqli_query
mysqli_use_result
mysqli_store_result
mysqli_next_result
mysqli_more_results

3.9.32 mysqli::next_result, mysqli_next_result

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::next_result

mysqli::options, mysqli_options

112

mysqli_next_result

Prepare next result from multi_query

Description

Object oriented style

 bool mysqli::next_result();

Procedural style

 bool mysqli_next_result(
 mysqli link);

Prepares next result set from a previous call to mysqli_multi_query which can be retrieved by
mysqli_store_result or mysqli_use_result.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

Returns TRUE on success or FALSE on failure.

Examples

See mysqli_multi_query.

See Also

mysqli_multi_query
mysqli_more_results
mysqli_store_result
mysqli_use_result

3.9.33 mysqli::options, mysqli_options

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::options

mysqli_options

Set options

Description

Object oriented style

 bool mysqli::options(
 int option,
 mixed value);

Procedural style

mysqli::options, mysqli_options

113

 bool mysqli_options(
 mysqli link,
 int option,
 mixed value);

Used to set extra connect options and affect behavior for a connection.

This function may be called multiple times to set several options.

mysqli_options should be called after mysqli_init and before mysqli_real_connect.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

option The option that you want to set. It can be one of the following values:

Table 3.10 Valid options

Name Description

MYSQLI_OPT_CONNECT_TIMEOUT connection timeout in seconds
(supported on Windows with TCP/
IP since PHP 5.3.1)

MYSQLI_OPT_LOCAL_INFILE enable/disable use of LOAD
LOCAL INFILE

MYSQLI_INIT_COMMAND command to execute after when
connecting to MySQL server

MYSQLI_READ_DEFAULT_FILE Read options from named option
file instead of my.cnf

MYSQLI_READ_DEFAULT_GROUP Read options from the
named group from my.cnf
or the file specified with
MYSQL_READ_DEFAULT_FILE.

MYSQLI_SERVER_PUBLIC_KEY RSA public key file used with the
SHA-256 based authentication.

MYSQLI_OPT_NET_CMD_BUFFER_SIZEThe size of the internal command/
network buffer. Only valid for
mysqlnd.

MYSQLI_OPT_NET_READ_BUFFER_SIZEMaximum read chunk size in
bytes when reading the body of
a MySQL command packet. Only
valid for mysqlnd.

MYSQLI_OPT_INT_AND_FLOAT_NATIVEConvert integer and float columns
back to PHP numbers. Only valid
for mysqlnd.

MYSQLI_OPT_SSL_VERIFY_SERVER_CERT

value The value for the option.

Return Values

Returns TRUE on success or FALSE on failure.

mysqli::ping, mysqli_ping

114

Changelog

Version Description

5.5.0 The MYSQLI_SERVER_PUBLIC_KEY and
MYSQLI_SERVER_PUBLIC_KEY options were
added.

5.3.0 The MYSQLI_OPT_INT_AND_FLOAT_NATIVE,
MYSQLI_OPT_NET_CMD_BUFFER_SIZE,
MYSQLI_OPT_NET_READ_BUFFER_SIZE, and
MYSQLI_OPT_SSL_VERIFY_SERVER_CERT
options were added.

Examples

See mysqli_real_connect.

Notes

Note

MySQLnd always assumes the server default charset. This charset is sent during
connection hand-shake/authentication, which mysqlnd will use.

Libmysqlclient uses the default charset set in the my.cnf or by an explicit
call to mysqli_options prior to calling mysqli_real_connect, but after
mysqli_init.

See Also

mysqli_init
mysqli_real_connect

3.9.34 mysqli::ping, mysqli_ping

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::ping

mysqli_ping

Pings a server connection, or tries to reconnect if the connection has gone down

Description

Object oriented style

 bool mysqli::ping();

Procedural style

 bool mysqli_ping(
 mysqli link);

Checks whether the connection to the server is working. If it has gone down and global option
mysqli.reconnect is enabled, an automatic reconnection is attempted.

mysqli::ping, mysqli_ping

115

Note

The php.ini setting mysqli.reconnect is ignored by the mysqlnd driver, so
automatic reconnection is never attempted.

This function can be used by clients that remain idle for a long while, to check whether the server has
closed the connection and reconnect if necessary.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 3.57 mysqli::ping example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if ($mysqli->connect_errno) {
 printf("Connect failed: %s\n", $mysqli->connect_error);
 exit();
}

/* check if server is alive */
if ($mysqli->ping()) {
 printf ("Our connection is ok!\n");
} else {
 printf ("Error: %s\n", $mysqli->error);
}

/* close connection */
$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* check if server is alive */
if (mysqli_ping($link)) {
 printf ("Our connection is ok!\n");
} else {

mysqli::poll, mysqli_poll

116

 printf ("Error: %s\n", mysqli_error($link));
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Our connection is ok!

3.9.35 mysqli::poll, mysqli_poll

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::poll

mysqli_poll

Poll connections

Description

Object oriented style

 public static int mysqli::poll(
 array read,
 array error,
 array reject,
 int sec,
 int usec
 = =0);

Procedural style

 int mysqli_poll(
 array read,
 array error,
 array reject,
 int sec,
 int usec
 = =0);

Poll connections. Available only with mysqlnd. The method can be used as static.

Parameters

read List of connections to check for outstanding results that can be read.

error List of connections on which an error occured, for example, query failure
or lost connection.

reject List of connections rejected because no asynchronous query has been
run on for which the function could poll results.

sec Maximum number of seconds to wait, must be non-negative.

http://www.php.net/language.oop5.static

mysqli::prepare, mysqli_prepare

117

usec Maximum number of microseconds to wait, must be non-negative.

Return Values

Returns number of ready connections upon success, FALSE otherwise.

Examples

Example 3.58 A mysqli_poll example

<?php
$link1 = mysqli_connect();
$link1->query("SELECT 'test'", MYSQLI_ASYNC);
$all_links = array($link1);
$processed = 0;
do {
 $links = $errors = $reject = array();
 foreach ($all_links as $link) {
 $links[] = $errors[] = $reject[] = $link;
 }
 if (!mysqli_poll($links, $errors, $reject, 1)) {
 continue;
 }
 foreach ($links as $link) {
 if ($result = $link->reap_async_query()) {
 print_r($result->fetch_row());
 if (is_object($result))
 mysqli_free_result($result);
 } else die(sprintf("MySQLi Error: %s", mysqli_error($link)));
 $processed++;
 }
} while ($processed < count($all_links));
?>

The above example will output:

Array
(
 [0] => test
)

See Also

mysqli_query
mysqli_reap_async_query

3.9.36 mysqli::prepare, mysqli_prepare

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::prepare

mysqli_prepare

Prepare an SQL statement for execution

mysqli::prepare, mysqli_prepare

118

Description

Object oriented style

 mysqli_stmt mysqli::prepare(
 string query);

Procedural style

 mysqli_stmt mysqli_prepare(
 mysqli link,
 string query);

Prepares the SQL query, and returns a statement handle to be used for further operations on the
statement. The query must consist of a single SQL statement.

The parameter markers must be bound to application variables using mysqli_stmt_bind_param and/or
mysqli_stmt_bind_result before executing the statement or fetching rows.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

query The query, as a string.

Note

You should not add a terminating semicolon or
\g to the statement.

This parameter can include one or more parameter markers in the
SQL statement by embedding question mark (?) characters at the
appropriate positions.

Note

The markers are legal only in certain places in
SQL statements. For example, they are allowed
in the VALUES() list of an INSERT statement
(to specify column values for a row), or in a
comparison with a column in a WHERE clause to
specify a comparison value.

However, they are not allowed for identifiers
(such as table or column names), in the select
list that names the columns to be returned by a
SELECT statement, or to specify both operands
of a binary operator such as the = equal sign.
The latter restriction is necessary because it
would be impossible to determine the parameter
type. It's not allowed to compare marker with
NULL by ? IS NULL too. In general, parameters
are legal only in Data Manipulation Language
(DML) statements, and not in Data Definition
Language (DDL) statements.

Return Values

mysqli::prepare, mysqli_prepare

119

mysqli_prepare returns a statement object or FALSE if an error occurred.

Examples

Example 3.59 mysqli::prepare example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$city = "Amersfoort";

/* create a prepared statement */
if ($stmt = $mysqli->prepare("SELECT District FROM City WHERE Name=?")) {

 /* bind parameters for markers */
 $stmt->bind_param("s", $city);

 /* execute query */
 $stmt->execute();

 /* bind result variables */
 $stmt->bind_result($district);

 /* fetch value */
 $stmt->fetch();

 printf("%s is in district %s\n", $city, $district);

 /* close statement */
 $stmt->close();
}

/* close connection */
$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$city = "Amersfoort";

/* create a prepared statement */
if ($stmt = mysqli_prepare($link, "SELECT District FROM City WHERE Name=?")) {

mysqli::query, mysqli_query

120

 /* bind parameters for markers */
 mysqli_stmt_bind_param($stmt, "s", $city);

 /* execute query */
 mysqli_stmt_execute($stmt);

 /* bind result variables */
 mysqli_stmt_bind_result($stmt, $district);

 /* fetch value */
 mysqli_stmt_fetch($stmt);

 printf("%s is in district %s\n", $city, $district);

 /* close statement */
 mysqli_stmt_close($stmt);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Amersfoort is in district Utrecht

See Also

mysqli_stmt_execute
mysqli_stmt_fetch
mysqli_stmt_bind_param
mysqli_stmt_bind_result
mysqli_stmt_close

3.9.37 mysqli::query, mysqli_query

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::query

mysqli_query

Performs a query on the database

Description

Object oriented style

 mixed mysqli::query(
 string query,
 int resultmode
 = =MYSQLI_STORE_RESULT);

Procedural style

 mixed mysqli_query(
 mysqli link,

mysqli::query, mysqli_query

121

 string query,
 int resultmode
 = =MYSQLI_STORE_RESULT);

Performs a query against the database.

For non-DML queries (not INSERT, UPDATE or DELETE), this function is similar to calling
mysqli_real_query followed by either mysqli_use_result or mysqli_store_result.

Note

In the case where you pass a statement to mysqli_query that is longer than
max_allowed_packet of the server, the returned error codes are different
depending on whether you are using MySQL Native Driver (mysqlnd) or MySQL
Client Library (libmysqlclient). The behavior is as follows:

• mysqlnd on Linux returns an error code of 1153. The error message means “got
a packet bigger than max_allowed_packet bytes”.

• mysqlnd on Windows returns an error code 2006. This error message means
“server has gone away”.

• libmysqlclient on all platforms returns an error code 2006. This error
message means “server has gone away”.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

query The query string.

Data inside the query should be properly escaped.

resultmode Either the constant MYSQLI_USE_RESULT or MYSQLI_STORE_RESULT
depending on the desired behavior. By default,
MYSQLI_STORE_RESULT is used.

If you use MYSQLI_USE_RESULT all subsequent calls will return error
Commands out of sync unless you call mysqli_free_result

With MYSQLI_ASYNC (available with mysqlnd), it is possible to perform
query asynchronously. mysqli_poll is then used to get results from
such queries.

Return Values

Returns FALSE on failure. For successful SELECT, SHOW, DESCRIBE or EXPLAIN queries
mysqli_query will return a mysqli_result object. For other successful queries mysqli_query will
return TRUE.

Changelog

Version Description

5.3.0 Added the ability of async queries.

Examples

mysqli::query, mysqli_query

122

Example 3.60 mysqli::query example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if ($mysqli->connect_errno) {
 printf("Connect failed: %s\n", $mysqli->connect_error);
 exit();
}

/* Create table doesn't return a resultset */
if ($mysqli->query("CREATE TEMPORARY TABLE myCity LIKE City") === TRUE) {
 printf("Table myCity successfully created.\n");
}

/* Select queries return a resultset */
if ($result = $mysqli->query("SELECT Name FROM City LIMIT 10")) {
 printf("Select returned %d rows.\n", $result->num_rows);

 /* free result set */
 $result->close();
}

/* If we have to retrieve large amount of data we use MYSQLI_USE_RESULT */
if ($result = $mysqli->query("SELECT * FROM City", MYSQLI_USE_RESULT)) {

 /* Note, that we can't execute any functions which interact with the
 server until result set was closed. All calls will return an
 'out of sync' error */
 if (!$mysqli->query("SET @a:='this will not work'")) {
 printf("Error: %s\n", $mysqli->error);
 }
 $result->close();
}

$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* Create table doesn't return a resultset */
if (mysqli_query($link, "CREATE TEMPORARY TABLE myCity LIKE City") === TRUE) {
 printf("Table myCity successfully created.\n");
}

/* Select queries return a resultset */
if ($result = mysqli_query($link, "SELECT Name FROM City LIMIT 10")) {
 printf("Select returned %d rows.\n", mysqli_num_rows($result));

mysqli::real_connect, mysqli_real_connect

123

 /* free result set */
 mysqli_free_result($result);
}

/* If we have to retrieve large amount of data we use MYSQLI_USE_RESULT */
if ($result = mysqli_query($link, "SELECT * FROM City", MYSQLI_USE_RESULT)) {

 /* Note, that we can't execute any functions which interact with the
 server until result set was closed. All calls will return an
 'out of sync' error */
 if (!mysqli_query($link, "SET @a:='this will not work'")) {
 printf("Error: %s\n", mysqli_error($link));
 }
 mysqli_free_result($result);
}

mysqli_close($link);
?>

The above examples will output:

Table myCity successfully created.
Select returned 10 rows.
Error: Commands out of sync; You can't run this command now

See Also

mysqli_real_query
mysqli_multi_query
mysqli_free_result

3.9.38 mysqli::real_connect, mysqli_real_connect

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::real_connect

mysqli_real_connect

Opens a connection to a mysql server

Description

Object oriented style

 bool mysqli::real_connect(
 string host,
 string username,
 string passwd,
 string dbname,
 int port,
 string socket,
 int flags);

Procedural style

 bool mysqli_real_connect(

mysqli::real_connect, mysqli_real_connect

124

 mysqli link,
 string host,
 string username,
 string passwd,
 string dbname,
 int port,
 string socket,
 int flags);

Establish a connection to a MySQL database engine.

This function differs from mysqli_connect:

• mysqli_real_connect needs a valid object which has to be created by function mysqli_init.

• With the mysqli_options function you can set various options for connection.

• There is a flags parameter.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

host Can be either a host name or an IP address. Passing the NULL value or
the string "localhost" to this parameter, the local host is assumed. When
possible, pipes will be used instead of the TCP/IP protocol.

username The MySQL user name.

passwd If provided or NULL, the MySQL server will attempt to authenticate the
user against those user records which have no password only. This
allows one username to be used with different permissions (depending
on if a password as provided or not).

dbname If provided will specify the default database to be used when performing
queries.

port Specifies the port number to attempt to connect to the MySQL server.

socket Specifies the socket or named pipe that should be used.

Note

Specifying the socket parameter will not
explicitly determine the type of connection to
be used when connecting to the MySQL server.
How the connection is made to the MySQL
database is determined by the host parameter.

flags With the parameter flags you can set different connection options:

Table 3.11 Supported flags

Name Description

MYSQLI_CLIENT_COMPRESS Use compression protocol

MYSQLI_CLIENT_FOUND_ROWS return number of matched rows,
not the number of affected rows

mysqli::real_connect, mysqli_real_connect

125

Name Description

MYSQLI_CLIENT_IGNORE_SPACE Allow spaces after function names.
Makes all function names reserved
words.

MYSQLI_CLIENT_INTERACTIVE Allow interactive_timeout
seconds (instead of
wait_timeout seconds) of
inactivity before closing the
connection

MYSQLI_CLIENT_SSL Use SSL (encryption)

MYSQLI_CLIENT_SSL_DONT_VERIFY_SERVER_CERTLike MYSQLI_CLIENT_SSL, but
disables validation of the provided
SSL certificate. This is only for
installations using MySQL Native
Driver and MySQL 5.6 or later.

Note

For security reasons the MULTI_STATEMENT
flag is not supported in PHP. If you want
to execute multiple queries use the
mysqli_multi_query function.

Changelog

Version Description

5.6.16 Added the
MYSQLI_CLIENT_SSL_DONT_VERIFY_SERVER_CERT
flag for MySQL Native Driver

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 3.61 mysqli::real_connect example

Object oriented style

<?php

$mysqli = mysqli_init();
if (!$mysqli) {
 die('mysqli_init failed');
}

if (!$mysqli->options(MYSQLI_INIT_COMMAND, 'SET AUTOCOMMIT = 0')) {
 die('Setting MYSQLI_INIT_COMMAND failed');
}

if (!$mysqli->options(MYSQLI_OPT_CONNECT_TIMEOUT, 5)) {
 die('Setting MYSQLI_OPT_CONNECT_TIMEOUT failed');
}

mysqli::real_connect, mysqli_real_connect

126

if (!$mysqli->real_connect('localhost', 'my_user', 'my_password', 'my_db')) {
 die('Connect Error (' . mysqli_connect_errno() . ') '
 . mysqli_connect_error());
}

echo 'Success... ' . $mysqli->host_info . "\n";

$mysqli->close();
?>

Object oriented style when extending mysqli class

<?php

class foo_mysqli extends mysqli {
 public function __construct($host, $user, $pass, $db) {
 parent::init();

 if (!parent::options(MYSQLI_INIT_COMMAND, 'SET AUTOCOMMIT = 0')) {
 die('Setting MYSQLI_INIT_COMMAND failed');
 }

 if (!parent::options(MYSQLI_OPT_CONNECT_TIMEOUT, 5)) {
 die('Setting MYSQLI_OPT_CONNECT_TIMEOUT failed');
 }

 if (!parent::real_connect($host, $user, $pass, $db)) {
 die('Connect Error (' . mysqli_connect_errno() . ') '
 . mysqli_connect_error());
 }
 }
}

$db = new foo_mysqli('localhost', 'my_user', 'my_password', 'my_db');

echo 'Success... ' . $db->host_info . "\n";

$db->close();
?>

Procedural style

<?php

$link = mysqli_init();
if (!$link) {
 die('mysqli_init failed');
}

if (!mysqli_options($link, MYSQLI_INIT_COMMAND, 'SET AUTOCOMMIT = 0')) {
 die('Setting MYSQLI_INIT_COMMAND failed');
}

if (!mysqli_options($link, MYSQLI_OPT_CONNECT_TIMEOUT, 5)) {
 die('Setting MYSQLI_OPT_CONNECT_TIMEOUT failed');
}

if (!mysqli_real_connect($link, 'localhost', 'my_user', 'my_password', 'my_db')) {
 die('Connect Error (' . mysqli_connect_errno() . ') '

mysqli::real_escape_string, mysqli::escape_string, mysqli_real_escape_string

127

 . mysqli_connect_error());
}

echo 'Success... ' . mysqli_get_host_info($link) . "\n";

mysqli_close($link);
?>

The above examples will output:

Success... MySQL host info: localhost via TCP/IP

Notes

Note

MySQLnd always assumes the server default charset. This charset is sent during
connection hand-shake/authentication, which mysqlnd will use.

Libmysqlclient uses the default charset set in the my.cnf or by an explicit
call to mysqli_options prior to calling mysqli_real_connect, but after
mysqli_init.

See Also

mysqli_connect
mysqli_init
mysqli_options
mysqli_ssl_set
mysqli_close

3.9.39 mysqli::real_escape_string, mysqli::escape_string,
mysqli_real_escape_string

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::real_escape_string

mysqli::escape_string

mysqli_real_escape_string

Escapes special characters in a string for use in an SQL statement, taking into account the current
charset of the connection

Description

Object oriented style

 string mysqli::escape_string(
 string escapestr);

 string mysqli::real_escape_string(
 string escapestr);

mysqli::real_escape_string, mysqli::escape_string, mysqli_real_escape_string

128

Procedural style

 string mysqli_real_escape_string(
 mysqli link,
 string escapestr);

This function is used to create a legal SQL string that you can use in an SQL statement. The given string is
encoded to an escaped SQL string, taking into account the current character set of the connection.

Security: the default character set

The character set must be set either at the server level, or with the API function
mysqli_set_charset for it to affect mysqli_real_escape_string. See the
concepts section on character sets for more information.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

escapestr The string to be escaped.

Characters encoded are NUL (ASCII 0), \n, \r, \, ', ",
and Control-Z.

Return Values

Returns an escaped string.

Errors/Exceptions

Executing this function without a valid MySQLi connection passed in will return NULL and emit E_WARNING
level errors.

Examples

Example 3.62 mysqli::real_escape_string example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$mysqli->query("CREATE TEMPORARY TABLE myCity LIKE City");

$city = "'s Hertogenbosch";

/* this query will fail, cause we didn't escape $city */
if (!$mysqli->query("INSERT into myCity (Name) VALUES ('$city')")) {
 printf("Error: %s\n", $mysqli->sqlstate);
}

$city = $mysqli->real_escape_string($city);

mysqli::real_escape_string, mysqli::escape_string, mysqli_real_escape_string

129

/* this query with escaped $city will work */
if ($mysqli->query("INSERT into myCity (Name) VALUES ('$city')")) {
 printf("%d Row inserted.\n", $mysqli->affected_rows);
}

$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

mysqli_query($link, "CREATE TEMPORARY TABLE myCity LIKE City");

$city = "'s Hertogenbosch";

/* this query will fail, cause we didn't escape $city */
if (!mysqli_query($link, "INSERT into myCity (Name) VALUES ('$city')")) {
 printf("Error: %s\n", mysqli_sqlstate($link));
}

$city = mysqli_real_escape_string($link, $city);

/* this query with escaped $city will work */
if (mysqli_query($link, "INSERT into myCity (Name) VALUES ('$city')")) {
 printf("%d Row inserted.\n", mysqli_affected_rows($link));
}

mysqli_close($link);
?>

The above examples will output:

Error: 42000
1 Row inserted.

Notes

Note

For those accustomed to using mysql_real_escape_string, note
that the arguments of mysqli_real_escape_string differ from what
mysql_real_escape_string expects. The link identifier comes first in
mysqli_real_escape_string, whereas the string to be escaped comes first in
mysql_real_escape_string.

See Also

mysqli::real_query, mysqli_real_query

130

mysqli_set_charset
mysqli_character_set_name

3.9.40 mysqli::real_query, mysqli_real_query

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::real_query

mysqli_real_query

Execute an SQL query

Description

Object oriented style

 bool mysqli::real_query(
 string query);

Procedural style

 bool mysqli_real_query(
 mysqli link,
 string query);

Executes a single query against the database whose result can then be retrieved or stored using the
mysqli_store_result or mysqli_use_result functions.

In order to determine if a given query should return a result set or not, see mysqli_field_count.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

query The query, as a string.

Data inside the query should be properly escaped.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

mysqli_query
mysqli_store_result
mysqli_use_result

3.9.41 mysqli::reap_async_query, mysqli_reap_async_query

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::reap_async_query

mysqli_reap_async_query

Get result from async query

mysqli::refresh, mysqli_refresh

131

Description

Object oriented style

 public mysqli_result mysqli::reap_async_query();

Procedural style

 mysqli_result mysqli_reap_async_query(
 mysqli link);

Get result from async query. Available only with mysqlnd.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

Returns mysqli_result in success, FALSE otherwise.

See Also

mysqli_poll

3.9.42 mysqli::refresh, mysqli_refresh

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::refresh

mysqli_refresh

Refreshes

Description

Object oriented style

 public bool mysqli::refresh(
 int options);

Procedural style

 bool mysqli_refresh(
 resource link,
 int options);

Flushes tables or caches, or resets the replication server information.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

options The options to refresh, using the MYSQLI_REFRESH_* constants as
documented within the MySQLi constants documentation.

See also the official MySQL Refresh documentation.

http://dev.mysql.com/doc/mysql/en/mysql-refresh.html

mysqli::release_savepoint, mysqli_release_savepoint

132

Return Values

TRUE if the refresh was a success, otherwise FALSE

See Also

mysqli_poll

3.9.43 mysqli::release_savepoint, mysqli_release_savepoint

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::release_savepoint

mysqli_release_savepoint

Removes the named savepoint from the set of savepoints of the current transaction

Description

Object oriented style (method):

 public bool mysqli::release_savepoint(
 string name);

Procedural style:

 bool mysqli_release_savepoint(
 mysqli link,
 string name);

Warning

This function is currently not documented; only its argument list is available.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

name

Return Values

Returns TRUE on success or FALSE on failure.

See Also

mysqli_rollback

3.9.44 mysqli::rollback, mysqli_rollback

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::rollback

mysqli_rollback

Rolls back current transaction

mysqli::rollback, mysqli_rollback

133

Description

Object oriented style

 bool mysqli::rollback(
 int flags
 = =0,
 string name);

Procedural style

 bool mysqli_rollback(
 mysqli link,
 int flags
 = =0,
 string name);

Rollbacks the current transaction for the database.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

flags A bitmask of MYSQLI_TRANS_COR_* constants.

name If provided then ROLLBACK/*name*/ is executed.

Return Values

Returns TRUE on success or FALSE on failure.

Changelog

Version Description

5.5.0 Added flags and name parameters.

Examples

Example 3.63 mysqli::rollback example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* disable autocommit */
$mysqli->autocommit(FALSE);

$mysqli->query("CREATE TABLE myCity LIKE City");
$mysqli->query("ALTER TABLE myCity Type=InnoDB");
$mysqli->query("INSERT INTO myCity SELECT * FROM City LIMIT 50");

mysqli::rollback, mysqli_rollback

134

/* commit insert */
$mysqli->commit();

/* delete all rows */
$mysqli->query("DELETE FROM myCity");

if ($result = $mysqli->query("SELECT COUNT(*) FROM myCity")) {
 $row = $result->fetch_row();
 printf("%d rows in table myCity.\n", $row[0]);
 /* Free result */
 $result->close();
}

/* Rollback */
$mysqli->rollback();

if ($result = $mysqli->query("SELECT COUNT(*) FROM myCity")) {
 $row = $result->fetch_row();
 printf("%d rows in table myCity (after rollback).\n", $row[0]);
 /* Free result */
 $result->close();
}

/* Drop table myCity */
$mysqli->query("DROP TABLE myCity");

$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* disable autocommit */
mysqli_autocommit($link, FALSE);

mysqli_query($link, "CREATE TABLE myCity LIKE City");
mysqli_query($link, "ALTER TABLE myCity Type=InnoDB");
mysqli_query($link, "INSERT INTO myCity SELECT * FROM City LIMIT 50");

/* commit insert */
mysqli_commit($link);

/* delete all rows */
mysqli_query($link, "DELETE FROM myCity");

if ($result = mysqli_query($link, "SELECT COUNT(*) FROM myCity")) {
 $row = mysqli_fetch_row($result);
 printf("%d rows in table myCity.\n", $row[0]);
 /* Free result */
 mysqli_free_result($result);
}

/* Rollback */
mysqli_rollback($link);

mysqli::rpl_query_type, mysqli_rpl_query_type

135

if ($result = mysqli_query($link, "SELECT COUNT(*) FROM myCity")) {
 $row = mysqli_fetch_row($result);
 printf("%d rows in table myCity (after rollback).\n", $row[0]);
 /* Free result */
 mysqli_free_result($result);
}

/* Drop table myCity */
mysqli_query($link, "DROP TABLE myCity");

mysqli_close($link);
?>

The above examples will output:

0 rows in table myCity.
50 rows in table myCity (after rollback).

See Also

mysqli_begin_transaction
mysqli_commit
mysqli_autocommit
mysqli_release_savepoint

3.9.45 mysqli::rpl_query_type, mysqli_rpl_query_type

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::rpl_query_type

mysqli_rpl_query_type

Returns RPL query type

Description

Object oriented style

 int mysqli::rpl_query_type(
 string query);

Procedural style

 int mysqli_rpl_query_type(
 mysqli link,
 string query);

Returns MYSQLI_RPL_MASTER, MYSQLI_RPL_SLAVE or MYSQLI_RPL_ADMIN depending on a query
type. INSERT, UPDATE and similar are master queries, SELECT is slave, and FLUSH, REPAIR and similar
are admin.

Warning

This function is currently not documented; only its argument list is available.

mysqli::savepoint, mysqli_savepoint

136

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

3.9.46 mysqli::savepoint, mysqli_savepoint

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::savepoint

mysqli_savepoint

Set a named transaction savepoint

Description

Object oriented style (method):

 public bool mysqli::savepoint(
 string name);

Procedural style:

 bool mysqli_savepoint(
 mysqli link,
 string name);

Warning

This function is currently not documented; only its argument list is available.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

name

Return Values

Returns TRUE on success or FALSE on failure.

See Also

mysqli_commit

3.9.47 mysqli::select_db, mysqli_select_db

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::select_db

mysqli_select_db

Selects the default database for database queries

Description

Object oriented style

mysqli::select_db, mysqli_select_db

137

 bool mysqli::select_db(
 string dbname);

Procedural style

 bool mysqli_select_db(
 mysqli link,
 string dbname);

Selects the default database to be used when performing queries against the database connection.

Note

This function should only be used to change the default database for the
connection. You can select the default database with 4th parameter in
mysqli_connect.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

dbname The database name.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 3.64 mysqli::select_db example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "test");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* return name of current default database */
if ($result = $mysqli->query("SELECT DATABASE()")) {
 $row = $result->fetch_row();
 printf("Default database is %s.\n", $row[0]);
 $result->close();
}

/* change db to world db */
$mysqli->select_db("world");

/* return name of current default database */
if ($result = $mysqli->query("SELECT DATABASE()")) {
 $row = $result->fetch_row();
 printf("Default database is %s.\n", $row[0]);
 $result->close();
}

$mysqli->close();

mysqli::send_query, mysqli_send_query

138

?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "test");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* return name of current default database */
if ($result = mysqli_query($link, "SELECT DATABASE()")) {
 $row = mysqli_fetch_row($result);
 printf("Default database is %s.\n", $row[0]);
 mysqli_free_result($result);
}

/* change db to world db */
mysqli_select_db($link, "world");

/* return name of current default database */
if ($result = mysqli_query($link, "SELECT DATABASE()")) {
 $row = mysqli_fetch_row($result);
 printf("Default database is %s.\n", $row[0]);
 mysqli_free_result($result);
}

mysqli_close($link);
?>

The above examples will output:

Default database is test.
Default database is world.

See Also

mysqli_connect
mysqli_real_connect

3.9.48 mysqli::send_query, mysqli_send_query

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::send_query

mysqli_send_query

Send the query and return

Description

mysqli::set_charset, mysqli_set_charset

139

Object oriented style

 bool mysqli::send_query(
 string query);

Procedural style

 bool mysqli_send_query(
 mysqli link,
 string query);

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

3.9.49 mysqli::set_charset, mysqli_set_charset

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::set_charset

mysqli_set_charset

Sets the default client character set

Description

Object oriented style

 bool mysqli::set_charset(
 string charset);

Procedural style

 bool mysqli_set_charset(
 mysqli link,
 string charset);

Sets the default character set to be used when sending data from and to the database server.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

charset The charset to be set as default.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

To use this function on a Windows platform you need MySQL client library version
4.1.11 or above (for MySQL 5.0 you need 5.0.6 or above).

mysqli::set_charset, mysqli_set_charset

140

Note

This is the preferred way to change the charset. Using mysqli_query to set it
(such as SET NAMES utf8) is not recommended. See the MySQL character set
concepts section for more information.

Examples

Example 3.65 mysqli::set_charset example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "test");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

printf("Initial character set: %s\n", $mysqli->character_set_name());

/* change character set to utf8 */
if (!$mysqli->set_charset("utf8")) {
 printf("Error loading character set utf8: %s\n", $mysqli->error);
 exit();
} else {
 printf("Current character set: %s\n", $mysqli->character_set_name());
}

$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect('localhost', 'my_user', 'my_password', 'test');

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

printf("Initial character set: %s\n", mysqli_character_set_name($link));

/* change character set to utf8 */
if (!mysqli_set_charset($link, "utf8")) {
 printf("Error loading character set utf8: %s\n", mysqli_error($link));
 exit();
} else {
 printf("Current character set: %s\n", mysqli_character_set_name($link));
}

mysqli_close($link);
?>

mysqli::set_local_infile_default, mysqli_set_local_infile_default

141

The above examples will output something similar to:

Initial character set: latin1
Current character set: utf8

See Also

mysqli_character_set_name
mysqli_real_escape_string
MySQL character set concepts
List of character sets that MySQL supports

3.9.50 mysqli::set_local_infile_default,
mysqli_set_local_infile_default

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::set_local_infile_default

mysqli_set_local_infile_default

Unsets user defined handler for load local infile command

Description

 void mysqli_set_local_infile_default(
 mysqli link);

Deactivates a LOAD DATA INFILE LOCAL handler previously set with
mysqli_set_local_infile_handler.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

No value is returned.

Examples

See mysqli_set_local_infile_handler examples

See Also

mysqli_set_local_infile_handler

3.9.51 mysqli::set_local_infile_handler,
mysqli_set_local_infile_handler

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::set_local_infile_handler

http://dev.mysql.com/doc/mysql/en/charset-charsets.html

mysqli::set_local_infile_handler, mysqli_set_local_infile_handler

142

mysqli_set_local_infile_handler

Set callback function for LOAD DATA LOCAL INFILE command

Description

Object oriented style

 bool mysqli::set_local_infile_handler(
 mysqli link,
 callable read_func);

Procedural style

 bool mysqli_set_local_infile_handler(
 mysqli link,
 callable read_func);

Set callback function for LOAD DATA LOCAL INFILE command

The callbacks task is to read input from the file specified in the LOAD DATA LOCAL INFILE and to
reformat it into the format understood by LOAD DATA INFILE.

The returned data needs to match the format specified in the LOAD DATA

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

read_func A callback function or object method taking the following parameters:

stream A PHP stream associated with the
SQL commands INFILE

&buffer A string buffer to store the rewritten
input into

buflen The maximum number of characters
to be stored in the buffer

&errormsg If an error occurs you can store an
error message in here

The callback function should return the number of characters stored in the buffer or a negative value if
an error occurred.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 3.66 mysqli::set_local_infile_handler example

Object oriented style

mysqli::set_local_infile_handler, mysqli_set_local_infile_handler

143

<?php
 $db = mysqli_init();
 $db->real_connect("localhost","root","","test");

 function callme($stream, &$buffer, $buflen, &$errmsg)
 {
 $buffer = fgets($stream);

 echo $buffer;

 // convert to upper case and replace "," delimiter with [TAB]
 $buffer = strtoupper(str_replace(",", "\t", $buffer));

 return strlen($buffer);
 }

 echo "Input:\n";

 $db->set_local_infile_handler("callme");
 $db->query("LOAD DATA LOCAL INFILE 'input.txt' INTO TABLE t1");
 $db->set_local_infile_default();

 $res = $db->query("SELECT * FROM t1");

 echo "\nResult:\n";
 while ($row = $res->fetch_assoc()) {
 echo join(",", $row)."\n";
 }
?>

Procedural style

<?php
 $db = mysqli_init();
 mysqli_real_connect($db, "localhost","root","","test");

 function callme($stream, &$buffer, $buflen, &$errmsg)
 {
 $buffer = fgets($stream);

 echo $buffer;

 // convert to upper case and replace "," delimiter with [TAB]
 $buffer = strtoupper(str_replace(",", "\t", $buffer));

 return strlen($buffer);
 }

 echo "Input:\n";

 mysqli_set_local_infile_handler($db, "callme");
 mysqli_query($db, "LOAD DATA LOCAL INFILE 'input.txt' INTO TABLE t1");
 mysqli_set_local_infile_default($db);

 $res = mysqli_query($db, "SELECT * FROM t1");

 echo "\nResult:\n";
 while ($row = mysqli_fetch_assoc($res)) {
 echo join(",", $row)."\n";

mysqli::$sqlstate, mysqli_sqlstate

144

 }
?>

The above examples will output:

Input:
23,foo
42,bar

Output:
23,FOO
42,BAR

See Also

mysqli_set_local_infile_default

3.9.52 mysqli::$sqlstate, mysqli_sqlstate

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::$sqlstate

mysqli_sqlstate

Returns the SQLSTATE error from previous MySQL operation

Description

Object oriented style

 string
 mysqli->sqlstate ;

Procedural style

 string mysqli_sqlstate(
 mysqli link);

Returns a string containing the SQLSTATE error code for the last error. The error code consists of five
characters. '00000' means no error. The values are specified by ANSI SQL and ODBC. For a list of
possible values, see http://dev.mysql.com/doc/mysql/en/error-handling.html.

Note

Note that not all MySQL errors are yet mapped to SQLSTATE's. The value HY000
(general error) is used for unmapped errors.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

http://dev.mysql.com/doc/mysql/en/error-handling.html

mysqli::$sqlstate, mysqli_sqlstate

145

Returns a string containing the SQLSTATE error code for the last error. The error code consists of five
characters. '00000' means no error.

Examples

Example 3.67 $mysqli->sqlstate example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* Table City already exists, so we should get an error */
if (!$mysqli->query("CREATE TABLE City (ID INT, Name VARCHAR(30))")) {
 printf("Error - SQLSTATE %s.\n", $mysqli->sqlstate);
}

$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* Table City already exists, so we should get an error */
if (!mysqli_query($link, "CREATE TABLE City (ID INT, Name VARCHAR(30))")) {
 printf("Error - SQLSTATE %s.\n", mysqli_sqlstate($link));
}

mysqli_close($link);
?>

The above examples will output:

Error - SQLSTATE 42S01.

See Also

mysqli_errno
mysqli_error

mysqli::ssl_set, mysqli_ssl_set

146

3.9.53 mysqli::ssl_set, mysqli_ssl_set

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::ssl_set

mysqli_ssl_set

Used for establishing secure connections using SSL

Description

Object oriented style

 bool mysqli::ssl_set(
 string key,
 string cert,
 string ca,
 string capath,
 string cipher);

Procedural style

 bool mysqli_ssl_set(
 mysqli link,
 string key,
 string cert,
 string ca,
 string capath,
 string cipher);

Used for establishing secure connections using SSL. It must be called before mysqli_real_connect.
This function does nothing unless OpenSSL support is enabled.

Note that MySQL Native Driver does not support SSL before PHP 5.3.3, so calling this function when
using MySQL Native Driver will result in an error. MySQL Native Driver is enabled by default on Microsoft
Windows from PHP version 5.3 onwards.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

key The path name to the key file.

cert The path name to the certificate file.

ca The path name to the certificate authority file.

capath The pathname to a directory that contains trusted SSL CA certificates in
PEM format.

cipher A list of allowable ciphers to use for SSL encryption.

Any unused SSL parameters may be given as NULL

Return Values

This function always returns TRUE value. If SSL setup is incorrect mysqli_real_connect will return an
error when you attempt to connect.

mysqli::stat, mysqli_stat

147

See Also

mysqli_options
mysqli_real_connect

3.9.54 mysqli::stat, mysqli_stat

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::stat

mysqli_stat

Gets the current system status

Description

Object oriented style

 string mysqli::stat();

Procedural style

 string mysqli_stat(
 mysqli link);

mysqli_stat returns a string containing information similar to that provided by the 'mysqladmin status'
command. This includes uptime in seconds and the number of running threads, questions, reloads, and
open tables.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

A string describing the server status. FALSE if an error occurred.

Examples

Example 3.68 mysqli::stat example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

printf ("System status: %s\n", $mysqli->stat());

$mysqli->close();
?>

mysqli::stmt_init, mysqli_stmt_init

148

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

printf("System status: %s\n", mysqli_stat($link));

mysqli_close($link);
?>

The above examples will output:

System status: Uptime: 272 Threads: 1 Questions: 5340 Slow queries: 0
Opens: 13 Flush tables: 1 Open tables: 0 Queries per second avg: 19.632
Memory in use: 8496K Max memory used: 8560K

See Also

mysqli_get_server_info

3.9.55 mysqli::stmt_init, mysqli_stmt_init

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::stmt_init

mysqli_stmt_init

Initializes a statement and returns an object for use with mysqli_stmt_prepare

Description

Object oriented style

 mysqli_stmt mysqli::stmt_init();

Procedural style

 mysqli_stmt mysqli_stmt_init(
 mysqli link);

Allocates and initializes a statement object suitable for mysqli_stmt_prepare.

Note

Any subsequent calls to any mysqli_stmt function will fail until
mysqli_stmt_prepare was called.

Parameters

mysqli::store_result, mysqli_store_result

149

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

Returns an object.

See Also

mysqli_stmt_prepare

3.9.56 mysqli::store_result, mysqli_store_result

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::store_result

mysqli_store_result

Transfers a result set from the last query

Description

Object oriented style

 mysqli_result mysqli::store_result(
 int option);

Procedural style

 mysqli_result mysqli_store_result(
 mysqli link,
 int option);

Transfers the result set from the last query on the database connection represented by the link
parameter to be used with the mysqli_data_seek function.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

option The option that you want to set. It can be one of the following values:

Table 3.12 Valid options

Name Description

MYSQLI_STORE_RESULT_COPY_DATACopy results from the internal
mysqlnd buffer into the PHP
variables fetched. By default,
mysqlnd will use a reference logic
to avoid copying and duplicating
results held in memory. For certain
result sets, for example, result
sets with many small rows, the
copy approach can reduce the
overall memory usage because
PHP variables holding results may

mysqli::$thread_id, mysqli_thread_id

150

Name Description
be released earlier (available with
mysqlnd only, since PHP 5.6.0)

Return Values

Returns a buffered result object or FALSE if an error occurred.

Note

mysqli_store_result returns FALSE in case the query didn't return a result set
(if the query was, for example an INSERT statement). This function also returns
FALSE if the reading of the result set failed. You can check if you have got an error
by checking if mysqli_error doesn't return an empty string, if mysqli_errno
returns a non zero value, or if mysqli_field_count returns a non zero value.
Also possible reason for this function returning FALSE after successful call to
mysqli_query can be too large result set (memory for it cannot be allocated).
If mysqli_field_count returns a non-zero value, the statement should have
produced a non-empty result set.

Notes

Note

Although it is always good practice to free the memory used by the result of a query
using the mysqli_free_result function, when transferring large result sets
using the mysqli_store_result this becomes particularly important.

Examples

See mysqli_multi_query.

See Also

mysqli_real_query
mysqli_use_result

3.9.57 mysqli::$thread_id, mysqli_thread_id

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::$thread_id

mysqli_thread_id

Returns the thread ID for the current connection

Description

Object oriented style

 int
 mysqli->thread_id ;

Procedural style

 int mysqli_thread_id(
 mysqli link);

mysqli::$thread_id, mysqli_thread_id

151

The mysqli_thread_id function returns the thread ID for the current connection which can then be killed
using the mysqli_kill function. If the connection is lost and you reconnect with mysqli_ping, the
thread ID will be other. Therefore you should get the thread ID only when you need it.

Note

The thread ID is assigned on a connection-by-connection basis. Hence, if the
connection is broken and then re-established a new thread ID will be assigned.

To kill a running query you can use the SQL command KILL QUERY processid.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

Returns the Thread ID for the current connection.

Examples

Example 3.69 $mysqli->thread_id example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* determine our thread id */
$thread_id = $mysqli->thread_id;

/* Kill connection */
$mysqli->kill($thread_id);

/* This should produce an error */
if (!$mysqli->query("CREATE TABLE myCity LIKE City")) {
 printf("Error: %s\n", $mysqli->error);
 exit;
}

/* close connection */
$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

mysqli::thread_safe, mysqli_thread_safe

152

if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* determine our thread id */
$thread_id = mysqli_thread_id($link);

/* Kill connection */
mysqli_kill($link, $thread_id);

/* This should produce an error */
if (!mysqli_query($link, "CREATE TABLE myCity LIKE City")) {
 printf("Error: %s\n", mysqli_error($link));
 exit;
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Error: MySQL server has gone away

See Also

mysqli_kill

3.9.58 mysqli::thread_safe, mysqli_thread_safe

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::thread_safe

mysqli_thread_safe

Returns whether thread safety is given or not

Description

Procedural style

 bool mysqli_thread_safe();

Tells whether the client library is compiled as thread-safe.

Return Values

TRUE if the client library is thread-safe, otherwise FALSE.

3.9.59 mysqli::use_result, mysqli_use_result

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::use_result

mysqli::use_result, mysqli_use_result

153

mysqli_use_result

Initiate a result set retrieval

Description

Object oriented style

 mysqli_result mysqli::use_result();

Procedural style

 mysqli_result mysqli_use_result(
 mysqli link);

Used to initiate the retrieval of a result set from the last query executed using the mysqli_real_query
function on the database connection.

Either this or the mysqli_store_result function must be called before the results of a query can be
retrieved, and one or the other must be called to prevent the next query on that database connection from
failing.

Note

The mysqli_use_result function does not transfer the entire result set from
the database and hence cannot be used functions such as mysqli_data_seek
to move to a particular row within the set. To use this functionality, the result
set must be stored using mysqli_store_result. One should not use
mysqli_use_result if a lot of processing on the client side is performed, since
this will tie up the server and prevent other threads from updating any tables from
which the data is being fetched.

Return Values

Returns an unbuffered result object or FALSE if an error occurred.

Examples

Example 3.70 mysqli::use_result example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT CURRENT_USER();";
$query .= "SELECT Name FROM City ORDER BY ID LIMIT 20, 5";

/* execute multi query */
if ($mysqli->multi_query($query)) {
 do {
 /* store first result set */

mysqli::use_result, mysqli_use_result

154

 if ($result = $mysqli->use_result()) {
 while ($row = $result->fetch_row()) {
 printf("%s\n", $row[0]);
 }
 $result->close();
 }
 /* print divider */
 if ($mysqli->more_results()) {
 printf("-----------------\n");
 }
 } while ($mysqli->next_result());
}

/* close connection */
$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT CURRENT_USER();";
$query .= "SELECT Name FROM City ORDER BY ID LIMIT 20, 5";

/* execute multi query */
if (mysqli_multi_query($link, $query)) {
 do {
 /* store first result set */
 if ($result = mysqli_use_result($link)) {
 while ($row = mysqli_fetch_row($result)) {
 printf("%s\n", $row[0]);
 }
 mysqli_free_result($result);
 }
 /* print divider */
 if (mysqli_more_results($link)) {
 printf("-----------------\n");
 }
 } while (mysqli_next_result($link));
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

my_user@localhost

Amersfoort
Maastricht
Dordrecht

mysqli::$warning_count, mysqli_warning_count

155

Leiden
Haarlemmermeer

See Also

mysqli_real_query
mysqli_store_result

3.9.60 mysqli::$warning_count, mysqli_warning_count

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::$warning_count

mysqli_warning_count

Returns the number of warnings from the last query for the given link

Description

Object oriented style

 int
 mysqli->warning_count ;

Procedural style

 int mysqli_warning_count(
 mysqli link);

Returns the number of warnings from the last query in the connection.

Note

For retrieving warning messages you can use the SQL command SHOW WARNINGS
[limit row_count].

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

Number of warnings or zero if there are no warnings.

Examples

Example 3.71 $mysqli->warning_count example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

mysqli::$warning_count, mysqli_warning_count

156

 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$mysqli->query("CREATE TABLE myCity LIKE City");

/* a remarkable city in Wales */
$query = "INSERT INTO myCity (CountryCode, Name) VALUES('GBR',
 'Llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogoch')";

$mysqli->query($query);

if ($mysqli->warning_count) {
 if ($result = $mysqli->query("SHOW WARNINGS")) {
 $row = $result->fetch_row();
 printf("%s (%d): %s\n", $row[0], $row[1], $row[2]);
 $result->close();
 }
}

/* close connection */
$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

mysqli_query($link, "CREATE TABLE myCity LIKE City");

/* a remarkable long city name in Wales */
$query = "INSERT INTO myCity (CountryCode, Name) VALUES('GBR',
 'Llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogoch')";

mysqli_query($link, $query);

if (mysqli_warning_count($link)) {
 if ($result = mysqli_query($link, "SHOW WARNINGS")) {
 $row = mysqli_fetch_row($result);
 printf("%s (%d): %s\n", $row[0], $row[1], $row[2]);
 mysqli_free_result($result);
 }
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Warning (1264): Data truncated for column 'Name' at row 1

The mysqli_stmt class

157

See Also

mysqli_errno
mysqli_error
mysqli_sqlstate

3.10 The mysqli_stmt class
Copyright 1997-2019 the PHP Documentation Group.

Represents a prepared statement.

mysqli_stmt {
mysqli_stmt

 Properties

 int
 mysqli_stmt->affected_rows ;

 int
 mysqli_stmt->errno ;

 array
 mysqli_stmt->error_list ;

 string
 mysqli_stmt->error ;

 int
 mysqli_stmt->field_count ;

 int
 mysqli_stmt->insert_id ;

 int
 mysqli_stmt->num_rows ;

 int
 mysqli_stmt->param_count ;

 string
 mysqli_stmt->sqlstate ;

Methods

 mysqli_stmt::__construct(
 mysqli link,
 string query);

 int mysqli_stmt::attr_get(
 int attr);

 bool mysqli_stmt::attr_set(
 int attr,
 int mode);

 bool mysqli_stmt::bind_param(
 string types,
 mixed var1,
 mixed ...);

mysqli_stmt::$affected_rows, mysqli_stmt_affected_rows

158

 bool mysqli_stmt::bind_result(
 mixed var1,
 mixed ...);

 bool mysqli_stmt::close();

 void mysqli_stmt::data_seek(
 int offset);

 bool mysqli_stmt::execute();

 bool mysqli_stmt::fetch();

 void mysqli_stmt::free_result();

 mysqli_result mysqli_stmt::get_result();

 object mysqli_stmt::get_warnings(
 mysqli_stmt stmt);

 int mysqli_stmt::num_rows();

 mixed mysqli_stmt::prepare(
 string query);

 bool mysqli_stmt::reset();

 mysqli_result mysqli_stmt::result_metadata();

 bool mysqli_stmt::send_long_data(
 int param_nr,
 string data);

 bool mysqli_stmt::store_result();

}

3.10.1 mysqli_stmt::$affected_rows, mysqli_stmt_affected_rows

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_stmt::$affected_rows

mysqli_stmt_affected_rows

Returns the total number of rows changed, deleted, or inserted by the last executed statement

Description

Object oriented style

 int
 mysqli_stmt->affected_rows ;

Procedural style

 int mysqli_stmt_affected_rows(
 mysqli_stmt stmt);

Returns the number of rows affected by INSERT, UPDATE, or DELETE query.

This function only works with queries which update a table. In order to get the number of rows from a
SELECT query, use mysqli_stmt_num_rows instead.

mysqli_stmt::$affected_rows, mysqli_stmt_affected_rows

159

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

An integer greater than zero indicates the number of rows affected or retrieved. Zero indicates that no
records where updated for an UPDATE/DELETE statement, no rows matched the WHERE clause in the
query or that no query has yet been executed. -1 indicates that the query has returned an error. NULL
indicates an invalid argument was supplied to the function.

Note

If the number of affected rows is greater than maximal PHP int value, the number of
affected rows will be returned as a string value.

Examples

Example 3.72 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* create temp table */
$mysqli->query("CREATE TEMPORARY TABLE myCountry LIKE Country");

$query = "INSERT INTO myCountry SELECT * FROM Country WHERE Code LIKE ?";

/* prepare statement */
if ($stmt = $mysqli->prepare($query)) {

 /* Bind variable for placeholder */
 $code = 'A%';
 $stmt->bind_param("s", $code);

 /* execute statement */
 $stmt->execute();

 printf("rows inserted: %d\n", $stmt->affected_rows);

 /* close statement */
 $stmt->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.73 Procedural style

<?php

mysqli_stmt::attr_get, mysqli_stmt_attr_get

160

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* create temp table */
mysqli_query($link, "CREATE TEMPORARY TABLE myCountry LIKE Country");

$query = "INSERT INTO myCountry SELECT * FROM Country WHERE Code LIKE ?";

/* prepare statement */
if ($stmt = mysqli_prepare($link, $query)) {

 /* Bind variable for placeholder */
 $code = 'A%';
 mysqli_stmt_bind_param($stmt, "s", $code);

 /* execute statement */
 mysqli_stmt_execute($stmt);

 printf("rows inserted: %d\n", mysqli_stmt_affected_rows($stmt));

 /* close statement */
 mysqli_stmt_close($stmt);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

rows inserted: 17

See Also

mysqli_stmt_num_rows
mysqli_prepare

3.10.2 mysqli_stmt::attr_get, mysqli_stmt_attr_get

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_stmt::attr_get

mysqli_stmt_attr_get

Used to get the current value of a statement attribute

Description

Object oriented style

 int mysqli_stmt::attr_get(
 int attr);

mysqli_stmt::attr_set, mysqli_stmt_attr_set

161

Procedural style

 int mysqli_stmt_attr_get(
 mysqli_stmt stmt,
 int attr);

Gets the current value of a statement attribute.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

attr The attribute that you want to get.

Return Values

Returns FALSE if the attribute is not found, otherwise returns the value of the attribute.

3.10.3 mysqli_stmt::attr_set, mysqli_stmt_attr_set

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_stmt::attr_set

mysqli_stmt_attr_set

Used to modify the behavior of a prepared statement

Description

Object oriented style

 bool mysqli_stmt::attr_set(
 int attr,
 int mode);

Procedural style

 bool mysqli_stmt_attr_set(
 mysqli_stmt stmt,
 int attr,
 int mode);

Used to modify the behavior of a prepared statement. This function may be called multiple times to set
several attributes.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

attr The attribute that you want to set. It can have one of the following
values:

Table 3.13 Attribute values

Character Description

MYSQLI_STMT_ATTR_UPDATE_MAX_LENGTHSetting to TRUE causes
mysqli_stmt_store_result

mysqli_stmt::bind_param, mysqli_stmt_bind_param

162

Character Description
to update the metadata
MYSQL_FIELD->max_length
value.

MYSQLI_STMT_ATTR_CURSOR_TYPEType of cursor to open
for statement when
mysqli_stmt_execute
is invoked. mode can be
MYSQLI_CURSOR_TYPE_NO_CURSOR
(the default) or
MYSQLI_CURSOR_TYPE_READ_ONLY.

MYSQLI_STMT_ATTR_PREFETCH_ROWSNumber of rows to fetch from
server at a time when using a
cursor. mode can be in the range
from 1 to the maximum value of
unsigned long. The default is 1.

If you use the MYSQLI_STMT_ATTR_CURSOR_TYPE option with
MYSQLI_CURSOR_TYPE_READ_ONLY, a cursor is opened for the
statement when you invoke mysqli_stmt_execute. If there is
already an open cursor from a previous mysqli_stmt_execute call,
it closes the cursor before opening a new one. mysqli_stmt_reset
also closes any open cursor before preparing the statement for re-
execution. mysqli_stmt_free_result closes any open cursor.

If you open a cursor for a prepared statement,
mysqli_stmt_store_result is unnecessary.

mode The value to assign to the attribute.

See Also

Connector/MySQL mysql_stmt_attr_set()

3.10.4 mysqli_stmt::bind_param, mysqli_stmt_bind_param

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_stmt::bind_param

mysqli_stmt_bind_param

Binds variables to a prepared statement as parameters

Description

Object oriented style

 bool mysqli_stmt::bind_param(
 string types,
 mixed var1,
 mixed ...);

Procedural style

 bool mysqli_stmt_bind_param(

http://dev.mysql.com/doc/en/mysql-stmt-attr-set.html

mysqli_stmt::bind_param, mysqli_stmt_bind_param

163

 mysqli_stmt stmt,
 string types,
 mixed var1,
 mixed ...);

Bind variables for the parameter markers in the SQL statement that was passed to mysqli_prepare.

Note

If data size of a variable exceeds max. allowed packet size (max_allowed_packet),
you have to specify b in types and use mysqli_stmt_send_long_data to send
the data in packets.

Note

Care must be taken when using mysqli_stmt_bind_param in conjunction with
call_user_func_array. Note that mysqli_stmt_bind_param requires
parameters to be passed by reference, whereas call_user_func_array can
accept as a parameter a list of variables that can represent references or values.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

types A string that contains one or more characters which specify the types for
the corresponding bind variables:

Table 3.14 Type specification chars

Character Description

i corresponding variable has type
integer

d corresponding variable has type
double

s corresponding variable has type
string

b corresponding variable is a blob
and will be sent in packets

var1 The number of variables and length of string types must match the
parameters in the statement.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 3.74 Object oriented style

<?php
$mysqli = new mysqli('localhost', 'my_user', 'my_password', 'world');

/* check connection */
if (mysqli_connect_errno()) {

http://www.php.net/call_user_func_array
http://www.php.net/call_user_func_array

mysqli_stmt::bind_param, mysqli_stmt_bind_param

164

 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$stmt = $mysqli->prepare("INSERT INTO CountryLanguage VALUES (?, ?, ?, ?)");
$stmt->bind_param('sssd', $code, $language, $official, $percent);

$code = 'DEU';
$language = 'Bavarian';
$official = "F";
$percent = 11.2;

/* execute prepared statement */
$stmt->execute();

printf("%d Row inserted.\n", $stmt->affected_rows);

/* close statement and connection */
$stmt->close();

/* Clean up table CountryLanguage */
$mysqli->query("DELETE FROM CountryLanguage WHERE Language='Bavarian'");
printf("%d Row deleted.\n", $mysqli->affected_rows);

/* close connection */
$mysqli->close();
?>

Example 3.75 Procedural style

<?php
$link = mysqli_connect('localhost', 'my_user', 'my_password', 'world');

/* check connection */
if (!$link) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$stmt = mysqli_prepare($link, "INSERT INTO CountryLanguage VALUES (?, ?, ?, ?)");
mysqli_stmt_bind_param($stmt, 'sssd', $code, $language, $official, $percent);

$code = 'DEU';
$language = 'Bavarian';
$official = "F";
$percent = 11.2;

/* execute prepared statement */
mysqli_stmt_execute($stmt);

printf("%d Row inserted.\n", mysqli_stmt_affected_rows($stmt));

/* close statement and connection */
mysqli_stmt_close($stmt);

/* Clean up table CountryLanguage */
mysqli_query($link, "DELETE FROM CountryLanguage WHERE Language='Bavarian'");
printf("%d Row deleted.\n", mysqli_affected_rows($link));

/* close connection */
mysqli_close($link);
?>

mysqli_stmt::bind_result, mysqli_stmt_bind_result

165

The above examples will output:

1 Row inserted.
1 Row deleted.

See Also

mysqli_stmt_bind_result
mysqli_stmt_execute
mysqli_stmt_fetch
mysqli_prepare
mysqli_stmt_send_long_data
mysqli_stmt_errno
mysqli_stmt_error

3.10.5 mysqli_stmt::bind_result, mysqli_stmt_bind_result

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_stmt::bind_result

mysqli_stmt_bind_result

Binds variables to a prepared statement for result storage

Description

Object oriented style

 bool mysqli_stmt::bind_result(
 mixed var1,
 mixed ...);

Procedural style

 bool mysqli_stmt_bind_result(
 mysqli_stmt stmt,
 mixed var1,
 mixed ...);

Binds columns in the result set to variables.

When mysqli_stmt_fetch is called to fetch data, the MySQL client/server protocol places the data for
the bound columns into the specified variables var1,

Note

Note that all columns must be bound after mysqli_stmt_execute and prior to
calling mysqli_stmt_fetch. Depending on column types bound variables can
silently change to the corresponding PHP type.

A column can be bound or rebound at any time, even after a result set
has been partially retrieved. The new binding takes effect the next time
mysqli_stmt_fetch is called.

mysqli_stmt::bind_result, mysqli_stmt_bind_result

166

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

var1 The variable to be bound.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 3.76 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* prepare statement */
if ($stmt = $mysqli->prepare("SELECT Code, Name FROM Country ORDER BY Name LIMIT 5")) {
 $stmt->execute();

 /* bind variables to prepared statement */
 $stmt->bind_result($col1, $col2);

 /* fetch values */
 while ($stmt->fetch()) {
 printf("%s %s\n", $col1, $col2);
 }

 /* close statement */
 $stmt->close();
}
/* close connection */
$mysqli->close();

?>

Example 3.77 Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (!$link) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* prepare statement */
if ($stmt = mysqli_prepare($link, "SELECT Code, Name FROM Country ORDER BY Name LIMIT 5")) {
 mysqli_stmt_execute($stmt);

 /* bind variables to prepared statement */

mysqli_stmt::close, mysqli_stmt_close

167

 mysqli_stmt_bind_result($stmt, $col1, $col2);

 /* fetch values */
 while (mysqli_stmt_fetch($stmt)) {
 printf("%s %s\n", $col1, $col2);
 }

 /* close statement */
 mysqli_stmt_close($stmt);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

AFG Afghanistan
ALB Albania
DZA Algeria
ASM American Samoa
AND Andorra

See Also

mysqli_stmt_get_result
mysqli_stmt_bind_param
mysqli_stmt_execute
mysqli_stmt_fetch
mysqli_prepare
mysqli_stmt_prepare
mysqli_stmt_init
mysqli_stmt_errno
mysqli_stmt_error

3.10.6 mysqli_stmt::close, mysqli_stmt_close

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_stmt::close

mysqli_stmt_close

Closes a prepared statement

Description

Object oriented style

 bool mysqli_stmt::close();

Procedural style

 bool mysqli_stmt_close(
 mysqli_stmt stmt);

mysqli_stmt::__construct

168

Closes a prepared statement. mysqli_stmt_close also deallocates the statement handle. If the
current statement has pending or unread results, this function cancels them so that the next query can be
executed.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

mysqli_prepare

3.10.7 mysqli_stmt::__construct

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_stmt::__construct

Constructs a new mysqli_stmt object

Description

 mysqli_stmt::__construct(
 mysqli link,
 string query);

This method constructs a new mysqli_stmt object.

Note

In general, you should use either mysqli_prepare or mysqli_stmt_init to
create a mysqli_stmt object, rather than directly instantiating the object with new
mysqli_stmt. This method (and the ability to directly instantiate mysqli_stmt
objects) may be deprecated and removed in the future.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

query The query, as a string. If this parameter is omitted, then the constructor
behaves identically to mysqli_stmt_init, if provided, then it behaves
as per mysqli_prepare.

See Also

mysqli_prepare
mysqli_stmt_init

3.10.8 mysqli_stmt::data_seek, mysqli_stmt_data_seek

Copyright 1997-2019 the PHP Documentation Group.

mysqli_stmt::data_seek, mysqli_stmt_data_seek

169

• mysqli_stmt::data_seek

mysqli_stmt_data_seek

Seeks to an arbitrary row in statement result set

Description

Object oriented style

 void mysqli_stmt::data_seek(
 int offset);

Procedural style

 void mysqli_stmt_data_seek(
 mysqli_stmt stmt,
 int offset);

Seeks to an arbitrary result pointer in the statement result set.

mysqli_stmt_store_result must be called prior to mysqli_stmt_data_seek.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

offset Must be between zero and the total number of rows minus one (0..
mysqli_stmt_num_rows - 1).

Return Values

No value is returned.

Examples

Example 3.78 Object oriented style

<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER BY Name";
if ($stmt = $mysqli->prepare($query)) {

 /* execute query */
 $stmt->execute();

 /* bind result variables */
 $stmt->bind_result($name, $code);

 /* store result */
 $stmt->store_result();

mysqli_stmt::data_seek, mysqli_stmt_data_seek

170

 /* seek to row no. 400 */
 $stmt->data_seek(399);

 /* fetch values */
 $stmt->fetch();

 printf ("City: %s Countrycode: %s\n", $name, $code);

 /* close statement */
 $stmt->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.79 Procedural style

<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER BY Name";
if ($stmt = mysqli_prepare($link, $query)) {

 /* execute query */
 mysqli_stmt_execute($stmt);

 /* bind result variables */
 mysqli_stmt_bind_result($stmt, $name, $code);

 /* store result */
 mysqli_stmt_store_result($stmt);

 /* seek to row no. 400 */
 mysqli_stmt_data_seek($stmt, 399);

 /* fetch values */
 mysqli_stmt_fetch($stmt);

 printf ("City: %s Countrycode: %s\n", $name, $code);

 /* close statement */
 mysqli_stmt_close($stmt);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

mysqli_stmt::$errno, mysqli_stmt_errno

171

City: Benin City Countrycode: NGA

See Also

mysqli_prepare

3.10.9 mysqli_stmt::$errno, mysqli_stmt_errno

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_stmt::$errno

mysqli_stmt_errno

Returns the error code for the most recent statement call

Description

Object oriented style

 int
 mysqli_stmt->errno ;

Procedural style

 int mysqli_stmt_errno(
 mysqli_stmt stmt);

Returns the error code for the most recently invoked statement function that can succeed or fail.

Client error message numbers are listed in the MySQL errmsg.h header file, server error message
numbers are listed in mysqld_error.h. In the MySQL source distribution you can find a complete list of
error messages and error numbers in the file Docs/mysqld_error.txt.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

An error code value. Zero means no error occurred.

Examples

Example 3.80 Object oriented style

<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

mysqli_stmt::$errno, mysqli_stmt_errno

172

$mysqli->query("CREATE TABLE myCountry LIKE Country");
$mysqli->query("INSERT INTO myCountry SELECT * FROM Country");

$query = "SELECT Name, Code FROM myCountry ORDER BY Name";
if ($stmt = $mysqli->prepare($query)) {

 /* drop table */
 $mysqli->query("DROP TABLE myCountry");

 /* execute query */
 $stmt->execute();

 printf("Error: %d.\n", $stmt->errno);

 /* close statement */
 $stmt->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.81 Procedural style

<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

mysqli_query($link, "CREATE TABLE myCountry LIKE Country");
mysqli_query($link, "INSERT INTO myCountry SELECT * FROM Country");

$query = "SELECT Name, Code FROM myCountry ORDER BY Name";
if ($stmt = mysqli_prepare($link, $query)) {

 /* drop table */
 mysqli_query($link, "DROP TABLE myCountry");

 /* execute query */
 mysqli_stmt_execute($stmt);

 printf("Error: %d.\n", mysqli_stmt_errno($stmt));

 /* close statement */
 mysqli_stmt_close($stmt);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

mysqli_stmt::$error_list, mysqli_stmt_error_list

173

Error: 1146.

See Also

mysqli_stmt_error
mysqli_stmt_sqlstate

3.10.10 mysqli_stmt::$error_list, mysqli_stmt_error_list

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_stmt::$error_list

mysqli_stmt_error_list

Returns a list of errors from the last statement executed

Description

Object oriented style

 array
 mysqli_stmt->error_list ;

Procedural style

 array mysqli_stmt_error_list(
 mysqli_stmt stmt);

Returns an array of errors for the most recently invoked statement function that can succeed or fail.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

A list of errors, each as an associative array containing the errno, error, and sqlstate.

Examples

Example 3.82 Object oriented style

<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$mysqli->query("CREATE TABLE myCountry LIKE Country");
$mysqli->query("INSERT INTO myCountry SELECT * FROM Country");

mysqli_stmt::$error_list, mysqli_stmt_error_list

174

$query = "SELECT Name, Code FROM myCountry ORDER BY Name";
if ($stmt = $mysqli->prepare($query)) {

 /* drop table */
 $mysqli->query("DROP TABLE myCountry");

 /* execute query */
 $stmt->execute();

 echo "Error:\n";
 print_r($stmt->error_list);

 /* close statement */
 $stmt->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.83 Procedural style

<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

mysqli_query($link, "CREATE TABLE myCountry LIKE Country");
mysqli_query($link, "INSERT INTO myCountry SELECT * FROM Country");

$query = "SELECT Name, Code FROM myCountry ORDER BY Name";
if ($stmt = mysqli_prepare($link, $query)) {

 /* drop table */
 mysqli_query($link, "DROP TABLE myCountry");

 /* execute query */
 mysqli_stmt_execute($stmt);

 echo "Error:\n";
 print_r(mysql_stmt_error_list($stmt));

 /* close statement */
 mysqli_stmt_close($stmt);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

mysqli_stmt::$error, mysqli_stmt_error

175

Array
(
 [0] => Array
 (
 [errno] => 1146
 [sqlstate] => 42S02
 [error] => Table 'world.myCountry' doesn't exist
)

)

See Also

mysqli_stmt_error
mysqli_stmt_errno
mysqli_stmt_sqlstate

3.10.11 mysqli_stmt::$error, mysqli_stmt_error

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_stmt::$error

mysqli_stmt_error

Returns a string description for last statement error

Description

Object oriented style

 string
 mysqli_stmt->error ;

Procedural style

 string mysqli_stmt_error(
 mysqli_stmt stmt);

Returns a string containing the error message for the most recently invoked statement function that can
succeed or fail.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

A string that describes the error. An empty string if no error occurred.

Examples

Example 3.84 Object oriented style

mysqli_stmt::$error, mysqli_stmt_error

176

<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$mysqli->query("CREATE TABLE myCountry LIKE Country");
$mysqli->query("INSERT INTO myCountry SELECT * FROM Country");

$query = "SELECT Name, Code FROM myCountry ORDER BY Name";
if ($stmt = $mysqli->prepare($query)) {

 /* drop table */
 $mysqli->query("DROP TABLE myCountry");

 /* execute query */
 $stmt->execute();

 printf("Error: %s.\n", $stmt->error);

 /* close statement */
 $stmt->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.85 Procedural style

<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

mysqli_query($link, "CREATE TABLE myCountry LIKE Country");
mysqli_query($link, "INSERT INTO myCountry SELECT * FROM Country");

$query = "SELECT Name, Code FROM myCountry ORDER BY Name";
if ($stmt = mysqli_prepare($link, $query)) {

 /* drop table */
 mysqli_query($link, "DROP TABLE myCountry");

 /* execute query */
 mysqli_stmt_execute($stmt);

 printf("Error: %s.\n", mysqli_stmt_error($stmt));

 /* close statement */
 mysqli_stmt_close($stmt);
}

mysqli_stmt::execute, mysqli_stmt_execute

177

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Error: Table 'world.myCountry' doesn't exist.

See Also

mysqli_stmt_errno
mysqli_stmt_sqlstate

3.10.12 mysqli_stmt::execute, mysqli_stmt_execute

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_stmt::execute

mysqli_stmt_execute

Executes a prepared Query

Description

Object oriented style

 bool mysqli_stmt::execute();

Procedural style

 bool mysqli_stmt_execute(
 mysqli_stmt stmt);

Executes a query that has been previously prepared using the mysqli_prepare function. When
executed any parameter markers which exist will automatically be replaced with the appropriate data.

If the statement is UPDATE, DELETE, or INSERT, the total number of affected rows can be determined
by using the mysqli_stmt_affected_rows function. Likewise, if the query yields a result set the
mysqli_stmt_fetch function is used.

Note

When using mysqli_stmt_execute, the mysqli_stmt_fetch function must be
used to fetch the data prior to performing any additional queries.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

mysqli_stmt::execute, mysqli_stmt_execute

178

Returns TRUE on success or FALSE on failure.

Examples

Example 3.86 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$mysqli->query("CREATE TABLE myCity LIKE City");

/* Prepare an insert statement */
$query = "INSERT INTO myCity (Name, CountryCode, District) VALUES (?,?,?)";
$stmt = $mysqli->prepare($query);

$stmt->bind_param("sss", $val1, $val2, $val3);

$val1 = 'Stuttgart';
$val2 = 'DEU';
$val3 = 'Baden-Wuerttemberg';

/* Execute the statement */
$stmt->execute();

$val1 = 'Bordeaux';
$val2 = 'FRA';
$val3 = 'Aquitaine';

/* Execute the statement */
$stmt->execute();

/* close statement */
$stmt->close();

/* retrieve all rows from myCity */
$query = "SELECT Name, CountryCode, District FROM myCity";
if ($result = $mysqli->query($query)) {
 while ($row = $result->fetch_row()) {
 printf("%s (%s,%s)\n", $row[0], $row[1], $row[2]);
 }
 /* free result set */
 $result->close();
}

/* remove table */
$mysqli->query("DROP TABLE myCity");

/* close connection */
$mysqli->close();
?>

Example 3.87 Procedural style

<?php

mysqli_stmt::execute, mysqli_stmt_execute

179

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

mysqli_query($link, "CREATE TABLE myCity LIKE City");

/* Prepare an insert statement */
$query = "INSERT INTO myCity (Name, CountryCode, District) VALUES (?,?,?)";
$stmt = mysqli_prepare($link, $query);

mysqli_stmt_bind_param($stmt, "sss", $val1, $val2, $val3);

$val1 = 'Stuttgart';
$val2 = 'DEU';
$val3 = 'Baden-Wuerttemberg';

/* Execute the statement */
mysqli_stmt_execute($stmt);

$val1 = 'Bordeaux';
$val2 = 'FRA';
$val3 = 'Aquitaine';

/* Execute the statement */
mysqli_stmt_execute($stmt);

/* close statement */
mysqli_stmt_close($stmt);

/* retrieve all rows from myCity */
$query = "SELECT Name, CountryCode, District FROM myCity";
if ($result = mysqli_query($link, $query)) {
 while ($row = mysqli_fetch_row($result)) {
 printf("%s (%s,%s)\n", $row[0], $row[1], $row[2]);
 }
 /* free result set */
 mysqli_free_result($result);
}

/* remove table */
mysqli_query($link, "DROP TABLE myCity");

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Stuttgart (DEU,Baden-Wuerttemberg)
Bordeaux (FRA,Aquitaine)

See Also

mysqli_prepare
mysqli_stmt_bind_param
mysqli_stmt_get_result

mysqli_stmt::fetch, mysqli_stmt_fetch

180

3.10.13 mysqli_stmt::fetch, mysqli_stmt_fetch

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_stmt::fetch

mysqli_stmt_fetch

Fetch results from a prepared statement into the bound variables

Description

Object oriented style

 bool mysqli_stmt::fetch();

Procedural style

 bool mysqli_stmt_fetch(
 mysqli_stmt stmt);

Fetch the result from a prepared statement into the variables bound by mysqli_stmt_bind_result.

Note

Note that all columns must be bound by the application before calling
mysqli_stmt_fetch.

Note

Data are transferred unbuffered without calling mysqli_stmt_store_result
which can decrease performance (but reduces memory cost).

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

Table 3.15 Return Values

Value Description

TRUE Success. Data has been fetched

FALSE Error occurred

NULL No more rows/data exists or data truncation
occurred

Examples

Example 3.88 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

mysqli_stmt::fetch, mysqli_stmt_fetch

181

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 150,5";

if ($stmt = $mysqli->prepare($query)) {

 /* execute statement */
 $stmt->execute();

 /* bind result variables */
 $stmt->bind_result($name, $code);

 /* fetch values */
 while ($stmt->fetch()) {
 printf ("%s (%s)\n", $name, $code);
 }

 /* close statement */
 $stmt->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.89 Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 150,5";

if ($stmt = mysqli_prepare($link, $query)) {

 /* execute statement */
 mysqli_stmt_execute($stmt);

 /* bind result variables */
 mysqli_stmt_bind_result($stmt, $name, $code);

 /* fetch values */
 while (mysqli_stmt_fetch($stmt)) {
 printf ("%s (%s)\n", $name, $code);
 }

 /* close statement */
 mysqli_stmt_close($stmt);
}

/* close connection */
mysqli_close($link);
?>

mysqli_stmt::$field_count, mysqli_stmt_field_count

182

The above examples will output:

Rockford (USA)
Tallahassee (USA)
Salinas (USA)
Santa Clarita (USA)
Springfield (USA)

See Also

mysqli_prepare
mysqli_stmt_errno
mysqli_stmt_error
mysqli_stmt_bind_result

3.10.14 mysqli_stmt::$field_count, mysqli_stmt_field_count

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_stmt::$field_count

mysqli_stmt_field_count

Returns the number of field in the given statement

Description

Object oriented style

 int
 mysqli_stmt->field_count ;

Procedural style

 int mysqli_stmt_field_count(
 mysqli_stmt stmt);

Warning

This function is currently not documented; only its argument list is available.

3.10.15 mysqli_stmt::free_result, mysqli_stmt_free_result

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_stmt::free_result

mysqli_stmt_free_result

Frees stored result memory for the given statement handle

Description

Object oriented style

mysqli_stmt::get_result, mysqli_stmt_get_result

183

 void mysqli_stmt::free_result();

Procedural style

 void mysqli_stmt_free_result(
 mysqli_stmt stmt);

Frees the result memory associated with the statement, which was allocated by
mysqli_stmt_store_result.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

No value is returned.

See Also

mysqli_stmt_store_result

3.10.16 mysqli_stmt::get_result, mysqli_stmt_get_result

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_stmt::get_result

mysqli_stmt_get_result

Gets a result set from a prepared statement

Description

Object oriented style

 mysqli_result mysqli_stmt::get_result();

Procedural style

 mysqli_result mysqli_stmt_get_result(
 mysqli_stmt stmt);

Call to return a result set from a prepared statement query.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

Returns a resultset for successful SELECT queries, or FALSE for other DML queries or on failure. The
mysqli_errno function can be used to distinguish between the two types of failure.

MySQL Native Driver Only

Available only with mysqlnd.

mysqli_stmt::get_result, mysqli_stmt_get_result

184

Examples

Example 3.90 Object oriented style

<?php

$mysqli = new mysqli("127.0.0.1", "user", "password", "world");

if($mysqli->connect_error)
{
 die("$mysqli->connect_errno: $mysqli->connect_error");
}

$query = "SELECT Name, Population, Continent FROM Country WHERE Continent=? ORDER BY Name LIMIT 1";

$stmt = $mysqli->stmt_init();
if(!$stmt->prepare($query))
{
 print "Failed to prepare statement\n";
}
else
{
 $stmt->bind_param("s", $continent);

 $continent_array = array('Europe','Africa','Asia','North America');

 foreach($continent_array as $continent)
 {
 $stmt->execute();
 $result = $stmt->get_result();
 while ($row = $result->fetch_array(MYSQLI_NUM))
 {
 foreach ($row as $r)
 {
 print "$r ";
 }
 print "\n";
 }
 }
}

$stmt->close();
$mysqli->close();
?>

Example 3.91 Procedural style

<?php

$link = mysqli_connect("127.0.0.1", "user", "password", "world");

if (!$link)
{
 $error = mysqli_connect_error();
 $errno = mysqli_connect_errno();
 print "$errno: $error\n";
 exit();
}

$query = "SELECT Name, Population, Continent FROM Country WHERE Continent=? ORDER BY Name LIMIT 1";

mysqli_stmt::get_warnings, mysqli_stmt_get_warnings

185

$stmt = mysqli_stmt_init($link);
if(!mysqli_stmt_prepare($stmt, $query))
{
 print "Failed to prepare statement\n";
}
else
{
 mysqli_stmt_bind_param($stmt, "s", $continent);

 $continent_array = array('Europe','Africa','Asia','North America');

 foreach($continent_array as $continent)
 {
 mysqli_stmt_execute($stmt);
 $result = mysqli_stmt_get_result($stmt);
 while ($row = mysqli_fetch_array($result, MYSQLI_NUM))
 {
 foreach ($row as $r)
 {
 print "$r ";
 }
 print "\n";
 }
 }
}
mysqli_stmt_close($stmt);
mysqli_close($link);
?>

The above examples will output:

Albania 3401200 Europe
Algeria 31471000 Africa
Afghanistan 22720000 Asia
Anguilla 8000 North America

See Also

mysqli_prepare
mysqli_stmt_result_metadata
mysqli_stmt_fetch
mysqli_fetch_array
mysqli_stmt_store_result
mysqli_errno

3.10.17 mysqli_stmt::get_warnings, mysqli_stmt_get_warnings

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_stmt::get_warnings

mysqli_stmt_get_warnings

Get result of SHOW WARNINGS

Description

mysqli_stmt::$insert_id, mysqli_stmt_insert_id

186

Object oriented style

 object mysqli_stmt::get_warnings(
 mysqli_stmt stmt);

Procedural style

 object mysqli_stmt_get_warnings(
 mysqli_stmt stmt);

Warning

This function is currently not documented; only its argument list is available.

3.10.18 mysqli_stmt::$insert_id, mysqli_stmt_insert_id

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_stmt::$insert_id

mysqli_stmt_insert_id

Get the ID generated from the previous INSERT operation

Description

Object oriented style

 int
 mysqli_stmt->insert_id ;

Procedural style

 mixed mysqli_stmt_insert_id(
 mysqli_stmt stmt);

Warning

This function is currently not documented; only its argument list is available.

3.10.19 mysqli_stmt::more_results, mysqli_stmt_more_results

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_stmt::more_results

mysqli_stmt_more_results

Check if there are more query results from a multiple query

Description

Object oriented style (method):

 public bool mysqli_stmt::more_results();

Procedural style:

 bool mysqli_stmt_more_results(
 mysql_stmt stmt);

mysqli_stmt::next_result, mysqli_stmt_next_result

187

Checks if there are more query results from a multiple query.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

Returns TRUE if more results exist, otherwise FALSE.

MySQL Native Driver Only

Available only with mysqlnd.

See Also

mysqli_stmt::next_result
mysqli::multi_query

3.10.20 mysqli_stmt::next_result, mysqli_stmt_next_result

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_stmt::next_result

mysqli_stmt_next_result

Reads the next result from a multiple query

Description

Object oriented style (method):

 public bool mysqli_stmt::next_result();

Procedural style:

 bool mysqli_stmt_next_result(
 mysql_stmt stmt);

Reads the next result from a multiple query.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

Returns TRUE on success or FALSE on failure.

Errors/Exceptions

Emits an E_STRICT level error if a result set does not exist, and suggests using
mysqli_stmt::more_results in these cases, before calling mysqli_stmt::next_result.

MySQL Native Driver Only

mysqli_stmt::$num_rows, mysqli_stmt::num_rows, mysqli_stmt_num_rows

188

Available only with mysqlnd.

See Also

mysqli_stmt::more_results
mysqli::multi_query

3.10.21 mysqli_stmt::$num_rows, mysqli_stmt::num_rows,
mysqli_stmt_num_rows

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_stmt::$num_rows

mysqli_stmt::num_rows

mysqli_stmt_num_rows

Return the number of rows in statements result set

Description

Object oriented style

 int
 mysqli_stmt->num_rows ;

 int mysqli_stmt::num_rows();

Procedural style

 int mysqli_stmt_num_rows(
 mysqli_stmt stmt);

Returns the number of rows in the result set. The use of mysqli_stmt_num_rows depends on whether
or not you used mysqli_stmt_store_result to buffer the entire result set in the statement handle.

If you use mysqli_stmt_store_result, mysqli_stmt_num_rows may be called immediately.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

An integer representing the number of rows in result set.

Examples

Example 3.92 Object oriented style

<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

mysqli_stmt::$num_rows, mysqli_stmt::num_rows, mysqli_stmt_num_rows

189

if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER BY Name LIMIT 20";
if ($stmt = $mysqli->prepare($query)) {

 /* execute query */
 $stmt->execute();

 /* store result */
 $stmt->store_result();

 printf("Number of rows: %d.\n", $stmt->num_rows);

 /* close statement */
 $stmt->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.93 Procedural style

<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER BY Name LIMIT 20";
if ($stmt = mysqli_prepare($link, $query)) {

 /* execute query */
 mysqli_stmt_execute($stmt);

 /* store result */
 mysqli_stmt_store_result($stmt);

 printf("Number of rows: %d.\n", mysqli_stmt_num_rows($stmt));

 /* close statement */
 mysqli_stmt_close($stmt);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Number of rows: 20.

mysqli_stmt::$param_count, mysqli_stmt_param_count

190

See Also

mysqli_stmt_affected_rows
mysqli_prepare
mysqli_stmt_store_result

3.10.22 mysqli_stmt::$param_count, mysqli_stmt_param_count

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_stmt::$param_count

mysqli_stmt_param_count

Returns the number of parameter for the given statement

Description

Object oriented style

 int
 mysqli_stmt->param_count ;

Procedural style

 int mysqli_stmt_param_count(
 mysqli_stmt stmt);

Returns the number of parameter markers present in the prepared statement.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

Returns an integer representing the number of parameters.

Examples

Example 3.94 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

if ($stmt = $mysqli->prepare("SELECT Name FROM Country WHERE Name=? OR Code=?")) {

 $marker = $stmt->param_count;
 printf("Statement has %d markers.\n", $marker);

 /* close statement */

mysqli_stmt::prepare, mysqli_stmt_prepare

191

 $stmt->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.95 Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

if ($stmt = mysqli_prepare($link, "SELECT Name FROM Country WHERE Name=? OR Code=?")) {

 $marker = mysqli_stmt_param_count($stmt);
 printf("Statement has %d markers.\n", $marker);

 /* close statement */
 mysqli_stmt_close($stmt);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Statement has 2 markers.

See Also

mysqli_prepare

3.10.23 mysqli_stmt::prepare, mysqli_stmt_prepare

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_stmt::prepare

mysqli_stmt_prepare

Prepare an SQL statement for execution

Description

Object oriented style

 mixed mysqli_stmt::prepare(

mysqli_stmt::prepare, mysqli_stmt_prepare

192

 string query);

Procedural style

 bool mysqli_stmt_prepare(
 mysqli_stmt stmt,
 string query);

Prepares the SQL query pointed to by the null-terminated string query.

The parameter markers must be bound to application variables using mysqli_stmt_bind_param and/or
mysqli_stmt_bind_result before executing the statement or fetching rows.

Note

In the case where you pass a statement to mysqli_stmt_prepare that is longer
than max_allowed_packet of the server, the returned error codes are different
depending on whether you are using MySQL Native Driver (mysqlnd) or MySQL
Client Library (libmysqlclient). The behavior is as follows:

• mysqlnd on Linux returns an error code of 1153. The error message means “got
a packet bigger than max_allowed_packet bytes”.

• mysqlnd on Windows returns an error code 2006. This error message means
“server has gone away”.

• libmysqlclient on all platforms returns an error code 2006. This error
message means “server has gone away”.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

query The query, as a string. It must consist of a single SQL statement.

You can include one or more parameter markers in the SQL statement
by embedding question mark (?) characters at the appropriate positions.

Note

You should not add a terminating semicolon or
\g to the statement.

Note

The markers are legal only in certain places in
SQL statements. For example, they are allowed
in the VALUES() list of an INSERT statement
(to specify column values for a row), or in a
comparison with a column in a WHERE clause to
specify a comparison value.

However, they are not allowed for identifiers
(such as table or column names), in the select
list that names the columns to be returned by a
SELECT statement), or to specify both operands
of a binary operator such as the = equal sign.

mysqli_stmt::prepare, mysqli_stmt_prepare

193

The latter restriction is necessary because it
would be impossible to determine the parameter
type. In general, parameters are legal only in
Data Manipulation Language (DML) statements,
and not in Data Definition Language (DDL)
statements.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 3.96 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$city = "Amersfoort";

/* create a prepared statement */
$stmt = $mysqli->stmt_init();
if ($stmt->prepare("SELECT District FROM City WHERE Name=?")) {

 /* bind parameters for markers */
 $stmt->bind_param("s", $city);

 /* execute query */
 $stmt->execute();

 /* bind result variables */
 $stmt->bind_result($district);

 /* fetch value */
 $stmt->fetch();

 printf("%s is in district %s\n", $city, $district);

 /* close statement */
 $stmt->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.97 Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {

mysqli_stmt::reset, mysqli_stmt_reset

194

 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$city = "Amersfoort";

/* create a prepared statement */
$stmt = mysqli_stmt_init($link);
if (mysqli_stmt_prepare($stmt, 'SELECT District FROM City WHERE Name=?')) {

 /* bind parameters for markers */
 mysqli_stmt_bind_param($stmt, "s", $city);

 /* execute query */
 mysqli_stmt_execute($stmt);

 /* bind result variables */
 mysqli_stmt_bind_result($stmt, $district);

 /* fetch value */
 mysqli_stmt_fetch($stmt);

 printf("%s is in district %s\n", $city, $district);

 /* close statement */
 mysqli_stmt_close($stmt);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Amersfoort is in district Utrecht

See Also

mysqli_stmt_init
mysqli_stmt_execute
mysqli_stmt_fetch
mysqli_stmt_bind_param
mysqli_stmt_bind_result
mysqli_stmt_get_result
mysqli_stmt_close

3.10.24 mysqli_stmt::reset, mysqli_stmt_reset

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_stmt::reset

mysqli_stmt_reset

Resets a prepared statement

Description

mysqli_stmt::result_metadata, mysqli_stmt_result_metadata

195

Object oriented style

 bool mysqli_stmt::reset();

Procedural style

 bool mysqli_stmt_reset(
 mysqli_stmt stmt);

Resets a prepared statement on client and server to state after prepare.

It resets the statement on the server, data sent using mysqli_stmt_send_long_data, unbuffered result
sets and current errors. It does not clear bindings or stored result sets. Stored result sets will be cleared
when executing the prepared statement (or closing it).

To prepare a statement with another query use function mysqli_stmt_prepare.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

mysqli_prepare

3.10.25 mysqli_stmt::result_metadata, mysqli_stmt_result_metadata

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_stmt::result_metadata

mysqli_stmt_result_metadata

Returns result set metadata from a prepared statement

Description

Object oriented style

 mysqli_result mysqli_stmt::result_metadata();

Procedural style

 mysqli_result mysqli_stmt_result_metadata(
 mysqli_stmt stmt);

If a statement passed to mysqli_prepare is one that produces a result set,
mysqli_stmt_result_metadata returns the result object that can be used to process the meta
information such as total number of fields and individual field information.

Note

This result set pointer can be passed as an argument to any of the field-based
functions that process result set metadata, such as:

mysqli_stmt::result_metadata, mysqli_stmt_result_metadata

196

• mysqli_num_fields

• mysqli_fetch_field

• mysqli_fetch_field_direct

• mysqli_fetch_fields

• mysqli_field_count

• mysqli_field_seek

• mysqli_field_tell

• mysqli_free_result

The result set structure should be freed when you are done with it, which you can do by passing it to
mysqli_free_result

Note

The result set returned by mysqli_stmt_result_metadata contains only
metadata. It does not contain any row results. The rows are obtained by using the
statement handle with mysqli_stmt_fetch.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

Returns a result object or FALSE if an error occurred.

Examples

Example 3.98 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "test");

$mysqli->query("DROP TABLE IF EXISTS friends");
$mysqli->query("CREATE TABLE friends (id int, name varchar(20))");

$mysqli->query("INSERT INTO friends VALUES (1,'Hartmut'), (2, 'Ulf')");

$stmt = $mysqli->prepare("SELECT id, name FROM friends");
$stmt->execute();

/* get resultset for metadata */
$result = $stmt->result_metadata();

/* retrieve field information from metadata result set */
$field = $result->fetch_field();

printf("Fieldname: %s\n", $field->name);

/* close resultset */
$result->close();

mysqli_stmt::send_long_data, mysqli_stmt_send_long_data

197

/* close connection */
$mysqli->close();
?>

Example 3.99 Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "test");

mysqli_query($link, "DROP TABLE IF EXISTS friends");
mysqli_query($link, "CREATE TABLE friends (id int, name varchar(20))");

mysqli_query($link, "INSERT INTO friends VALUES (1,'Hartmut'), (2, 'Ulf')");

$stmt = mysqli_prepare($link, "SELECT id, name FROM friends");
mysqli_stmt_execute($stmt);

/* get resultset for metadata */
$result = mysqli_stmt_result_metadata($stmt);

/* retrieve field information from metadata result set */
$field = mysqli_fetch_field($result);

printf("Fieldname: %s\n", $field->name);

/* close resultset */
mysqli_free_result($result);

/* close connection */
mysqli_close($link);
?>

See Also

mysqli_prepare
mysqli_free_result

3.10.26 mysqli_stmt::send_long_data, mysqli_stmt_send_long_data

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_stmt::send_long_data

mysqli_stmt_send_long_data

Send data in blocks

Description

Object oriented style

 bool mysqli_stmt::send_long_data(
 int param_nr,
 string data);

Procedural style

mysqli_stmt::$sqlstate, mysqli_stmt_sqlstate

198

 bool mysqli_stmt_send_long_data(
 mysqli_stmt stmt,
 int param_nr,
 string data);

Allows to send parameter data to the server in pieces (or chunks), e.g. if the size of a blob exceeds the
size of max_allowed_packet. This function can be called multiple times to send the parts of a character
or binary data value for a column, which must be one of the TEXT or BLOB datatypes.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

param_nr Indicates which parameter to associate the data with. Parameters are
numbered beginning with 0.

data A string containing data to be sent.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 3.100 Object oriented style

<?php
$stmt = $mysqli->prepare("INSERT INTO messages (message) VALUES (?)");
$null = NULL;
$stmt->bind_param("b", $null);
$fp = fopen("messages.txt", "r");
while (!feof($fp)) {
 $stmt->send_long_data(0, fread($fp, 8192));
}
fclose($fp);
$stmt->execute();
?>

See Also

mysqli_prepare
mysqli_stmt_bind_param

3.10.27 mysqli_stmt::$sqlstate, mysqli_stmt_sqlstate

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_stmt::$sqlstate

mysqli_stmt_sqlstate

Returns SQLSTATE error from previous statement operation

Description

Object oriented style

mysqli_stmt::$sqlstate, mysqli_stmt_sqlstate

199

 string
 mysqli_stmt->sqlstate ;

Procedural style

 string mysqli_stmt_sqlstate(
 mysqli_stmt stmt);

Returns a string containing the SQLSTATE error code for the most recently invoked prepared statement
function that can succeed or fail. The error code consists of five characters. '00000' means no error. The
values are specified by ANSI SQL and ODBC. For a list of possible values, see http://dev.mysql.com/doc/
mysql/en/error-handling.html.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

Returns a string containing the SQLSTATE error code for the last error. The error code consists of five
characters. '00000' means no error.

Notes

Note

Note that not all MySQL errors are yet mapped to SQLSTATE's. The value HY000
(general error) is used for unmapped errors.

Examples

Example 3.101 Object oriented style

<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$mysqli->query("CREATE TABLE myCountry LIKE Country");
$mysqli->query("INSERT INTO myCountry SELECT * FROM Country");

$query = "SELECT Name, Code FROM myCountry ORDER BY Name";
if ($stmt = $mysqli->prepare($query)) {

 /* drop table */
 $mysqli->query("DROP TABLE myCountry");

 /* execute query */
 $stmt->execute();

 printf("Error: %s.\n", $stmt->sqlstate);

 /* close statement */

http://dev.mysql.com/doc/mysql/en/error-handling.html
http://dev.mysql.com/doc/mysql/en/error-handling.html

mysqli_stmt::store_result, mysqli_stmt_store_result

200

 $stmt->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.102 Procedural style

<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

mysqli_query($link, "CREATE TABLE myCountry LIKE Country");
mysqli_query($link, "INSERT INTO myCountry SELECT * FROM Country");

$query = "SELECT Name, Code FROM myCountry ORDER BY Name";
if ($stmt = mysqli_prepare($link, $query)) {

 /* drop table */
 mysqli_query($link, "DROP TABLE myCountry");

 /* execute query */
 mysqli_stmt_execute($stmt);

 printf("Error: %s.\n", mysqli_stmt_sqlstate($stmt));

 /* close statement */
 mysqli_stmt_close($stmt);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Error: 42S02.

See Also

mysqli_stmt_errno
mysqli_stmt_error

3.10.28 mysqli_stmt::store_result, mysqli_stmt_store_result

Copyright 1997-2019 the PHP Documentation Group.

mysqli_stmt::store_result, mysqli_stmt_store_result

201

• mysqli_stmt::store_result

mysqli_stmt_store_result

Transfers a result set from a prepared statement

Description

Object oriented style

 bool mysqli_stmt::store_result();

Procedural style

 bool mysqli_stmt_store_result(
 mysqli_stmt stmt);

You must call mysqli_stmt_store_result for every query that successfully produces a result set
(SELECT, SHOW, DESCRIBE, EXPLAIN), if and only if you want to buffer the complete result set by the
client, so that the subsequent mysqli_stmt_fetch call returns buffered data.

Note

It is unnecessary to call mysqli_stmt_store_result for other queries,
but if you do, it will not harm or cause any notable performance loss in all
cases. You can detect whether the query produced a result set by checking if
mysqli_stmt_result_metadata returns NULL.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 3.103 Object oriented style

<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER BY Name LIMIT 20";
if ($stmt = $mysqli->prepare($query)) {

 /* execute query */
 $stmt->execute();

 /* store result */
 $stmt->store_result();

mysqli_stmt::store_result, mysqli_stmt_store_result

202

 printf("Number of rows: %d.\n", $stmt->num_rows);

 /* free result */
 $stmt->free_result();

 /* close statement */
 $stmt->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.104 Procedural style

<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER BY Name LIMIT 20";
if ($stmt = mysqli_prepare($link, $query)) {

 /* execute query */
 mysqli_stmt_execute($stmt);

 /* store result */
 mysqli_stmt_store_result($stmt);

 printf("Number of rows: %d.\n", mysqli_stmt_num_rows($stmt));

 /* free result */
 mysqli_stmt_free_result($stmt);

 /* close statement */
 mysqli_stmt_close($stmt);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Number of rows: 20.

See Also

mysqli_prepare
mysqli_stmt_result_metadata

The mysqli_result class

203

mysqli_stmt_fetch

3.11 The mysqli_result class

Copyright 1997-2019 the PHP Documentation Group.

Represents the result set obtained from a query against the database.

Changelog

Table 3.16 Changelog

Version Description

5.4.0 Iterator support was added, as mysqli_result
now implements Traversable.

mysqli_result {
mysqli_result

 Traversable

 Properties

 int
 mysqli_result->current_field ;

 int
 mysqli_result->field_count ;

 array
 mysqli_result->lengths ;

 int
 mysqli_result->num_rows ;

Methods

 bool mysqli_result::data_seek(
 int offset);

 mixed mysqli_result::fetch_all(
 int resulttype
 = =MYSQLI_NUM);

 mixed mysqli_result::fetch_array(
 int resulttype
 = =MYSQLI_BOTH);

 array mysqli_result::fetch_assoc();

 object mysqli_result::fetch_field_direct(
 int fieldnr);

 object mysqli_result::fetch_field();

 array mysqli_result::fetch_fields();

 object mysqli_result::fetch_object(
 string class_name
 = ="stdClass",

mysqli_result::$current_field, mysqli_field_tell

204

 array params);

 mixed mysqli_result::fetch_row();

 bool mysqli_result::field_seek(
 int fieldnr);

 void mysqli_result::free();

}

3.11.1 mysqli_result::$current_field, mysqli_field_tell

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_result::$current_field

mysqli_field_tell

Get current field offset of a result pointer

Description

Object oriented style

 int
 mysqli_result->current_field ;

Procedural style

 int mysqli_field_tell(
 mysqli_result result);

Returns the position of the field cursor used for the last mysqli_fetch_field call. This value can be
used as an argument to mysqli_field_seek.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

Return Values

Returns current offset of field cursor.

Examples

Example 3.105 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";

mysqli_result::$current_field, mysqli_field_tell

205

if ($result = $mysqli->query($query)) {

 /* Get field information for all columns */
 while ($finfo = $result->fetch_field()) {

 /* get fieldpointer offset */
 $currentfield = $result->current_field;

 printf("Column %d:\n", $currentfield);
 printf("Name: %s\n", $finfo->name);
 printf("Table: %s\n", $finfo->table);
 printf("max. Len: %d\n", $finfo->max_length);
 printf("Flags: %d\n", $finfo->flags);
 printf("Type: %d\n\n", $finfo->type);
 }
 $result->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.106 Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";

if ($result = mysqli_query($link, $query)) {

 /* Get field information for all fields */
 while ($finfo = mysqli_fetch_field($result)) {

 /* get fieldpointer offset */
 $currentfield = mysqli_field_tell($result);

 printf("Column %d:\n", $currentfield);
 printf("Name: %s\n", $finfo->name);
 printf("Table: %s\n", $finfo->table);
 printf("max. Len: %d\n", $finfo->max_length);
 printf("Flags: %d\n", $finfo->flags);
 printf("Type: %d\n\n", $finfo->type);
 }
 mysqli_free_result($result);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

mysqli_result::data_seek, mysqli_data_seek

206

Column 1:
Name: Name
Table: Country
max. Len: 11
Flags: 1
Type: 254

Column 2:
Name: SurfaceArea
Table: Country
max. Len: 10
Flags: 32769
Type: 4

See Also

mysqli_fetch_field
mysqli_field_seek

3.11.2 mysqli_result::data_seek, mysqli_data_seek

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_result::data_seek

mysqli_data_seek

Adjusts the result pointer to an arbitrary row in the result

Description

Object oriented style

 bool mysqli_result::data_seek(
 int offset);

Procedural style

 bool mysqli_data_seek(
 mysqli_result result,
 int offset);

The mysqli_data_seek function seeks to an arbitrary result pointer specified by the offset in the result
set.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

offset The field offset. Must be between zero and the total number of rows
minus one (0..mysqli_num_rows - 1).

Return Values

Returns TRUE on success or FALSE on failure.

Notes

mysqli_result::data_seek, mysqli_data_seek

207

Note

This function can only be used with buffered results attained from the use of the
mysqli_store_result or mysqli_query functions.

Examples

Example 3.107 Object oriented style

<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER BY Name";
if ($result = $mysqli->query($query)) {

 /* seek to row no. 400 */
 $result->data_seek(399);

 /* fetch row */
 $row = $result->fetch_row();

 printf ("City: %s Countrycode: %s\n", $row[0], $row[1]);

 /* free result set*/
 $result->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.108 Procedural style

<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (!$link) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER BY Name";

if ($result = mysqli_query($link, $query)) {

 /* seek to row no. 400 */
 mysqli_data_seek($result, 399);

 /* fetch row */
 $row = mysqli_fetch_row($result);

mysqli_result::fetch_all, mysqli_fetch_all

208

 printf ("City: %s Countrycode: %s\n", $row[0], $row[1]);

 /* free result set*/
 mysqli_free_result($result);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

City: Benin City Countrycode: NGA

See Also

mysqli_store_result
mysqli_fetch_row
mysqli_fetch_array
mysqli_fetch_assoc
mysqli_fetch_object
mysqli_query
mysqli_num_rows

3.11.3 mysqli_result::fetch_all, mysqli_fetch_all

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_result::fetch_all

mysqli_fetch_all

Fetches all result rows as an associative array, a numeric array, or both

Description

Object oriented style

 mixed mysqli_result::fetch_all(
 int resulttype
 = =MYSQLI_NUM);

Procedural style

 mixed mysqli_fetch_all(
 mysqli_result result,
 int resulttype
 = =MYSQLI_NUM);

mysqli_fetch_all fetches all result rows and returns the result set as an associative array, a numeric
array, or both.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

mysqli_result::fetch_array, mysqli_fetch_array

209

resulttype This optional parameter is a constant indicating what type of array
should be produced from the current row data. The possible values for
this parameter are the constants MYSQLI_ASSOC, MYSQLI_NUM, or
MYSQLI_BOTH.

Return Values

Returns an array of associative or numeric arrays holding result rows.

MySQL Native Driver Only

Available only with mysqlnd.

As mysqli_fetch_all returns all the rows as an array in a single step, it may consume more memory
than some similar functions such as mysqli_fetch_array, which only returns one row at a time from
the result set. Further, if you need to iterate over the result set, you will need a looping construct that
will further impact performance. For these reasons mysqli_fetch_all should only be used in those
situations where the fetched result set will be sent to another layer for processing.

See Also

mysqli_fetch_array
mysqli_query

3.11.4 mysqli_result::fetch_array, mysqli_fetch_array

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_result::fetch_array

mysqli_fetch_array

Fetch a result row as an associative, a numeric array, or both

Description

Object oriented style

 mixed mysqli_result::fetch_array(
 int resulttype
 = =MYSQLI_BOTH);

Procedural style

 mixed mysqli_fetch_array(
 mysqli_result result,
 int resulttype
 = =MYSQLI_BOTH);

Returns an array that corresponds to the fetched row or NULL if there are no more rows for the resultset
represented by the result parameter.

mysqli_fetch_array is an extended version of the mysqli_fetch_row function. In addition to storing
the data in the numeric indices of the result array, the mysqli_fetch_array function can also store the
data in associative indices, using the field names of the result set as keys.

Note

Field names returned by this function are case-sensitive.

mysqli_result::fetch_array, mysqli_fetch_array

210

Note

This function sets NULL fields to the PHP NULL value.

If two or more columns of the result have the same field names, the last column will take precedence
and overwrite the earlier data. In order to access multiple columns with the same name, the numerically
indexed version of the row must be used.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

resulttype This optional parameter is a constant indicating what type of array
should be produced from the current row data. The possible values for
this parameter are the constants MYSQLI_ASSOC, MYSQLI_NUM, or
MYSQLI_BOTH.

By using the MYSQLI_ASSOC constant this function will behave
identically to the mysqli_fetch_assoc, while MYSQLI_NUM will
behave identically to the mysqli_fetch_row function. The final option
MYSQLI_BOTH will create a single array with the attributes of both.

Return Values

Returns an array of strings that corresponds to the fetched row or NULL if there are no more rows in
resultset.

Examples

Example 3.109 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if ($mysqli->connect_errno) {
 printf("Connect failed: %s\n", $mysqli->connect_error);
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER by ID LIMIT 3";
$result = $mysqli->query($query);

/* numeric array */
$row = $result->fetch_array(MYSQLI_NUM);
printf ("%s (%s)\n", $row[0], $row[1]);

/* associative array */
$row = $result->fetch_array(MYSQLI_ASSOC);
printf ("%s (%s)\n", $row["Name"], $row["CountryCode"]);

/* associative and numeric array */
$row = $result->fetch_array(MYSQLI_BOTH);
printf ("%s (%s)\n", $row[0], $row["CountryCode"]);

/* free result set */
$result->free();

mysqli_result::fetch_assoc, mysqli_fetch_assoc

211

/* close connection */
$mysqli->close();
?>

Example 3.110 Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER by ID LIMIT 3";
$result = mysqli_query($link, $query);

/* numeric array */
$row = mysqli_fetch_array($result, MYSQLI_NUM);
printf ("%s (%s)\n", $row[0], $row[1]);

/* associative array */
$row = mysqli_fetch_array($result, MYSQLI_ASSOC);
printf ("%s (%s)\n", $row["Name"], $row["CountryCode"]);

/* associative and numeric array */
$row = mysqli_fetch_array($result, MYSQLI_BOTH);
printf ("%s (%s)\n", $row[0], $row["CountryCode"]);

/* free result set */
mysqli_free_result($result);

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Kabul (AFG)
Qandahar (AFG)
Herat (AFG)

See Also

mysqli_fetch_assoc
mysqli_fetch_row
mysqli_fetch_object
mysqli_query
mysqli_data_seek

3.11.5 mysqli_result::fetch_assoc, mysqli_fetch_assoc

Copyright 1997-2019 the PHP Documentation Group.

mysqli_result::fetch_assoc, mysqli_fetch_assoc

212

• mysqli_result::fetch_assoc

mysqli_fetch_assoc

Fetch a result row as an associative array

Description

Object oriented style

 array mysqli_result::fetch_assoc();

Procedural style

 array mysqli_fetch_assoc(
 mysqli_result result);

Returns an associative array that corresponds to the fetched row or NULL if there are no more rows.

Note

Field names returned by this function are case-sensitive.

Note

This function sets NULL fields to the PHP NULL value.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

Return Values

Returns an associative array of strings representing the fetched row in the result set, where each key in the
array represents the name of one of the result set's columns or NULL if there are no more rows in resultset.

If two or more columns of the result have the same field names, the last column will take precedence. To
access the other column(s) of the same name, you either need to access the result with numeric indices by
using mysqli_fetch_row or add alias names.

Examples

Example 3.111 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if ($mysqli->connect_errno) {
 printf("Connect failed: %s\n", $mysqli->connect_error);
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 50,5";

if ($result = $mysqli->query($query)) {

 /* fetch associative array */
 while ($row = $result->fetch_assoc()) {

mysqli_result::fetch_assoc, mysqli_fetch_assoc

213

 printf ("%s (%s)\n", $row["Name"], $row["CountryCode"]);
 }

 /* free result set */
 $result->free();
}

/* close connection */
$mysqli->close();
?>

Example 3.112 Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 50,5";

if ($result = mysqli_query($link, $query)) {

 /* fetch associative array */
 while ($row = mysqli_fetch_assoc($result)) {
 printf ("%s (%s)\n", $row["Name"], $row["CountryCode"]);
 }

 /* free result set */
 mysqli_free_result($result);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Pueblo (USA)
Arvada (USA)
Cape Coral (USA)
Green Bay (USA)
Santa Clara (USA)

Example 3.113 A mysqli_result example comparing iterator usage

<?php
$c = mysqli_connect('127.0.0.1','user', 'pass');

// Using iterators (support was added with PHP 5.4)
foreach ($c->query('SELECT user,host FROM mysql.user') as $row) {

mysqli_result::fetch_field_direct, mysqli_fetch_field_direct

214

 printf("'%s'@'%s'\n", $row['user'], $row['host']);
}

echo "\n==================\n";

// Not using iterators
$result = $c->query('SELECT user,host FROM mysql.user');
while ($row = $result->fetch_assoc()) {
 printf("'%s'@'%s'\n", $row['user'], $row['host']);
}

?>

The above example will output something similar to:

'root'@'192.168.1.1'
'root'@'127.0.0.1'
'dude'@'localhost'
'lebowski'@'localhost'

==================

'root'@'192.168.1.1'
'root'@'127.0.0.1'
'dude'@'localhost'
'lebowski'@'localhost'

See Also

mysqli_fetch_array
mysqli_fetch_row
mysqli_fetch_object
mysqli_query
mysqli_data_seek

3.11.6 mysqli_result::fetch_field_direct,
mysqli_fetch_field_direct

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_result::fetch_field_direct

mysqli_fetch_field_direct

Fetch meta-data for a single field

Description

Object oriented style

 object mysqli_result::fetch_field_direct(
 int fieldnr);

Procedural style

 object mysqli_fetch_field_direct(

mysqli_result::fetch_field_direct, mysqli_fetch_field_direct

215

 mysqli_result result,
 int fieldnr);

Returns an object which contains field definition information from the specified result set.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

fieldnr The field number. This value must be in the range from 0 to number of
fields - 1.

Return Values

Returns an object which contains field definition information or FALSE if no field information for specified
fieldnr is available.

Table 3.17 Object attributes

Attribute Description

name The name of the column

orgname Original column name if an alias was specified

table The name of the table this field belongs to (if not
calculated)

orgtable Original table name if an alias was specified

def The default value for this field, represented as a
string

max_length The maximum width of the field for the result set.

length The width of the field, as specified in the table
definition.

charsetnr The character set number for the field.

flags An integer representing the bit-flags for the field.

type The data type used for this field

decimals The number of decimals used (for numeric fields)

Examples

Example 3.114 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Name LIMIT 5";

if ($result = $mysqli->query($query)) {

mysqli_result::fetch_field_direct, mysqli_fetch_field_direct

216

 /* Get field information for column 'SurfaceArea' */
 $finfo = $result->fetch_field_direct(1);

 printf("Name: %s\n", $finfo->name);
 printf("Table: %s\n", $finfo->table);
 printf("max. Len: %d\n", $finfo->max_length);
 printf("Flags: %d\n", $finfo->flags);
 printf("Type: %d\n", $finfo->type);

 $result->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.115 Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Name LIMIT 5";

if ($result = mysqli_query($link, $query)) {

 /* Get field information for column 'SurfaceArea' */
 $finfo = mysqli_fetch_field_direct($result, 1);

 printf("Name: %s\n", $finfo->name);
 printf("Table: %s\n", $finfo->table);
 printf("max. Len: %d\n", $finfo->max_length);
 printf("Flags: %d\n", $finfo->flags);
 printf("Type: %d\n", $finfo->type);

 mysqli_free_result($result);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Name: SurfaceArea
Table: Country
max. Len: 10
Flags: 32769
Type: 4

See Also

mysqli_result::fetch_field, mysqli_fetch_field

217

mysqli_num_fields
mysqli_fetch_field
mysqli_fetch_fields

3.11.7 mysqli_result::fetch_field, mysqli_fetch_field

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_result::fetch_field

mysqli_fetch_field

Returns the next field in the result set

Description

Object oriented style

 object mysqli_result::fetch_field();

Procedural style

 object mysqli_fetch_field(
 mysqli_result result);

Returns the definition of one column of a result set as an object. Call this function repeatedly to retrieve
information about all columns in the result set.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

Return Values

Returns an object which contains field definition information or FALSE if no field information is available.

Table 3.18 Object properties

Property Description

name The name of the column

orgname Original column name if an alias was specified

table The name of the table this field belongs to (if not
calculated)

orgtable Original table name if an alias was specified

def Reserved for default value, currently always ""

db Database (since PHP 5.3.6)

catalog The catalog name, always "def" (since PHP 5.3.6)

max_length The maximum width of the field for the result set.

length The width of the field, as specified in the table
definition.

charsetnr The character set number for the field.

flags An integer representing the bit-flags for the field.

mysqli_result::fetch_field, mysqli_fetch_field

218

Property Description

type The data type used for this field

decimals The number of decimals used (for integer fields)

Examples

Example 3.116 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";

if ($result = $mysqli->query($query)) {

 /* Get field information for all columns */
 while ($finfo = $result->fetch_field()) {

 printf("Name: %s\n", $finfo->name);
 printf("Table: %s\n", $finfo->table);
 printf("max. Len: %d\n", $finfo->max_length);
 printf("Flags: %d\n", $finfo->flags);
 printf("Type: %d\n\n", $finfo->type);
 }
 $result->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.117 Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";

if ($result = mysqli_query($link, $query)) {

 /* Get field information for all fields */
 while ($finfo = mysqli_fetch_field($result)) {

 printf("Name: %s\n", $finfo->name);
 printf("Table: %s\n", $finfo->table);
 printf("max. Len: %d\n", $finfo->max_length);

mysqli_result::fetch_fields, mysqli_fetch_fields

219

 printf("Flags: %d\n", $finfo->flags);
 printf("Type: %d\n\n", $finfo->type);
 }
 mysqli_free_result($result);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Name: Name
Table: Country
max. Len: 11
Flags: 1
Type: 254

Name: SurfaceArea
Table: Country
max. Len: 10
Flags: 32769
Type: 4

See Also

mysqli_num_fields
mysqli_fetch_field_direct
mysqli_fetch_fields
mysqli_field_seek

3.11.8 mysqli_result::fetch_fields, mysqli_fetch_fields

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_result::fetch_fields

mysqli_fetch_fields

Returns an array of objects representing the fields in a result set

Description

Object oriented style

 array mysqli_result::fetch_fields();

Procedural style

 array mysqli_fetch_fields(
 mysqli_result result);

This function serves an identical purpose to the mysqli_fetch_field function with the single difference
that, instead of returning one object at a time for each field, the columns are returned as an array of
objects.

mysqli_result::fetch_fields, mysqli_fetch_fields

220

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

Return Values

Returns an array of objects which contains field definition information or FALSE if no field information is
available.

Table 3.19 Object properties

Property Description

name The name of the column

orgname Original column name if an alias was specified

table The name of the table this field belongs to (if not
calculated)

orgtable Original table name if an alias was specified

max_length The maximum width of the field for the result set.

length The width of the field, in bytes, as specified in the
table definition. Note that this number (bytes) might
differ from your table definition value (characters),
depending on the character set you use. For
example, the character set utf8 has 3 bytes per
character, so varchar(10) will return a length of 30
for utf8 (10*3), but return 10 for latin1 (10*1).

charsetnr The character set number (id) for the field.

flags An integer representing the bit-flags for the field.

type The data type used for this field

decimals The number of decimals used (for integer fields)

Examples

Example 3.118 Object oriented style

<?php
$mysqli = new mysqli("127.0.0.1", "root", "foofoo", "sakila");

/* check connection */
if ($mysqli->connect_errno) {
 printf("Connect failed: %s\n", $mysqli->connect_error);
 exit();
}

foreach (array('latin1', 'utf8') as $charset) {

 // Set character set, to show its impact on some values (e.g., length in bytes)
 $mysqli->set_charset($charset);

 $query = "SELECT actor_id, last_name from actor ORDER BY actor_id";

 echo "======================\n";
 echo "Character Set: $charset\n";

mysqli_result::fetch_fields, mysqli_fetch_fields

221

 echo "======================\n";

 if ($result = $mysqli->query($query)) {

 /* Get field information for all columns */
 $finfo = $result->fetch_fields();

 foreach ($finfo as $val) {
 printf("Name: %s\n", $val->name);
 printf("Table: %s\n", $val->table);
 printf("Max. Len: %d\n", $val->max_length);
 printf("Length: %d\n", $val->length);
 printf("charsetnr: %d\n", $val->charsetnr);
 printf("Flags: %d\n", $val->flags);
 printf("Type: %d\n\n", $val->type);
 }
 $result->free();
 }
}
$mysqli->close();
?>

Example 3.119 Procedural style

<?php
$link = mysqli_connect("127.0.0.1", "my_user", "my_password", "sakila");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

foreach (array('latin1', 'utf8') as $charset) {

 // Set character set, to show its impact on some values (e.g., length in bytes)
 mysqli_set_charset($link, $charset);

 $query = "SELECT actor_id, last_name from actor ORDER BY actor_id";

 echo "======================\n";
 echo "Character Set: $charset\n";
 echo "======================\n";

 if ($result = mysqli_query($link, $query)) {

 /* Get field information for all columns */
 $finfo = mysqli_fetch_fields($result);

 foreach ($finfo as $val) {
 printf("Name: %s\n", $val->name);
 printf("Table: %s\n", $val->table);
 printf("Max. Len: %d\n", $val->max_length);
 printf("Length: %d\n", $val->length);
 printf("charsetnr: %d\n", $val->charsetnr);
 printf("Flags: %d\n", $val->flags);
 printf("Type: %d\n\n", $val->type);
 }
 mysqli_free_result($result);
 }
}

mysqli_close($link);

mysqli_result::fetch_object, mysqli_fetch_object

222

?>

The above examples will output:

======================
Character Set: latin1
======================
Name: actor_id
Table: actor
Max. Len: 3
Length: 5
charsetnr: 63
Flags: 49699
Type: 2

Name: last_name
Table: actor
Max. Len: 12
Length: 45
charsetnr: 8
Flags: 20489
Type: 253

======================
Character Set: utf8
======================
Name: actor_id
Table: actor
Max. Len: 3
Length: 5
charsetnr: 63
Flags: 49699
Type: 2

Name: last_name
Table: actor
Max. Len: 12
Length: 135
charsetnr: 33
Flags: 20489

See Also

mysqli_num_fields
mysqli_fetch_field_direct
mysqli_fetch_field

3.11.9 mysqli_result::fetch_object, mysqli_fetch_object

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_result::fetch_object

mysqli_fetch_object

Returns the current row of a result set as an object

Description

mysqli_result::fetch_object, mysqli_fetch_object

223

Object oriented style

 object mysqli_result::fetch_object(
 string class_name
 = ="stdClass",
 array params);

Procedural style

 object mysqli_fetch_object(
 mysqli_result result,
 string class_name
 = ="stdClass",
 array params);

The mysqli_fetch_object will return the current row result set as an object where the attributes of the
object represent the names of the fields found within the result set.

Note that mysqli_fetch_object sets the properties of the object before calling the object constructor.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

class_name The name of the class to instantiate, set the properties of and return. If
not specified, a stdClass object is returned.

params An optional array of parameters to pass to the constructor for
class_name objects.

Return Values

Returns an object with string properties that corresponds to the fetched row or NULL if there are no more
rows in resultset.

Note

Field names returned by this function are case-sensitive.

Note

This function sets NULL fields to the PHP NULL value.

Examples

Example 3.120 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 50,5";

if ($result = $mysqli->query($query)) {

mysqli_result::fetch_object, mysqli_fetch_object

224

 /* fetch object array */
 while ($obj = $result->fetch_object()) {
 printf ("%s (%s)\n", $obj->Name, $obj->CountryCode);
 }

 /* free result set */
 $result->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.121 Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 50,5";

if ($result = mysqli_query($link, $query)) {

 /* fetch associative array */
 while ($obj = mysqli_fetch_object($result)) {
 printf ("%s (%s)\n", $obj->Name, $obj->CountryCode);
 }

 /* free result set */
 mysqli_free_result($result);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Pueblo (USA)
Arvada (USA)
Cape Coral (USA)
Green Bay (USA)
Santa Clara (USA)

See Also

mysqli_fetch_array
mysqli_fetch_assoc
mysqli_fetch_row
mysqli_query

mysqli_result::fetch_row, mysqli_fetch_row

225

mysqli_data_seek

3.11.10 mysqli_result::fetch_row, mysqli_fetch_row

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_result::fetch_row

mysqli_fetch_row

Get a result row as an enumerated array

Description

Object oriented style

 mixed mysqli_result::fetch_row();

Procedural style

 mixed mysqli_fetch_row(
 mysqli_result result);

Fetches one row of data from the result set and returns it as an enumerated array, where each column is
stored in an array offset starting from 0 (zero). Each subsequent call to this function will return the next row
within the result set, or NULL if there are no more rows.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

Return Values

mysqli_fetch_row returns an array of strings that corresponds to the fetched row or NULL if there are
no more rows in result set.

Note

This function sets NULL fields to the PHP NULL value.

Examples

Example 3.122 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 50,5";

if ($result = $mysqli->query($query)) {

 /* fetch object array */

mysqli_result::fetch_row, mysqli_fetch_row

226

 while ($row = $result->fetch_row()) {
 printf ("%s (%s)\n", $row[0], $row[1]);
 }

 /* free result set */
 $result->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.123 Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 50,5";

if ($result = mysqli_query($link, $query)) {

 /* fetch associative array */
 while ($row = mysqli_fetch_row($result)) {
 printf ("%s (%s)\n", $row[0], $row[1]);
 }

 /* free result set */
 mysqli_free_result($result);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Pueblo (USA)
Arvada (USA)
Cape Coral (USA)
Green Bay (USA)
Santa Clara (USA)

See Also

mysqli_fetch_array
mysqli_fetch_assoc
mysqli_fetch_object
mysqli_query
mysqli_data_seek

mysqli_result::$field_count, mysqli_num_fields

227

3.11.11 mysqli_result::$field_count, mysqli_num_fields

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_result::$field_count

mysqli_num_fields

Get the number of fields in a result

Description

Object oriented style

 int
 mysqli_result->field_count ;

Procedural style

 int mysqli_num_fields(
 mysqli_result result);

Returns the number of fields from specified result set.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

Return Values

The number of fields from a result set.

Examples

Example 3.124 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

if ($result = $mysqli->query("SELECT * FROM City ORDER BY ID LIMIT 1")) {

 /* determine number of fields in result set */
 $field_cnt = $result->field_count;

 printf("Result set has %d fields.\n", $field_cnt);

 /* close result set */
 $result->close();
}

/* close connection */
$mysqli->close();
?>

mysqli_result::field_seek, mysqli_field_seek

228

Example 3.125 Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

if ($result = mysqli_query($link, "SELECT * FROM City ORDER BY ID LIMIT 1")) {

 /* determine number of fields in result set */
 $field_cnt = mysqli_num_fields($result);

 printf("Result set has %d fields.\n", $field_cnt);

 /* close result set */
 mysqli_free_result($result);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Result set has 5 fields.

See Also

mysqli_fetch_field

3.11.12 mysqli_result::field_seek, mysqli_field_seek

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_result::field_seek

mysqli_field_seek

Set result pointer to a specified field offset

Description

Object oriented style

 bool mysqli_result::field_seek(
 int fieldnr);

Procedural style

 bool mysqli_field_seek(

mysqli_result::field_seek, mysqli_field_seek

229

 mysqli_result result,
 int fieldnr);

Sets the field cursor to the given offset. The next call to mysqli_fetch_field will retrieve the field
definition of the column associated with that offset.

Note

To seek to the beginning of a row, pass an offset value of zero.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

fieldnr The field number. This value must be in the range from 0 to number of
fields - 1.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 3.126 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";

if ($result = $mysqli->query($query)) {

 /* Get field information for 2nd column */
 $result->field_seek(1);
 $finfo = $result->fetch_field();

 printf("Name: %s\n", $finfo->name);
 printf("Table: %s\n", $finfo->table);
 printf("max. Len: %d\n", $finfo->max_length);
 printf("Flags: %d\n", $finfo->flags);
 printf("Type: %d\n\n", $finfo->type);

 $result->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.127 Procedural style

mysqli_result::free, mysqli_result::close, mysqli_result::free_result, mysqli_free_result

230

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";

if ($result = mysqli_query($link, $query)) {

 /* Get field information for 2nd column */
 mysqli_field_seek($result, 1);
 $finfo = mysqli_fetch_field($result);

 printf("Name: %s\n", $finfo->name);
 printf("Table: %s\n", $finfo->table);
 printf("max. Len: %d\n", $finfo->max_length);
 printf("Flags: %d\n", $finfo->flags);
 printf("Type: %d\n\n", $finfo->type);

 mysqli_free_result($result);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Name: SurfaceArea
Table: Country
max. Len: 10
Flags: 32769
Type: 4

See Also

mysqli_fetch_field

3.11.13 mysqli_result::free, mysqli_result::close,
mysqli_result::free_result, mysqli_free_result

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_result::free

mysqli_result::close

mysqli_result::free_result

mysqli_free_result

Frees the memory associated with a result

mysqli_result::$lengths, mysqli_fetch_lengths

231

Description

Object oriented style

 void mysqli_result::free();

 void mysqli_result::close();

 void mysqli_result::free_result();

Procedural style

 void mysqli_free_result(
 mysqli_result result);

Frees the memory associated with the result.

Note

You should always free your result with mysqli_free_result, when your result
object is not needed anymore.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

Return Values

No value is returned.

See Also

mysqli_query
mysqli_stmt_store_result
mysqli_store_result
mysqli_use_result

3.11.14 mysqli_result::$lengths, mysqli_fetch_lengths

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_result::$lengths

mysqli_fetch_lengths

Returns the lengths of the columns of the current row in the result set

Description

Object oriented style

 array
 mysqli_result->lengths ;

Procedural style

 array mysqli_fetch_lengths(
 mysqli_result result);

mysqli_result::$lengths, mysqli_fetch_lengths

232

The mysqli_fetch_lengths function returns an array containing the lengths of every column of the
current row within the result set.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

Return Values

An array of integers representing the size of each column (not including any terminating null characters).
FALSE if an error occurred.

mysqli_fetch_lengths is valid only for the current row of the result set. It returns FALSE if you call it
before calling mysqli_fetch_row/array/object or after retrieving all rows in the result.

Examples

Example 3.128 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT * from Country ORDER BY Code LIMIT 1";

if ($result = $mysqli->query($query)) {

 $row = $result->fetch_row();

 /* display column lengths */
 foreach ($result->lengths as $i => $val) {
 printf("Field %2d has Length %2d\n", $i+1, $val);
 }
 $result->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.129 Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

mysqli_result::$num_rows, mysqli_num_rows

233

$query = "SELECT * from Country ORDER BY Code LIMIT 1";

if ($result = mysqli_query($link, $query)) {

 $row = mysqli_fetch_row($result);

 /* display column lengths */
 foreach (mysqli_fetch_lengths($result) as $i => $val) {
 printf("Field %2d has Length %2d\n", $i+1, $val);
 }
 mysqli_free_result($result);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Field 1 has Length 3
Field 2 has Length 5
Field 3 has Length 13
Field 4 has Length 9
Field 5 has Length 6
Field 6 has Length 1
Field 7 has Length 6
Field 8 has Length 4
Field 9 has Length 6
Field 10 has Length 6
Field 11 has Length 5
Field 12 has Length 44
Field 13 has Length 7
Field 14 has Length 3
Field 15 has Length 2

3.11.15 mysqli_result::$num_rows, mysqli_num_rows

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_result::$num_rows

mysqli_num_rows

Gets the number of rows in a result

Description

Object oriented style

 int
 mysqli_result->num_rows ;

Procedural style

 int mysqli_num_rows(
 mysqli_result result);

Returns the number of rows in the result set.

mysqli_result::$num_rows, mysqli_num_rows

234

The behaviour of mysqli_num_rows depends on whether buffered or unbuffered result sets are being
used. For unbuffered result sets, mysqli_num_rows will not return the correct number of rows until all the
rows in the result have been retrieved.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

Return Values

Returns number of rows in the result set.

Note

If the number of rows is greater than PHP_INT_MAX, the number will be returned as
a string.

Examples

Example 3.130 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

if ($result = $mysqli->query("SELECT Code, Name FROM Country ORDER BY Name")) {

 /* determine number of rows result set */
 $row_cnt = $result->num_rows;

 printf("Result set has %d rows.\n", $row_cnt);

 /* close result set */
 $result->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.131 Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

The mysqli_driver class

235

if ($result = mysqli_query($link, "SELECT Code, Name FROM Country ORDER BY Name")) {

 /* determine number of rows result set */
 $row_cnt = mysqli_num_rows($result);

 printf("Result set has %d rows.\n", $row_cnt);

 /* close result set */
 mysqli_free_result($result);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Result set has 239 rows.

See Also

mysqli_affected_rows
mysqli_store_result
mysqli_use_result
mysqli_query

3.12 The mysqli_driver class

Copyright 1997-2019 the PHP Documentation Group.

MySQLi Driver.

mysqli_driver {
mysqli_driver

 Properties

 public readonly string
 client_info ;

 public readonly string
 client_version ;

 public readonly string
 driver_version ;

 public readonly string
 embedded ;

 public bool
 reconnect ;

 public int
 report_mode ;

Methods

mysqli_driver::embedded_server_end, mysqli_embedded_server_end

236

 void mysqli_driver::embedded_server_end();

 bool mysqli_driver::embedded_server_start(
 int start,
 array arguments,
 array groups);

}

client_info The Client API header version

client_version The Client version

driver_version The MySQLi Driver version

embedded Whether MySQLi Embedded support is enabled

reconnect Allow or prevent reconnect (see the mysqli.reconnect INI directive)

report_mode Set to MYSQLI_REPORT_OFF, MYSQLI_REPORT_ALL or any
combination of MYSQLI_REPORT_STRICT (throw Exceptions for errors),
MYSQLI_REPORT_ERROR (report errors) and MYSQLI_REPORT_INDEX
(errors regarding indexes). See also mysqli_report.

3.12.1 mysqli_driver::embedded_server_end,
mysqli_embedded_server_end

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_driver::embedded_server_end

mysqli_embedded_server_end

Stop embedded server

Description

Object oriented style

 void mysqli_driver::embedded_server_end();

Procedural style

 void mysqli_embedded_server_end();

Warning

This function is currently not documented; only its argument list is available.

3.12.2 mysqli_driver::embedded_server_start,
mysqli_embedded_server_start

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_driver::embedded_server_start

mysqli_embedded_server_start

mysqli_driver::$report_mode, mysqli_report

237

Initialize and start embedded server

Description

Object oriented style

 bool mysqli_driver::embedded_server_start(
 int start,
 array arguments,
 array groups);

Procedural style

 bool mysqli_embedded_server_start(
 int start,
 array arguments,
 array groups);

Warning

This function is currently not documented; only its argument list is available.

3.12.3 mysqli_driver::$report_mode, mysqli_report

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_driver::$report_mode

mysqli_report

Enables or disables internal report functions

Description

Object oriented style

 int
 mysqli_driver->report_mode ;

Procedural style

 bool mysqli_report(
 int flags);

A function helpful in improving queries during code development and testing. Depending on the flags, it
reports errors from mysqli function calls or queries that don't use an index (or use a bad index).

Parameters

flags Table 3.20 Supported flags

Name Description

MYSQLI_REPORT_OFF Turns reporting off

MYSQLI_REPORT_ERROR Report errors from mysqli function
calls

MYSQLI_REPORT_STRICT Throw mysqli_sql_exception
for errors instead of warnings

mysqli_driver::$report_mode, mysqli_report

238

Name Description

MYSQLI_REPORT_INDEX Report if no index or bad index
was used in a query

MYSQLI_REPORT_ALL Set all options (report all)

Return Values

Returns TRUE on success or FALSE on failure.

Changelog

Version Description

5.3.4 Changing the reporting mode is now be per-request,
rather than per-process.

5.2.15 Changing the reporting mode is now be per-request,
rather than per-process.

Examples

Example 3.132 Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* activate reporting */
$driver = new mysqli_driver();
$driver->report_mode = MYSQLI_REPORT_ALL;

try {

 /* this query should report an error */
 $result = $mysqli->query("SELECT Name FROM Nonexistingtable WHERE population > 50000");

 /* this query should report a bad index */
 $result = $mysqli->query("SELECT Name FROM City WHERE population > 50000");

 $result->close();

 $mysqli->close();

} catch (mysqli_sql_exception $e) {

 echo $e->__toString();
}
?>

Example 3.133 Procedural style

The mysqli_warning class

239

<?php
/* activate reporting */
mysqli_report(MYSQLI_REPORT_ALL);

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* this query should report an error */
$result = mysqli_query("SELECT Name FROM Nonexistingtable WHERE population > 50000");

/* this query should report a bad index */
$result = mysqli_query("SELECT Name FROM City WHERE population > 50000");

mysqli_free_result($result);

mysqli_close($link);
?>

See Also

mysqli_debug
mysqli_dump_debug_info
mysqli_sql_exception
set_exception_handler
error_reporting

3.13 The mysqli_warning class

Copyright 1997-2019 the PHP Documentation Group.

Represents a MySQL warning.

mysqli_warning {
mysqli_warning

 Properties

 public
 message ;

 public
 sqlstate ;

 public
 errno ;

Methods

 protected mysqli_warning::__construct();

 public void mysqli_warning::next();

}

http://www.php.net/set_exception_handler
http://www.php.net/error_reporting

mysqli_warning::__construct

240

message Message string

sqlstate SQL state

errno Error number

3.13.1 mysqli_warning::__construct

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_warning::__construct

The __construct purpose

Description

 protected mysqli_warning::__construct();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

3.13.2 mysqli_warning::next

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_warning::next

The next purpose

Description

 public void mysqli_warning::next();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

3.14 The mysqli_sql_exception class

Copyright 1997-2019 the PHP Documentation Group.

Aliases and deprecated Mysqli Functions

241

The mysqli exception handling class.

mysqli_sql_exception {
mysqli_sql_exceptionextends RuntimeException

 Properties

 protected string
 sqlstate ;

Inherited properties

 protected string
 message ;

 protected int
 code ;

 protected string
 file ;

 protected int
 line ;

}

sqlstate The sql state with the error.

3.15 Aliases and deprecated Mysqli Functions

Copyright 1997-2019 the PHP Documentation Group.

3.15.1 mysqli_bind_param

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_bind_param

Alias for mysqli_stmt_bind_param

Description

This function is an alias of: mysqli_stmt_bind_param.

Warning

This function has been DEPRECATED as of PHP 5.3.0 and REMOVED as of PHP
5.4.0.

See Also

mysqli_stmt_bind_param

3.15.2 mysqli_bind_result

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_bind_result

mysqli_client_encoding

242

Alias for mysqli_stmt_bind_result

Description

This function is an alias of: mysqli_stmt_bind_result.

Warning

This function has been DEPRECATED as of PHP 5.3.0 and REMOVED as of PHP
5.4.0.

See Also

mysqli_stmt_bind_result

3.15.3 mysqli_client_encoding

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_client_encoding

Alias of mysqli_character_set_name

Description

This function is an alias of: mysqli_character_set_name.

Warning

This function has been DEPRECATED as of PHP 5.3.0 and REMOVED as of PHP
5.4.0.

See Also

mysqli_real_escape_string

3.15.4 mysqli_connect

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_connect

Alias of mysqli::__construct

Description

This function is an alias of: mysqli::__construct

Although the mysqli::__construct documentation also includes procedural examples that use the
mysqli_connect function, here is a short example:

Examples

Example 3.134 mysqli_connect example

mysqli::disable_reads_from_master, mysqli_disable_reads_from_master

243

<?php
$link = mysqli_connect("127.0.0.1", "my_user", "my_password", "my_db");

if (!$link) {
 echo "Error: Unable to connect to MySQL." . PHP_EOL;
 echo "Debugging errno: " . mysqli_connect_errno() . PHP_EOL;
 echo "Debugging error: " . mysqli_connect_error() . PHP_EOL;
 exit;
}

echo "Success: A proper connection to MySQL was made! The my_db database is great." . PHP_EOL;
echo "Host information: " . mysqli_get_host_info($link) . PHP_EOL;

mysqli_close($link);
?>

The above examples will output something similar to:

Success: A proper connection to MySQL was made! The my_db database is great.
Host information: localhost via TCP/IP

3.15.5 mysqli::disable_reads_from_master,
mysqli_disable_reads_from_master

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::disable_reads_from_master

mysqli_disable_reads_from_master

Disable reads from master

Description

Object oriented style

 void mysqli::disable_reads_from_master();

Procedural style

 bool mysqli_disable_reads_from_master(
 mysqli link);

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

3.15.6 mysqli_disable_rpl_parse

Copyright 1997-2019 the PHP Documentation Group.

mysqli_enable_reads_from_master

244

• mysqli_disable_rpl_parse

Disable RPL parse

Description

 bool mysqli_disable_rpl_parse(
 mysqli link);

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

3.15.7 mysqli_enable_reads_from_master

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_enable_reads_from_master

Enable reads from master

Description

 bool mysqli_enable_reads_from_master(
 mysqli link);

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

3.15.8 mysqli_enable_rpl_parse

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_enable_rpl_parse

Enable RPL parse

Description

 bool mysqli_enable_rpl_parse(
 mysqli link);

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

mysqli_escape_string

245

3.15.9 mysqli_escape_string

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_escape_string

Alias of mysqli_real_escape_string

Description

This function is an alias of: mysqli_real_escape_string.

3.15.10 mysqli_execute

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_execute

Alias for mysqli_stmt_execute

Description

This function is an alias of: mysqli_stmt_execute.

Notes

Note

mysqli_execute is deprecated and will be removed.

See Also

mysqli_stmt_execute

3.15.11 mysqli_fetch

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_fetch

Alias for mysqli_stmt_fetch

Description

This function is an alias of: mysqli_stmt_fetch.

Warning

This function has been DEPRECATED as of PHP 5.3.0 and REMOVED as of PHP
5.4.0.

See Also

mysqli_stmt_fetch

3.15.12 mysqli_get_cache_stats

Copyright 1997-2019 the PHP Documentation Group.

mysqli_get_client_stats

246

• mysqli_get_cache_stats

Returns client Zval cache statistics

Warning

This function has been REMOVED as of PHP 5.4.0.

Description

 array mysqli_get_cache_stats();

Returns an empty array. Available only with mysqlnd.

Parameters

Return Values

Returns an empty array on success, FALSE otherwise.

Changelog

Version Description

5.4.0 The mysqli_get_cache_stats was removed.

5.3.0 The mysqli_get_cache_stats was added as
stub.

3.15.13 mysqli_get_client_stats

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_get_client_stats

Returns client per-process statistics

Description

 array mysqli_get_client_stats();

Returns client per-process statistics. Available only with mysqlnd.

Parameters

Return Values

Returns an array with client stats if success, FALSE otherwise.

Examples

Example 3.135 A mysqli_get_client_stats example

<?php
$link = mysqli_connect();
print_r(mysqli_get_client_stats());
?>

mysqli_get_client_stats

247

The above example will output something similar to:

Array
(
 [bytes_sent] => 43
 [bytes_received] => 80
 [packets_sent] => 1
 [packets_received] => 2
 [protocol_overhead_in] => 8
 [protocol_overhead_out] => 4
 [bytes_received_ok_packet] => 11
 [bytes_received_eof_packet] => 0
 [bytes_received_rset_header_packet] => 0
 [bytes_received_rset_field_meta_packet] => 0
 [bytes_received_rset_row_packet] => 0
 [bytes_received_prepare_response_packet] => 0
 [bytes_received_change_user_packet] => 0
 [packets_sent_command] => 0
 [packets_received_ok] => 1
 [packets_received_eof] => 0
 [packets_received_rset_header] => 0
 [packets_received_rset_field_meta] => 0
 [packets_received_rset_row] => 0
 [packets_received_prepare_response] => 0
 [packets_received_change_user] => 0
 [result_set_queries] => 0
 [non_result_set_queries] => 0
 [no_index_used] => 0
 [bad_index_used] => 0
 [slow_queries] => 0
 [buffered_sets] => 0
 [unbuffered_sets] => 0
 [ps_buffered_sets] => 0
 [ps_unbuffered_sets] => 0
 [flushed_normal_sets] => 0
 [flushed_ps_sets] => 0
 [ps_prepared_never_executed] => 0
 [ps_prepared_once_executed] => 0
 [rows_fetched_from_server_normal] => 0
 [rows_fetched_from_server_ps] => 0
 [rows_buffered_from_client_normal] => 0
 [rows_buffered_from_client_ps] => 0
 [rows_fetched_from_client_normal_buffered] => 0
 [rows_fetched_from_client_normal_unbuffered] => 0
 [rows_fetched_from_client_ps_buffered] => 0
 [rows_fetched_from_client_ps_unbuffered] => 0
 [rows_fetched_from_client_ps_cursor] => 0
 [rows_skipped_normal] => 0
 [rows_skipped_ps] => 0
 [copy_on_write_saved] => 0
 [copy_on_write_performed] => 0
 [command_buffer_too_small] => 0
 [connect_success] => 1
 [connect_failure] => 0
 [connection_reused] => 0
 [reconnect] => 0
 [pconnect_success] => 0
 [active_connections] => 1
 [active_persistent_connections] => 0
 [explicit_close] => 0
 [implicit_close] => 0
 [disconnect_close] => 0
 [in_middle_of_command_close] => 0

mysqli_get_client_stats

248

 [explicit_free_result] => 0
 [implicit_free_result] => 0
 [explicit_stmt_close] => 0
 [implicit_stmt_close] => 0
 [mem_emalloc_count] => 0
 [mem_emalloc_ammount] => 0
 [mem_ecalloc_count] => 0
 [mem_ecalloc_ammount] => 0
 [mem_erealloc_count] => 0
 [mem_erealloc_ammount] => 0
 [mem_efree_count] => 0
 [mem_malloc_count] => 0
 [mem_malloc_ammount] => 0
 [mem_calloc_count] => 0
 [mem_calloc_ammount] => 0
 [mem_realloc_count] => 0
 [mem_realloc_ammount] => 0
 [mem_free_count] => 0
 [proto_text_fetched_null] => 0
 [proto_text_fetched_bit] => 0
 [proto_text_fetched_tinyint] => 0
 [proto_text_fetched_short] => 0
 [proto_text_fetched_int24] => 0
 [proto_text_fetched_int] => 0
 [proto_text_fetched_bigint] => 0
 [proto_text_fetched_decimal] => 0
 [proto_text_fetched_float] => 0
 [proto_text_fetched_double] => 0
 [proto_text_fetched_date] => 0
 [proto_text_fetched_year] => 0
 [proto_text_fetched_time] => 0
 [proto_text_fetched_datetime] => 0
 [proto_text_fetched_timestamp] => 0
 [proto_text_fetched_string] => 0
 [proto_text_fetched_blob] => 0
 [proto_text_fetched_enum] => 0
 [proto_text_fetched_set] => 0
 [proto_text_fetched_geometry] => 0
 [proto_text_fetched_other] => 0
 [proto_binary_fetched_null] => 0
 [proto_binary_fetched_bit] => 0
 [proto_binary_fetched_tinyint] => 0
 [proto_binary_fetched_short] => 0
 [proto_binary_fetched_int24] => 0
 [proto_binary_fetched_int] => 0
 [proto_binary_fetched_bigint] => 0
 [proto_binary_fetched_decimal] => 0
 [proto_binary_fetched_float] => 0
 [proto_binary_fetched_double] => 0
 [proto_binary_fetched_date] => 0
 [proto_binary_fetched_year] => 0
 [proto_binary_fetched_time] => 0
 [proto_binary_fetched_datetime] => 0
 [proto_binary_fetched_timestamp] => 0
 [proto_binary_fetched_string] => 0
 [proto_binary_fetched_blob] => 0
 [proto_binary_fetched_enum] => 0
 [proto_binary_fetched_set] => 0
 [proto_binary_fetched_geometry] => 0
 [proto_binary_fetched_other] => 0
)

See Also

Stats description

mysqli_get_links_stats

249

3.15.14 mysqli_get_links_stats

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_get_links_stats

Return information about open and cached links

Description

 array mysqli_get_links_stats();

mysqli_get_links_stats returns information about open and cached MySQL links.

Parameters

This function has no parameters.

Return Values

mysqli_get_links_stats returns an associative array with three elements, keyed as follows:

total An integer indicating the total number of open links in any state.

active_plinks An integer representing the number of active persistent connections.

cached_plinks An integer representing the number of inactive persistent connections.

3.15.15 mysqli_get_metadata

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_get_metadata

Alias for mysqli_stmt_result_metadata

Description

This function is an alias of: mysqli_stmt_result_metadata.

Warning

This function has been DEPRECATED as of PHP 5.3.0 and REMOVED as of PHP
5.4.0.

See Also

mysqli_stmt_result_metadata

3.15.16 mysqli_master_query

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_master_query

Enforce execution of a query on the master in a master/slave setup

Description

mysqli_param_count

250

 bool mysqli_master_query(
 mysqli link,
 string query);

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

3.15.17 mysqli_param_count

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_param_count

Alias for mysqli_stmt_param_count

Description

This function is an alias of: mysqli_stmt_param_count.

Warning

This function has been DEPRECATED as of PHP 5.3.0 and REMOVED as of PHP
5.4.0.

See Also

mysqli_stmt_param_count

3.15.18 mysqli_report

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_report

Alias of mysqli_driver->report_mode

Description

This function is an alias of: mysqli_driver->report_mode

3.15.19 mysqli_rpl_parse_enabled

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_rpl_parse_enabled

Check if RPL parse is enabled

Description

 int mysqli_rpl_parse_enabled(
 mysqli link);

mysqli_rpl_probe

251

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

3.15.20 mysqli_rpl_probe

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_rpl_probe

RPL probe

Description

 bool mysqli_rpl_probe(
 mysqli link);

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

3.15.21 mysqli_send_long_data

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_send_long_data

Alias for mysqli_stmt_send_long_data

Description

This function is an alias of: mysqli_stmt_send_long_data.

Warning

This function has been DEPRECATED as of PHP 5.3.0 and REMOVED as of PHP
5.4.0.

See Also

mysqli_stmt_send_long_data

3.15.22 mysqli::set_opt, mysqli_set_opt

Copyright 1997-2019 the PHP Documentation Group.

• mysqli::set_opt

mysqli_set_opt

mysqli_slave_query

252

Alias of mysqli_options

Description

This function is an alias of: mysqli_options.

3.15.23 mysqli_slave_query

Copyright 1997-2019 the PHP Documentation Group.

• mysqli_slave_query

Force execution of a query on a slave in a master/slave setup

Description

 bool mysqli_slave_query(
 mysqli link,
 string query);

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

3.16 Changelog

Copyright 1997-2019 the PHP Documentation Group.

The following changes have been made to classes/functions/methods of this extension.

253

Chapter 4 MySQL Functions (PDO_MYSQL)

Table of Contents
4.1 PDO_MYSQL DSN ... 256

Copyright 1997-2019 the PHP Documentation Group.

PDO_MYSQL is a driver that implements the PHP Data Objects (PDO) interface to enable access from
PHP to MySQL databases.

PDO_MYSQL will take advantage of native prepared statement support present in MySQL 4.1 and higher.
If you're using an older version of the mysql client libraries, PDO will emulate them for you.

MySQL 8

When running a PHP version before 7.1.16, or PHP 7.2 before 7.2.4, set MySQL 8 Server's
default password plugin to mysql_native_password or else you will see errors similar to The server
requested authentication method unknown to the client [caching_sha2_password] even when
caching_sha2_password is not used.

This is because MySQL 8 defaults to caching_sha2_password, a plugin that is
not recognized by the older PHP (mysqlnd) releases. Instead, change it by setting
default_authentication_plugin=mysql_native_password in my.cnf. The
caching_sha2_password plugin will be supported in a future PHP release. In the meantime, the
mysql_xdevapi extension does support it.

Warning

Beware: Some MySQL table types (storage engines) do not support transactions.
When writing transactional database code using a table type that does not support
transactions, MySQL will pretend that a transaction was initiated successfully. In
addition, any DDL queries issued will implicitly commit any pending transactions.

The common Unix distributions include binary versions of PHP that can be installed. Although these binary
versions are typically built with support for the MySQL extensions, the extension libraries themselves
may need to be installed using an additional package. Check the package manager than comes with your
chosen distribution for availability.

For example, on Ubuntu the php5-mysql package installs the ext/mysql, ext/mysqli, and PDO_MYSQL
PHP extensions. On CentOS, the php-mysql package also installs these three PHP extensions.

Alternatively, you can compile this extension yourself. Building PHP from source allows you to specify the
MySQL extensions you want to use, as well as your choice of client library for each extension.

When compiling, use --with-pdo-mysql[=DIR] to install the PDO MySQL extension, where the
optional [=DIR] is the MySQL base library. As of PHP 5.4, mysqlnd is the default library. For details about
choosing a library, see Choosing a MySQL library.

Optionally, the --with-mysql-sock[=DIR] sets to location to the MySQL unix socket pointer for all
MySQL extensions, including PDO_MYSQL. If unspecified, the default locations are searched.

Optionally, the --with-zlib-dir[=DIR] is used to set the path to the libz install prefix.

http://www.php.net/manual/en/intro.pdo

254

$./configure --with-pdo-mysql --with-mysql-sock=/var/mysql/mysql.sock

SSL support is enabled using the appropriate PDO_MySQL constants, which is equivalent to calling the
MySQL C API function mysql_ssl_set(). Also, SSL cannot be enabled with PDO::setAttribute because
the connection already exists. See also the MySQL documentation about connecting to MySQL with SSL.

Table 4.1 Changelog

Version Description

5.4.0 mysqlnd became the default MySQL library when
compiling PDO_MYSQL. Previously, libmysqlclient
was the default MySQL library.

5.4.0 MySQL client libraries 4.1 and below are no longer
supported.

5.3.9 Added SSL support with mysqlnd and OpenSSL.

5.3.7 Added SSL support with libmysqlclient and
OpenSSL.

The constants below are defined by this driver, and will only be available when the extension has
been either compiled into PHP or dynamically loaded at runtime. In addition, these driver-specific
constants should only be used if you are using this driver. Using driver-specific attributes with
another driver may result in unexpected behaviour. PDO::getAttribute may be used to obtain the
PDO::ATTR_DRIVER_NAME attribute to check the driver, if your code can run against multiple drivers.

PDO::MYSQL_ATTR_USE_BUFFERED_QUERY
(integer)

If this attribute is set to TRUE on a PDOStatement, the MySQL driver
will use the buffered versions of the MySQL API. If you're writing
portable code, you should use PDOStatement::fetchAll instead.

Example 4.1 Forcing queries to be buffered in mysql

<?php
if ($db->getAttribute(PDO::ATTR_DRIVER_NAME) == 'mysql') {
 $stmt = $db->prepare('select * from foo',
 array(PDO::MYSQL_ATTR_USE_BUFFERED_QUERY => true));
} else {
 die("my application only works with mysql; I should use \$stmt->fetchAll() instead");
}
?>

PDO::MYSQL_ATTR_LOCAL_INFILE
(integer)

Enable LOAD LOCAL INFILE.

Note, this constant can only be used in the driver_options array
when constructing a new database handle.

PDO::MYSQL_ATTR_INIT_COMMAND
(integer)

Command to execute when connecting to the MySQL server. Will
automatically be re-executed when reconnecting.

Note, this constant can only be used in the driver_options array
when constructing a new database handle.

http://dev.mysql.com/doc/mysql/en/mysql-ssl-set.html
http://dev.mysql.com/doc/mysql/en/configuring-for-ssl.html
http://www.php.net/PDO::getAttribute
http://www.php.net/PDOStatement::fetchAll

255

PDO::MYSQL_ATTR_READ_DEFAULT_FILE
(integer)

Read options from the named option file instead of from my.cnf. This
option is not available if mysqlnd is used, because mysqlnd does not
read the mysql configuration files.

PDO::MYSQL_ATTR_READ_DEFAULT_GROUP
(integer)

Read options from the named group from my.cnf or the file specified
with MYSQL_READ_DEFAULT_FILE. This option is not available
if mysqlnd is used, because mysqlnd does not read the mysql
configuration files.

PDO::MYSQL_ATTR_MAX_BUFFER_SIZE
(integer)

Maximum buffer size. Defaults to 1 MiB. This constant is not supported
when compiled against mysqlnd.

PDO::MYSQL_ATTR_DIRECT_QUERY
(integer)

Perform direct queries, don't use prepared statements.

PDO::MYSQL_ATTR_FOUND_ROWS
(integer)

Return the number of found (matched) rows, not the number of changed
rows.

PDO::MYSQL_ATTR_IGNORE_SPACE
(integer)

Permit spaces after function names. Makes all functions names
reserved words.

PDO::MYSQL_ATTR_COMPRESS
(integer)

Enable network communication compression. This is also supported
when compiled against mysqlnd as of PHP 5.3.11.

PDO::MYSQL_ATTR_SSL_CA
(integer)

The file path to the SSL certificate authority.

This exists as of PHP 5.3.7.

PDO::MYSQL_ATTR_SSL_CAPATH
(integer)

The file path to the directory that contains the trusted SSL CA
certificates, which are stored in PEM format.

This exists as of PHP 5.3.7.

PDO::MYSQL_ATTR_SSL_CERT
(integer)

The file path to the SSL certificate.

This exists as of PHP 5.3.7.

PDO::MYSQL_ATTR_SSL_CIPHER
(integer)

A list of one or more permissible ciphers to use for SSL encryption, in
a format understood by OpenSSL. For example: DHE-RSA-AES256-
SHA:AES128-SHA

This exists as of PHP 5.3.7.

PDO::MYSQL_ATTR_SSL_KEY
(integer)

The file path to the SSL key.

This exists as of PHP 5.3.7.

PDO::MYSQL_ATTR_SSL_VERIFY_SERVER_CERT
(integer)

Provides a way to disable verification of the server SSL certificate.

This exists as of PHP 7.0.18 and PHP 7.1.4.

PDO::MYSQL_ATTR_MULTI_STATEMENTS
(integer)

Disables multi query execution in both PDO::prepare and
PDO::query when set to FALSE.

Note, this constant can only be used in the driver_options array
when constructing a new database handle.

This exists as of PHP 5.5.21 and PHP 5.6.5.

http://www.php.net/PDO::prepare
http://www.php.net/PDO::query

PDO_MYSQL DSN

256

The behaviour of these functions is affected by settings in php.ini.

Table 4.2 PDO_MYSQL Configuration Options

Name Default Changeable

pdo_mysql.default_socket "/tmp/mysql.sock" PHP_INI_SYSTEM

pdo_mysql.debug NULL PHP_INI_SYSTEM

For further details and definitions of the PHP_INI_* modes, see the http://www.php.net/manual/en/
configuration.changes.modes.

Here's a short explanation of the configuration directives.

pdo_mysql.default_socket
string

Sets a Unix domain socket. This value can either be set at compile time
if a domain socket is found at configure. This ini setting is Unix only.

pdo_mysql.debug boolean Enables debugging for PDO_MYSQL. This setting is only available
when PDO_MYSQL is compiled against mysqlnd and in PDO debug
mode.

4.1 PDO_MYSQL DSN

Copyright 1997-2019 the PHP Documentation Group.

• PDO_MYSQL DSN

Connecting to MySQL databases

Description

The PDO_MYSQL Data Source Name (DSN) is composed of the following elements:

DSN prefix The DSN prefix is mysql:.

host The hostname on which the database server resides.

port The port number where the database server is listening.

dbname The name of the database.

unix_socket The MySQL Unix socket (shouldn't be used with host or port).

charset The character set. See the character set concepts documentation for
more information.

Prior to PHP 5.3.6, this element was silently ignored.
The same behaviour can be partly replicated with the
PDO::MYSQL_ATTR_INIT_COMMAND driver option, as the following
example shows.

Warning

The method in the below example can only be
used with character sets that share the same
lower 7 bit representation as ASCII, such as

http://www.php.net/manual/en/configuration.changes.modes
http://www.php.net/manual/en/configuration.changes.modes

PDO_MYSQL DSN

257

ISO-8859-1 and UTF-8. Users using character
sets that have different representations (such as
UTF-16 or Big5) must use the charset option
provided in PHP 5.3.6 and later versions.

Example 4.2 Setting the connection character set to UTF-8 prior to
PHP 5.3.6

<?php
$dsn = 'mysql:host=localhost;dbname=testdb';
$username = 'username';
$password = 'password';
$options = array(
 PDO::MYSQL_ATTR_INIT_COMMAND => 'SET NAMES utf8',
);

$dbh = new PDO($dsn, $username, $password, $options);
?>

Changelog

Version Description

5.3.6 Prior to version 5.3.6, charset was ignored.

Examples

Example 4.3 PDO_MYSQL DSN examples

The following example shows a PDO_MYSQL DSN for connecting to MySQL databases:

mysql:host=localhost;dbname=testdb

More complete examples:

mysql:host=localhost;port=3307;dbname=testdb
mysql:unix_socket=/tmp/mysql.sock;dbname=testdb

Notes

Unix only:

When the host name is set to "localhost", then the connection to the server
is made thru a domain socket. If PDO_MYSQL is compiled against libmysqlclient
then the location of the socket file is at libmysqlclient's compiled in location. If
PDO_MYSQL is compiled against mysqlnd a default socket can be set thru the
pdo_mysql.default_socket setting.

258

259

Chapter 5 Mysql_xdevapi

Table of Contents
5.1 Installing/Configuring ... 263

5.1.1 Requirements .. 263
5.1.2 Installation ... 263
5.1.3 Runtime Configuration .. 264
5.1.4 Building / Compiling From Source ... 265

5.2 Predefined Constants .. 265
5.3 Examples ... 267
5.4 Mysql_xdevapi Functions .. 269

5.4.1 expression ... 269
5.4.2 getSession ... 270

5.5 BaseResult interface ... 272
5.5.1 BaseResult::getWarnings ... 273
5.5.2 BaseResult::getWarningsCount ... 274

5.6 Collection class .. 275
5.6.1 Collection::add ... 276
5.6.2 Collection::addOrReplaceOne ... 277
5.6.3 Collection::__construct ... 278
5.6.4 Collection::count ... 279
5.6.5 Collection::createIndex ... 280
5.6.6 Collection::dropIndex ... 282
5.6.7 Collection::existsInDatabase ... 283
5.6.8 Collection::find ... 284
5.6.9 Collection::getName ... 285
5.6.10 Collection::getOne ... 286
5.6.11 Collection::getSchema ... 287
5.6.12 Collection::getSession ... 288
5.6.13 Collection::modify ... 289
5.6.14 Collection::remove ... 290
5.6.15 Collection::removeOne ... 291
5.6.16 Collection::replaceOne ... 292

5.7 CollectionAdd class ... 293
5.7.1 CollectionAdd::__construct ... 293
5.7.2 CollectionAdd::execute ... 295

5.8 CollectionFind class .. 296
5.8.1 CollectionFind::bind ... 297
5.8.2 CollectionFind::__construct ... 298
5.8.3 CollectionFind::execute ... 299
5.8.4 CollectionFind::fields ... 300
5.8.5 CollectionFind::groupBy ... 301
5.8.6 CollectionFind::having ... 302
5.8.7 CollectionFind::limit ... 303
5.8.8 CollectionFind::lockExclusive ... 304
5.8.9 CollectionFind::lockShared ... 305
5.8.10 CollectionFind::offset ... 306
5.8.11 CollectionFind::sort ... 307

5.9 CollectionModify class ... 309
5.9.1 CollectionModify::arrayAppend ... 310
5.9.2 CollectionModify::arrayInsert ... 311

260

5.9.3 CollectionModify::bind ... 312
5.9.4 CollectionModify::__construct ... 314
5.9.5 CollectionModify::execute ... 315
5.9.6 CollectionModify::limit ... 315
5.9.7 CollectionModify::patch ... 317
5.9.8 CollectionModify::replace ... 317
5.9.9 CollectionModify::set ... 319
5.9.10 CollectionModify::skip ... 320
5.9.11 CollectionModify::sort ... 321
5.9.12 CollectionModify::unset ... 321

5.10 CollectionRemove class .. 322
5.10.1 CollectionRemove::bind ... 323
5.10.2 CollectionRemove::__construct .. 323
5.10.3 CollectionRemove::execute ... 324
5.10.4 CollectionRemove::limit ... 325
5.10.5 CollectionRemove::sort ... 326

5.11 ColumnResult class .. 326
5.11.1 ColumnResult::__construct ... 327
5.11.2 ColumnResult::getCharacterSetName .. 328
5.11.3 ColumnResult::getCollationName .. 329
5.11.4 ColumnResult::getColumnLabel ... 330
5.11.5 ColumnResult::getColumnName ... 330
5.11.6 ColumnResult::getFractionalDigits .. 331
5.11.7 ColumnResult::getLength ... 332
5.11.8 ColumnResult::getSchemaName ... 332
5.11.9 ColumnResult::getTableLabel ... 333
5.11.10 ColumnResult::getTableName .. 333
5.11.11 ColumnResult::getType .. 334
5.11.12 ColumnResult::isNumberSigned .. 335
5.11.13 ColumnResult::isPadded .. 335

5.12 CrudOperationBindable interface ... 336
5.12.1 CrudOperationBindable::bind ... 336

5.13 CrudOperationLimitable interface ... 337
5.13.1 CrudOperationLimitable::limit .. 337

5.14 CrudOperationSkippable interface .. 338
5.14.1 CrudOperationSkippable::skip ... 338

5.15 CrudOperationSortable interface .. 339
5.15.1 CrudOperationSortable::sort ... 339

5.16 DatabaseObject interface .. 340
5.16.1 DatabaseObject::existsInDatabase .. 340
5.16.2 DatabaseObject::getName ... 341
5.16.3 DatabaseObject::getSession ... 341

5.17 DocResult class .. 342
5.17.1 DocResult::__construct ... 342
5.17.2 DocResult::fetchAll ... 343
5.17.3 DocResult::fetchOne ... 345
5.17.4 DocResult::getWarnings ... 346
5.17.5 DocResult::getWarningsCount ... 347

5.18 Driver class .. 349
5.18.1 Driver::__construct ... 349

5.19 Exception class ... 350
5.20 Executable interface .. 350

5.20.1 Executable::execute ... 350
5.21 ExecutionStatus class ... 351

261

5.21.1 ExecutionStatus::__construct ... 352
5.22 Expression class ... 352

5.22.1 Expression::__construct ... 353
5.23 FieldMetadata class .. 353

5.23.1 FieldMetadata::__construct ... 355
5.24 Result class .. 356

5.24.1 Result::__construct ... 356
5.24.2 Result::getAutoIncrementValue .. 357
5.24.3 Result::getGeneratedIds ... 358
5.24.4 Result::getWarnings ... 359
5.24.5 Result::getWarningsCount ... 360

5.25 RowResult class ... 361
5.25.1 RowResult::__construct ... 362
5.25.2 RowResult::fetchAll ... 362
5.25.3 RowResult::fetchOne ... 363
5.25.4 RowResult::getColumnCount ... 364
5.25.5 RowResult::getColumnNames ... 365
5.25.6 RowResult::getColumns ... 366
5.25.7 RowResult::getWarnings ... 368
5.25.8 RowResult::getWarningsCount ... 369

5.26 Schema class ... 370
5.26.1 Schema::__construct ... 370
5.26.2 Schema::createCollection ... 371
5.26.3 Schema::dropCollection ... 372
5.26.4 Schema::existsInDatabase ... 373
5.26.5 Schema::getCollection ... 374
5.26.6 Schema::getCollectionAsTable ... 375
5.26.7 Schema::getCollections ... 376
5.26.8 Schema::getName ... 377
5.26.9 Schema::getSession ... 378
5.26.10 Schema::getTable .. 379
5.26.11 Schema::getTables .. 380

5.27 SchemaObject interface .. 381
5.27.1 SchemaObject::getSchema ... 381

5.28 Session class ... 382
5.28.1 Session::close ... 383
5.28.2 Session::commit ... 384
5.28.3 Session::__construct ... 384
5.28.4 Session::createSchema ... 385
5.28.5 Session::dropSchema ... 386
5.28.6 Session::executeSql ... 386
5.28.7 Session::generateUUID ... 387
5.28.8 Session::getClientId ... 388
5.28.9 Session::getSchema ... 388
5.28.10 Session::getSchemas .. 389
5.28.11 Session::getServerVersion .. 390
5.28.12 Session::killClient .. 391
5.28.13 Session::listClients .. 391
5.28.14 Session::quoteName .. 392
5.28.15 Session::releaseSavepoint .. 393
5.28.16 Session::rollback .. 394
5.28.17 Session::rollbackTo .. 395
5.28.18 Session::setSavepoint .. 395
5.28.19 Session::sql .. 396

262

5.28.20 Session::startTransaction .. 397
5.29 SqlStatement class ... 398

5.29.1 SqlStatement::bind ... 398
5.29.2 SqlStatement::__construct ... 399
5.29.3 SqlStatement::execute ... 400
5.29.4 SqlStatement::getNextResult ... 400
5.29.5 SqlStatement::getResult ... 401
5.29.6 SqlStatement::hasMoreResults ... 401

5.30 SqlStatementResult class .. 402
5.30.1 SqlStatementResult::__construct .. 403
5.30.2 SqlStatementResult::fetchAll ... 403
5.30.3 SqlStatementResult::fetchOne ... 404
5.30.4 SqlStatementResult::getAffectedItemsCount .. 405
5.30.5 SqlStatementResult::getColumnCount .. 405
5.30.6 SqlStatementResult::getColumnNames .. 406
5.30.7 SqlStatementResult::getColumns .. 406
5.30.8 SqlStatementResult::getGeneratedIds .. 407
5.30.9 SqlStatementResult::getLastInsertId .. 408
5.30.10 SqlStatementResult::getWarnings .. 408
5.30.11 SqlStatementResult::getWarningsCount .. 409
5.30.12 SqlStatementResult::hasData .. 410
5.30.13 SqlStatementResult::nextResult .. 410

5.31 Statement class .. 411
5.31.1 Statement::__construct ... 411
5.31.2 Statement::getNextResult ... 412
5.31.3 Statement::getResult ... 413
5.31.4 Statement::hasMoreResults ... 413

5.32 Table class ... 414
5.32.1 Table::__construct ... 415
5.32.2 Table::count ... 415
5.32.3 Table::delete ... 416
5.32.4 Table::existsInDatabase ... 417
5.32.5 Table::getName ... 418
5.32.6 Table::getSchema ... 418
5.32.7 Table::getSession ... 419
5.32.8 Table::insert ... 420
5.32.9 Table::isView ... 421
5.32.10 Table::select .. 422
5.32.11 Table::update .. 423

5.33 TableDelete class ... 424
5.33.1 TableDelete::bind ... 424
5.33.2 TableDelete::__construct ... 425
5.33.3 TableDelete::execute ... 426
5.33.4 TableDelete::limit ... 427
5.33.5 TableDelete::offset ... 427
5.33.6 TableDelete::orderby ... 428
5.33.7 TableDelete::where ... 429

5.34 TableInsert class ... 430
5.34.1 TableInsert::__construct ... 430
5.34.2 TableInsert::execute ... 431
5.34.3 TableInsert::values ... 431

5.35 TableSelect class .. 432
5.35.1 TableSelect::bind ... 433
5.35.2 TableSelect::__construct ... 434

Installing/Configuring

263

5.35.3 TableSelect::execute ... 435
5.35.4 TableSelect::groupBy ... 436
5.35.5 TableSelect::having ... 437
5.35.6 TableSelect::limit ... 438
5.35.7 TableSelect::lockExclusive ... 439
5.35.8 TableSelect::lockShared ... 440
5.35.9 TableSelect::offset ... 441
5.35.10 TableSelect::orderby .. 442
5.35.11 TableSelect::where .. 443

5.36 TableUpdate class .. 444
5.36.1 TableUpdate::bind ... 445
5.36.2 TableUpdate::__construct ... 446
5.36.3 TableUpdate::execute ... 446
5.36.4 TableUpdate::limit ... 447
5.36.5 TableUpdate::orderby ... 448
5.36.6 TableUpdate::set ... 449
5.36.7 TableUpdate::where ... 449

5.37 Warning class ... 450
5.37.1 Warning::__construct ... 451

5.38 XSession class ... 451
5.38.1 XSession::__construct ... 451

Copyright 1997-2019 the PHP Documentation Group.

This extension provides access to the MySQL Document Store via the X DevAPI. The X DevAPI is a
common API provided by multiple MySQL Connectors providing easy access to relational tables as well as
collections of documents, which are represented in JSON, from a API with CRUD-style operations.

The X DevAPI uses the X Protocol, the new generation client-server protocol of the MySQL 8.0 server.

For general information about the MySQL Document Store, please refer to the MySQL Document Store
chapter in the MySQL manual.

5.1 Installing/Configuring

Copyright 1997-2019 the PHP Documentation Group.

5.1.1 Requirements

Copyright 1997-2019 the PHP Documentation Group.

This extension requires a MySQL 8+ server with the X plugin enabled (default).

Prerequisite libraries for compiling this extension are: Boost (1.53.0 or higher), OpenSSL, and Protobuf.

5.1.2 Installation

Copyright 1997-2019 the PHP Documentation Group.

This PECL extension is not bundled with PHP.

An example installation procedure on Ubuntu 18.04 with PHP 7.2:

// Dependencies

https://dev.mysql.com/doc/refman/8.0/en/document-store.html
http://pecl.php.net/

Runtime Configuration

264

$ apt install build-essential libprotobuf-dev libboost-dev openssl protobuf-compiler

// PHP with the desired extensions; php7.2-dev is required to compile
$ apt install php7.2-cli php7.2-dev php7.2-mysql php7.2-pdo php7.2-xml

// Compile the extension
$ pecl install mysql_xdevapi

The pecl install command does not enable PHP extensions (by default) and enabling PHP extensions
can be done in several ways. Another PHP 7.2 on Ubuntu 18.04 example:

// Create its own ini file
$ echo "extension=mysql_xdevapi.so" > /etc/php/7.2/mods-available/mysql_xdevapi.ini

// Use the 'phpenmod' command (note: it's Debian/Ubuntu specific)
$ phpenmod -v 7.2 -s ALL mysql_xdevapi

// A 'phpenmod' alternative is to manually symlink it
// $ ln -s /etc/php/7.2/mods-available/mysql_xdevapi.ini /etc/php/7.2/cli/conf.d/20-mysql_xdevapi.ini

// Let's see which MySQL extensions are enabled now
$ php -m |grep mysql

mysql_xdevapi
mysqli
mysqlnd
pdo_mysql

Information for installing this PECL extension may be found in the manual chapter titled Installation of
PECL extensions. Additional information such as new releases, downloads, source files, maintainer
information, and a CHANGELOG, can be located here: http://pecl.php.net/package/mysql_xdevapi.

5.1.3 Runtime Configuration

Copyright 1997-2019 the PHP Documentation Group.

The behaviour of these functions is affected by settings in php.ini.

Table 5.1 Mysql_xdevapi Configure Options

Name Default Changeable Changelog

xmysqlnd.collect_memory_statistics0 PHP_INI_SYSTEM

xmysqlnd.collect_statistics1 PHP_INI_ALL

xmysqlnd.debug PHP_INI_SYSTEM

xmysqlnd.mempool_default_size16000 PHP_INI_ALL

xmysqlnd.net_read_timeout31536000 PHP_INI_SYSTEM

xmysqlnd.trace_alloc PHP_INI_SYSTEM

Here's a short explanation of the configuration directives.

xmysqlnd.collect_memory_statistics
integer

xmysqlnd.collect_statistics
integer

http://www.php.net/install.pecl
http://www.php.net/install.pecl
http://pecl.php.net/package/apc

Building / Compiling From Source

265

xmysqlnd.debug string

xmysqlnd.mempool_default_size
integer

xmysqlnd.net_read_timeout
integer

xmysqlnd.trace_alloc
string

5.1.4 Building / Compiling From Source

Copyright 1997-2019 the PHP Documentation Group.

Considerations for compiling this extension from source.

• The extension name is 'mysql_xdevapi', so use --enable-mysql-xdevapi.

• Boost: required, optionally use the --with-boost=DIR configure option or set the
MYSQL_XDEVAPI_BOOST_ROOT environment variable. Only the boost header files are required; not
the binaries.

• Google Protocol Buffers (protobuf): required, optionally use the --with-protobuf=DIR configure option or
set the MYSQL_XDEVAPI_PROTOBUF_ROOT environment variable.

Windows specific protobuf note: depending on your environment, the static library with
a multi-threaded DLL runtime may be needed. To prepare, use the following options: -
Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF

• Google Protocol Buffers / protocol compiler (protoc): required, ensure that proper 'protoc' is available in
the PATH while building. It is especially important as Windows PHP SDK batch scripts may overwrite the
environment.

• Bison: required, and available from the PATH.

Windows specific bison note: we strongly recommended that bison delivered with the chosen PHP
SDKis used else an error similar to "zend_globals_macros.h(39): error C2375: 'zendparse': redefinition;
different linkage Zend/zend_language_parser.h(214): note: see declaration of 'zendparse'" may be the
result. Also, Windows PHP SDK batch scripts may overwrite the environment.

• Windows Specific Notes: To prepare the environment, see the official Windows build documentation for
either the original SDK (older, PHP-7.1 only) or the current SDK (PHP-7.1 or newer).

We recommend using the backslash '\\' instead of a slash '/' for all paths.

5.2 Predefined Constants
Copyright 1997-2019 the PHP Documentation Group.

The constants below are defined by this extension, and will only be available when the extension has either
been compiled into PHP or dynamically loaded at runtime.

MYSQLX_CLIENT_SSL (integer)

MYSQLX_TYPE_DECIMAL
(integer)

http://wiki.php.net/internals/windows/stepbystepbuild
http://wiki.php.net/internals/windows/stepbystepbuild_sdk_2

Predefined Constants

266

MYSQLX_TYPE_TINY (integer)

MYSQLX_TYPE_SHORT (integer)

MYSQLX_TYPE_SMALLINT
(integer)

MYSQLX_TYPE_MEDIUMINT
(integer)

MYSQLX_TYPE_INT (integer)

MYSQLX_TYPE_BIGINT
(integer)

MYSQLX_TYPE_LONG (integer)

MYSQLX_TYPE_FLOAT (integer)

MYSQLX_TYPE_DOUBLE
(integer)

MYSQLX_TYPE_NULL (integer)

MYSQLX_TYPE_TIMESTAMP
(integer)

MYSQLX_TYPE_LONGLONG
(integer)

MYSQLX_TYPE_INT24 (integer)

MYSQLX_TYPE_DATE (integer)

MYSQLX_TYPE_TIME (integer)

MYSQLX_TYPE_DATETIME
(integer)

MYSQLX_TYPE_YEAR (integer)

MYSQLX_TYPE_NEWDATE
(integer)

MYSQLX_TYPE_ENUM (integer)

MYSQLX_TYPE_SET (integer)

MYSQLX_TYPE_TINY_BLOB
(integer)

MYSQLX_TYPE_MEDIUM_BLOB
(integer)

MYSQLX_TYPE_LONG_BLOB
(integer)

MYSQLX_TYPE_BLOB (integer)

Examples

267

MYSQLX_TYPE_VAR_STRING
(integer)

MYSQLX_TYPE_STRING
(integer)

MYSQLX_TYPE_CHAR (integer)

MYSQLX_TYPE_BYTES (integer)

MYSQLX_TYPE_INTERVAL
(integer)

MYSQLX_TYPE_GEOMETRY
(integer)

MYSQLX_TYPE_JSON (integer)

MYSQLX_TYPE_NEWDECIMAL
(integer)

MYSQLX_TYPE_BIT (integer)

MYSQLX_LOCK_DEFAULT
(integer)

MYSQLX_LOCK_NOWAIT
(integer)

MYSQLX_LOCK_SKIP_LOCKED
(integer)

5.3 Examples
Copyright 1997-2019 the PHP Documentation Group.

The central entry point to the X DevAPI is the mysql_xdevapi\getSession function, which receives a
URI to a MySQL 8.0 Server and returns a mysql_xdevap\Session object.

Example 5.1 Connecting to a MySQL Server

<?php
try {
 $session = mysql_xdevapi\getSession("mysqlx://user:password@host");
} catch(Exception $e) {
 die("Connection could not be established: " . $e->getMessage());
}

// ... use $session
?>

The session provides full access to the API. For a new MySQL Server installation, the first step is to create
a database schema with a collection to store data:

Example 5.2 Creating a Schema and Collection on the MySQL Server

http://www.php.net/mysql_xdevapigetSession

Examples

268

<?php
$schema = $session->createSchema("test");
$collection = $schema->createCollection("example");
?>

When storing data, typically json_encode is used to encode the data into JSON, which can then be
stored inside a collection.

The following example stores data into the collection we created earlier, and then retrieve parts of it again.

Example 5.3 Storing and Retrieving Data

<?php
$marco = [
 "name" => "Marco",
 "age" => 19,
 "job" => "Programmer"
];
$mike = [
 "name" => "Mike",
 "age" => 39,
 "job" => "Manager"
];

$schema = $session->getSchema("test");
$collection = $schema->getCollection("example");

$collection->add($marco, $mike)->execute();

var_dump($collection->find("name = 'Mike'")->execute()->fetchOne());
?>

The above example will output something similar to:

array(4) {
 ["_id"]=>
 string(28) "00005ad66aaf0000000000000003"
 ["age"]=>
 int(39)
 ["job"]=>
 string(7) "Manager"
 ["name"]=>
 string(4) "Mike"
}

The example demonstrates that the MySQL Server adds an extra field named _id, which serves as
primary key to the document.

The example also demonstrates that retrieved data is sorted alphabetically. That specific order comes from
the efficient binary storage inside the MySQL server, but it should not be relied upon. Refer to the MySQL
JSON datatype documentation for details.

Optionally use PHP's iterators fetch multiple documents:

http://www.php.net/json_encode

Mysql_xdevapi Functions

269

Example 5.4 Fetching and Iterating Multiple Documents

<?php
$result = $collection->find()->execute());
foreach ($result as $doc) {
 echo "${doc["name"]} is a ${doc["job"]}.\n";
}
?>

The above example will output something similar to:

Marco is a Programmer.
Mike is a Manager.

5.4 Mysql_xdevapi Functions
Copyright 1997-2019 the PHP Documentation Group.

5.4.1 expression

Copyright 1997-2019 the PHP Documentation Group.

• expression

Bind prepared statement variables as parameters

Description

 object mysql_xdevapi\expression(
 string expression);

Warning

This function is currently not documented; only its argument list is available.

Parameters

expression

Return Values

Examples

Example 5.5 mysql_xdevapi\Expression example

<?php
$expression = mysql_xdevapi\Expression("[age,job]");

$res = $coll->find("age > 30")->fields($expression)->limit(3)->execute();
$data = $res->fetchAll();

http://www.php.net/mysql_xdevapiExpression

getSession

270

print_r($data);
?>

The above example will output something similar to:

<?php

5.4.2 getSession

Copyright 1997-2019 the PHP Documentation Group.

• getSession

Connect to a MySQL server

Description

 mysql_xdevapi\Session mysql_xdevapi\getSession(
 string uri);

Connects to the MySQL server.

Parameters

uri The URI to the MySQL server, such as mysqlx://
user:password@host.

URI format:

scheme://[user[:[password]]@]target[:port][?
attribute1=value1&attribute2=value2...

• scheme: required, the connection protocol

In mysql_xdevapi it is always 'mysqlx' (for X Protocol)

• user: optional, the MySQL user account for authentication

• password: optional, the MySQL user's password for authentication

• target: required, the server instance the connection refers to:

* TCP connection (host name, IPv4 address, or IPv6 address)

* Unix socket path (local file path)

* Windows named-pipe (local file path)

• port: optional, network port of MySQL server.

by default port for X Protocol is 33060

• ?attribute=value: this element is optional and specifies a data
dictionary that contains different options, including:

getSession

271

• The auth (authentication mechanism) attribute as it relates to
encrypted connections. For additional information, see Command
Options for Encrypted Connections. The following 'auth' values are
supported: plain, mysql41, external, and sha256_mem.

• The connect-timeout attribute affects the connection and not
subsequent operations. It is set per connection whether on a single
or multiple hosts.

Pass in a positive integer to define the connection timeout in
seconds, or pass in 0 (zero) to disable the timeout (infinite). Not
defining connect-timeout uses the default value of 10.

Related, the MYSQLX_CONNECTION_TIMEOUT (timeout in
seconds) and MYSQLX_TEST_CONNECTION_TIMEOUT (used
while running tests) environment variables can be set and used
instead of connect-timeout in the URI. The connect-timeout URI
option has precedence over these environment variables.

Example 5.6 URI examples

mysqlx://foobar
mysqlx://root@localhost?socket=%2Ftmp%2Fmysqld.sock%2F
mysqlx://foo:bar@localhost:33060
mysqlx://foo:bar@localhost:33160?ssl-mode=disabled
mysqlx://foo:bar@localhost:33260?ssl-mode=required
mysqlx://foo:bar@localhost:33360?ssl-mode=required&auth=mysql41
mysqlx://foo:bar@(/path/to/socket)
mysqlx://foo:bar@(/path/to/socket)?auth=sha256_mem
mysqlx://foo:bar@[localhost:33060, 127.0.0.1:33061]
mysqlx://foobar?ssl-ca=(/path/to/ca.pem)&ssl-crl=(/path/to/crl.pem)
mysqlx://foo:bar@[localhost:33060, 127.0.0.1:33061]?ssl-mode=disabled
mysqlx://foo:bar@localhost:33160/?connect-timeout=0
mysqlx://foo:bar@localhost:33160/?connect-timeout=10

For related information, see MySQL Shell's Connecting using a URI
String.

Return Values

A Session object.

Errors/Exceptions

A connection failure throws an Exception.

Examples

Example 5.7 mysql_xdevapi\getSession example

<?php
try {
 $session = mysql_xdevapi\getSession("mysqlx://user:password@host");
} catch(Exception $e) {
 die("Connection could not be established: " . $e->getMessage());
}

https://dev.mysql.com/doc/refman/8.0/en/encrypted-connection-options.html
https://dev.mysql.com/doc/refman/8.0/en/encrypted-connection-options.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-shell-connection-using-uri.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-shell-connection-using-uri.html
http://www.php.net/mysql_xdevapigetSession

BaseResult interface

272

$schemas = $session->getSchemas();
print_r($schemas);

$mysql_version = $session->getServerVersion();
print_r($mysql_version);

var_dump($collection->find("name = 'Alfred'")->execute()->fetchOne());
?>

The above example will output something similar to:

Array
(
 [0] => mysql_xdevapi\Schema Object
 (
 [name] => helloworld
)
 [1] => mysql_xdevapi\Schema Object
 (
 [name] => information_schema
)
 [2] => mysql_xdevapi\Schema Object
 (
 [name] => mysql
)
 [3] => mysql_xdevapi\Schema Object
 (
 [name] => performance_schema
)
 [4] => mysql_xdevapi\Schema Object
 (
 [name] => sys
)
)

80012

array(4) {
 ["_id"]=>
 string(28) "00005ad66abf0001000400000003"
 ["age"]=>
 int(42)
 ["job"]=>
 string(7) "Butler"
 ["name"]=>
 string(4) "Alfred"
}

5.5 BaseResult interface
Copyright 1997-2019 the PHP Documentation Group.

mysql_xdevapi\BaseResult {
mysql_xdevapi\BaseResult

 Methods

BaseResult::getWarnings

273

 abstract public array mysql_xdevapi\BaseResult::getWarnings();

 abstract public integer mysql_xdevapi\BaseResult::getWarningsCount();

}

5.5.1 BaseResult::getWarnings

Copyright 1997-2019 the PHP Documentation Group.

• BaseResult::getWarnings

Fetch warnings from last operation

Description

 abstract public array mysql_xdevapi\BaseResult::getWarnings();

Fetches warnings generated by MySQL server's last operation.

Parameters

This function has no parameters.

Return Values

An array of warnings raised by the last operation, or FALSE if no warnings are present.

Examples

Example 5.8 mysql_xdevapi\RowResult::getWarnings example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("CREATE DATABASE foo")->execute();
$session->sql("CREATE TABLE foo.test_table(x int)")->execute();

$schema = $session->getSchema("foo");
$table = $schema->getTable("test_table");

$table->insert(['x'])->values([1])->values([2])->execute();

$res = $table->select(['x/0 as bad_x'])->execute();
$warnings = $res->getWarnings();

print_r($warnings);
?>

The above example will output something similar to:

Array
(
 [0] => mysql_xdevapi\Warning Object
 (
 [message] => Division by 0
 [level] => 2
 [code] => 1365

http://www.php.net/mysql_xdevapiRowResult::getWarnings

BaseResult::getWarningsCount

274

)
 [1] => mysql_xdevapi\Warning Object
 (
 [message] => Division by 0
 [level] => 2
 [code] => 1365
)
)

5.5.2 BaseResult::getWarningsCount

Copyright 1997-2019 the PHP Documentation Group.

• BaseResult::getWarningsCount

Fetch warning count from last operation

Description

 abstract public integer mysql_xdevapi\BaseResult::getWarningsCount();

Returns the number of warnings raised by the last operation. Specifically, these warnings are raised by the
MySQL server.

Parameters

This function has no parameters.

Return Values

The number of warnings from the last operation.

Examples

Example 5.9 mysql_xdevapi\RowResult::getWarningsCount example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS foo")->execute();
$session->sql("CREATE DATABASE foo")->execute();
$session->sql("CREATE TABLE foo.test_table(x int)")->execute();

$schema = $session->getSchema("foo");
$table = $schema->getTable("test_table");

$table->insert(['x'])->values([1])->values([2])->execute();

$res = $table->select(['x/0 as bad_x'])->execute();

echo $res->getWarningsCount();
?>

The above example will output something similar to:

http://www.php.net/mysql_xdevapiRowResult::getWarningsCount

Collection class

275

2

5.6 Collection class
Copyright 1997-2019 the PHP Documentation Group.

mysql_xdevapi\Collection {
mysql_xdevapi\Collection

 mysql_xdevapi\SchemaObject

 Properties

 public
 name ;

Methods

 public mysql_xdevapi\CollectionAdd mysql_xdevapi\Collection::add(
 mixed document);

 public mysql_xdevapi\Result mysql_xdevapi\Collection::addOrReplaceOne(
 string id,
 string doc);

 public integer mysql_xdevapi\Collection::count();

 public void mysql_xdevapi\Collection::createIndex(
 string index_name,
 string index_desc_json);

 public bool mysql_xdevapi\Collection::dropIndex(
 string index_name);

 public bool mysql_xdevapi\Collection::existsInDatabase();

 public mysql_xdevapi\CollectionFind mysql_xdevapi\Collection::find(
 string search_condition);

 public string mysql_xdevapi\Collection::getName();

 public Document mysql_xdevapi\Collection::getOne(
 string id);

 public Schema Object mysql_xdevapi\Collection::getSchema();

 public Session mysql_xdevapi\Collection::getSession();

 public mysql_xdevapi\CollectionModify mysql_xdevapi\Collection::modify(
 string search_condition);

 public mysql_xdevapi\CollectionRemove mysql_xdevapi\Collection::remove(
 string search_condition);

 public mysql_xdevapi\Result mysql_xdevapi\Collection::removeOne(
 string id);

 public mysql_xdevapi\Result mysql_xdevapi\Collection::replaceOne(
 string id,
 string doc);

}

Collection::add

276

name

5.6.1 Collection::add

Copyright 1997-2019 the PHP Documentation Group.

• Collection::add

Add collection document

Description

 public mysql_xdevapi\CollectionAdd mysql_xdevapi\Collection::add(
 mixed document);

Triggers the insertion of the given document(s) into the collection, and multiple variants of this method are
supported. Options include:

1. Add a single document as a JSON string.

2. Add a single document as an array as: ['field' => 'value', 'field2' =>
'value2' ...]

3. A mix of of both, and multiple documents can be added in the same operation.

Parameters

document One or multiple documents, and this can be either JSON or an array of
fields with their associated values. This cannot be an empty array.

The MySQL server automatically generates unique _id values for each
document (recommended), although this can be manually added as
well. This value must be unique as otherwise the add operation will fail.

Return Values

A CollectionAdd object. Use execute() to return a Result that can be used to query the number of affected
items, the number warnings generated by the operation, or to fetch a list of generated IDs for the inserted
documents.

Examples

Example 5.10 mysql_xdevapi\Collection::add example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$create = $schema->createCollection("people");

$collection = $schema->getCollection("people");

// Add two documents
$collection->add('{"name": "Fred", "age": 21, "job": "Construction"}')->execute();
$collection->add('{"name": "Wilma", "age": 23, "job": "Teacher"}')->execute();

http://www.php.net/mysql_xdevapiCollection::add

Collection::addOrReplaceOne

277

// Add two documents using a single JSON object
$result = $collection->add(
 '{"name": "Bernie",
 "jobs": [{"title":"Cat Herder","Salary":42000}, {"title":"Father","Salary":0}],
 "hobbies": ["Sports","Making cupcakes"]}',
 '{"name": "Jane",
 "jobs": [{"title":"Scientist","Salary":18000}, {"title":"Mother","Salary":0}],
 "hobbies": ["Walking","Making pies"]}')->execute();

// Fetch a list of generated ID's from the last add()
$ids = $result->getGeneratedIds();
print_r($ids);
?>

The above example will output something similar to:

Array
(
 [0] => 00005b6b53610000000000000056
 [1] => 00005b6b53610000000000000057
)

Notes

Note

A unique _id is generated by MySQL Server 8.0 or higher, as demonstrated in the
example. The _id field must be manually defined if using MySQL Server 5.7.

5.6.2 Collection::addOrReplaceOne

Copyright 1997-2019 the PHP Documentation Group.

• Collection::addOrReplaceOne

Add or replace collection document

Description

 public mysql_xdevapi\Result mysql_xdevapi\Collection::addOrReplaceOne(
 string id,
 string doc);

Add a new document, or replace a document if it already exists.

Here are several scenarios for this method:

• If neither the id or any unique key values conflict with any document in the collection, then the document
is added.

• If the id does not match any document but one or more unique key values conflict with a document in the
collection, then an error is raised.

• If id matches an existing document and no unique keys are defined for the collection, then the document
is replaced.

Collection::__construct

278

• If id matches an existing document, and either all unique keys in the replacement document match that
same document or they don't conflict with any other documents in the collection, then the document is
replaced.

• If id matches an existing document and one or more unique keys match a different document from the
collection, then an error is raised.

Parameters

id This is the filter id. If this id or any other field that has a unique index
already exists in the collection, then it will update the matching
document instead.

By default, this id is automatically generated by MySQL Server when
the record was added, and is referenced as a field named '_id'.

doc This is the document to add or replace, which is a JSON string.

Return Values

A Result object.

Examples

Example 5.11 mysql_xdevapi\Collection::addOrReplaceOne example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$create = $schema->createCollection("people");

$collection = $schema->getCollection("people");

// Using add()
$result = $collection->add('{"name": "Wilma", "age": 23, "job": "Teacher"}')->execute();

// Using addOrReplaceOne()
// Note: we're passing in a known _id value here
$result = $collection->addOrReplaceOne('00005b6b53610000000000000056', '{"name": "Fred", "age": 21, "job": "Construction"}');

?>

5.6.3 Collection::__construct

Copyright 1997-2019 the PHP Documentation Group.

• Collection::__construct

Collection constructor

Description

 private mysql_xdevapi\Collection::__construct();

Construct a Collection object.

http://www.php.net/mysql_xdevapiCollection::addOrReplaceOne

Collection::count

279

Parameters

This function has no parameters.

Examples

Example 5.12 mysql_xdevapi\Collection::getOne example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$collection = $schema->createCollection("people");

$result = $collection->add('{"name": "Alfred", "age": 42, "job": "Butler"}')->execute();

// A unique _id is (by default, and recommended) generated by MySQL Server
// This retrieves the generated _id's; only one in this example, so $ids[0]
$ids = $result->getGeneratedIds();
$alfreds_id = $ids[0];

// ...

print_r($alfreds_id);
print_r($collection->getOne($alfreds_id));
?>

The above example will output something similar to:

00005b6b536100000000000000b1

Array
(
 [_id] => 00005b6b536100000000000000b1
 [age] => 42
 [job] => Butler
 [name] => Alfred
)

5.6.4 Collection::count

Copyright 1997-2019 the PHP Documentation Group.

• Collection::count

Get document count

Description

 public integer mysql_xdevapi\Collection::count();

This functionality is similar to a SELECT COUNT(*) SQL operation against the MySQL server for the
current schema and collection. In other words, it counts the number of documents in the collection.

http://www.php.net/mysql_xdevapiCollection::getOne

Collection::createIndex

280

Parameters

This function has no parameters.

Return Values

The number of documents in the collection.

Examples

Example 5.13 mysql_xdevapi\Collection::count example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$create = $schema->createCollection("people");

$collection = $schema->getCollection("people");

$result = $collection
 ->add(
 '{"name": "Bernie",
 "jobs": [
 {"title":"Cat Herder","Salary":42000},
 {"title":"Father","Salary":0}
],
 "hobbies": ["Sports","Making cupcakes"]}',
 '{"name": "Jane",
 "jobs": [
 {"title":"Scientist","Salary":18000},
 {"title":"Mother","Salary":0}
],
 "hobbies": ["Walking","Making pies"]}')
 ->execute();

var_dump($collection->count());
?>

The above example will output:

int(2)

5.6.5 Collection::createIndex

Copyright 1997-2019 the PHP Documentation Group.

• Collection::createIndex

Create collection index

Description

 public void mysql_xdevapi\Collection::createIndex(

http://www.php.net/mysql_xdevapiCollection::count

Collection::createIndex

281

 string index_name,
 string index_desc_json);

Creates an index on the collection.

An exception is thrown if an index with the same name already exists, or if index definition is not correctly
formed.

Parameters

index_name The name of the index that to create. This name must be a valid index
name as accepted by the CREATE INDEX SQL query.

index_desc_json Definition of the index to create. It contains an array of IndexField
objects, and each object describes a single document member to
include in the index, and an optional string for the type of index that
might be INDEX (default) or SPATIAL.

A single IndexField description consists of the following fields:

• field: string, the full document path to the document member or
field to be indexed.

• type: string, one of the supported SQL column types to map the field
into. For numeric types, the optional UNSIGNED keyword may follow.
For the TEXT type, the length to consider for indexing may be added.

• required: bool, (optional) true if the field is required to exist in the
document. Defaults to FALSE, except for GEOJSON where it defaults
to TRUE.

• options: integer, (optional) special option flags for use when
decoding GEOJSON data.

• srid: integer, (optional) srid value for use when decoding GEOJSON
data.

It is an error to include other fields not described above in
IndexDefinition or IndexField documents.

Return Values

Examples

Example 5.14 mysql_xdevapi\Collection::createIndex example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$collection = $schema->createCollection("people");

// Creating a text index
$collection->createIndex(
 'myindex1',

http://www.php.net/mysql_xdevapiCollection::createIndex

Collection::dropIndex

282

 '{"fields": [{
 "field": "$.name",
 "type": "TEXT(25)",
 "required": true}],
 "unique": false}'
);

// A spatial index
$collection->createIndex(
 'myindex2',
 '{"fields": [{
 "field": "$.home",
 "type": "GEOJSON",
 "required": true}],
 "type": "SPATIAL"}'
);
?>

5.6.6 Collection::dropIndex

Copyright 1997-2019 the PHP Documentation Group.

• Collection::dropIndex

Drop collection index

Description

 public bool mysql_xdevapi\Collection::dropIndex(
 string index_name);

Drop a collection index.

This operation does not yield an error if the index does not exist, but FALSE is returned in that case.

Parameters

index_name Name of collection index to drop.

Return Values

TRUE if the DROP INDEX operation succeeded, otherwise FALSE.

Examples

Example 5.15 mysql_xdevapi\Collection::dropIndex example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$create = $schema->createCollection("people");

// ...

$collection = $schema->getCollection("people");

http://www.php.net/mysql_xdevapiCollection::dropIndex

Collection::existsInDatabase

283

$collection->createIndex(
 'myindex',
 '{"fields": [{"field": "$.name", "type": "TEXT(25)", "required": true}], "unique": false}'
);

// ...

if ($collection->dropIndex('myindex')) {
 echo 'An index named 'myindex' was found, and dropped.';
}
?>

The above example will output:

An index named 'myindex' was found, and dropped.

5.6.7 Collection::existsInDatabase

Copyright 1997-2019 the PHP Documentation Group.

• Collection::existsInDatabase

Check if collection exists in database

Description

 public bool mysql_xdevapi\Collection::existsInDatabase();

Checks if the Collection object refers to a collection in the database (schema).

Parameters

This function has no parameters.

Return Values

Returns TRUE if collection exists in the database, else FALSE if it does not.

Examples

Example 5.16 mysql_xdevapi\Collection::existsInDatabase example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$create = $schema->createCollection("people");

// ...

$collection = $schema->getCollection("people");

http://www.php.net/mysql_xdevapiCollection::existsInDatabase

Collection::find

284

// ...

if (!$collection->existsInDatabase()) {
 echo "The collection no longer exists in the database named addressbook. What happened?";
}
?>

5.6.8 Collection::find

Copyright 1997-2019 the PHP Documentation Group.

• Collection::find

Search for document

Description

 public mysql_xdevapi\CollectionFind mysql_xdevapi\Collection::find(
 string search_condition);

Search a database collection for a document or set of documents. The found documents are returned as a
CollectionFind object is to further modify or fetch results from.

Parameters

search_condition Although optional, normally a condition is defined to limit the results to a
subset of documents.

Multiple elements might build the condition and the syntax supports
parameter binding. The expression used as search condition must be
a valid SQL expression. If no search condition is provided (field empty)
then find('true') is assumed.

Return Values

A CollectionFind object to verify the operation, or fetch the found documents.

Examples

Example 5.17 mysql_xdevapi\Collection::find example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$collection = $schema->createCollection("people");

$collection->add('{"name": "Alfred", "age": 18, "job": "Butler"}')->execute();
$collection->add('{"name": "Bob", "age": 19, "job": "Swimmer"}')->execute();
$collection->add('{"name": "Fred", "age": 20, "job": "Construction"}')->execute();
$collection->add('{"name": "Wilma", "age": 21, "job": "Teacher"}')->execute();
$collection->add('{"name": "Suki", "age": 22, "job": "Teacher"}')->execute();

$find = $collection->find('job LIKE :job AND age > :age');
$result = $find

http://www.php.net/mysql_xdevapiCollection::find

Collection::getName

285

 ->bind(['job' => 'Teacher', 'age' => 20])
 ->sort('age DESC')
 ->limit(2)
 ->execute();

print_r($result->fetchAll());
?>

The above example will output:

Array
(
 [0] => Array
 (
 [_id] => 00005b6b536100000000000000a8
 [age] => 22
 [job] => Teacher
 [name] => Suki
)
 [1] => Array
 (
 [_id] => 00005b6b536100000000000000a7
 [age] => 21
 [job] => Teacher
 [name] => Wilma
)
)

5.6.9 Collection::getName

Copyright 1997-2019 the PHP Documentation Group.

• Collection::getName

Get collection name

Description

 public string mysql_xdevapi\Collection::getName();

Retrieve the collection's name.

Parameters

This function has no parameters.

Return Values

The collection name, as a string.

Examples

Example 5.18 mysql_xdevapi\Collection::getName example

<?php

http://www.php.net/mysql_xdevapiCollection::getName

Collection::getOne

286

$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$collection = $schema->createCollection("people");

// ...

var_dump($collection->getName());
?>

The above example will output something similar to:

string(6) "people"

5.6.10 Collection::getOne

Copyright 1997-2019 the PHP Documentation Group.

• Collection::getOne

Get one document

Description

 public Document mysql_xdevapi\Collection::getOne(
 string id);

Fetches one document from the collection.

This is a shortcut for: Collection.find("_id = :id").bind("id",
id).execute().fetchOne();

Parameters

id The document _id in the collection.

Return Values

The collection object, or NULL if the _id does not match a document.

Examples

Example 5.19 mysql_xdevapi\Collection::getOne example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

http://www.php.net/mysql_xdevapiCollection::getOne

Collection::getSchema

287

$schema = $session->getSchema("addressbook");
$collection = $schema->createCollection("people");

$result = $collection->add('{"name": "Alfred", "age": 42, "job": "Butler"}')->execute();

// A unique _id is (by default, and recommended) generated by MySQL Server
// This retrieves the generated _id's; only one in this example, so $ids[0]
$ids = $result->getGeneratedIds();
$alfreds_id = $ids[0];

// ...

print_r($alfreds_id);
print_r($collection->getOne($alfreds_id));
?>

The above example will output something similar to:

00005b6b536100000000000000b1

Array
(
 [_id] => 00005b6b536100000000000000b1
 [age] => 42
 [job] => Butler
 [name] => Alfred
)

5.6.11 Collection::getSchema

Copyright 1997-2019 the PHP Documentation Group.

• Collection::getSchema

Get schema object

Description

 public Schema Object mysql_xdevapi\Collection::getSchema();

Retrieve the schema object that contains the collection.

Parameters

This function has no parameters.

Return Values

The schema object on success, or NULL if the object cannot be retrieved for the given collection.

Examples

Example 5.20 mysql_xdevapi\Collection::getSchema example

<?php

http://www.php.net/mysql_xdevapiCollection::getSchema

Collection::getSession

288

$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$collection = $schema->createCollection("people");

var_dump($collection->getSchema());
?>

The above example will output something similar to:

object(mysql_xdevapi\Schema)#9 (1) {
 ["name"]=>
 string(11) "addressbook"
}

5.6.12 Collection::getSession

Copyright 1997-2019 the PHP Documentation Group.

• Collection::getSession

Get session object

Description

 public Session mysql_xdevapi\Collection::getSession();

Get a new Session object from the Collection object.

Parameters

This function has no parameters.

Return Values

A Session object.

Examples

Example 5.21 mysql_xdevapi\Collection::getSession example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$collection = $schema->createCollection("people");

// ...

$newsession = $collection->getSession();

http://www.php.net/mysql_xdevapiCollection::getSession

Collection::modify

289

var_dump($session);
var_dump($newsession);
?>

The above example will output something similar to:

object(mysql_xdevapi\Session)#1 (0) {
}
object(mysql_xdevapi\Session)#4 (0) {
}

5.6.13 Collection::modify

Copyright 1997-2019 the PHP Documentation Group.

• Collection::modify

Modify collection documents

Description

 public mysql_xdevapi\CollectionModify mysql_xdevapi\Collection::modify(
 string search_condition);

Modify collections that meet specific search conditions. Multiple operations are allowed, and parameter
binding is supported.

Parameters

search_condition Must be a valid SQL expression used to match the documents to
modify. This expression might be as simple as TRUE, which matches all
documents, or it might use functions and operators such as 'CAST(_id
AS SIGNED) >= 10', 'age MOD 2 = 0 OR age MOD 3 = 0', or
'_id IN ["2","5","7","10"]'.

Return Values

If the operation is not executed, then the function will return a Modify object that can be used to add
additional modify operations.

If the modify operation is executed, then the returned object will contain the result of the operation.

Examples

Example 5.22 mysql_xdevapi\Collection::modify example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

http://www.php.net/mysql_xdevapiCollection::modify

Collection::remove

290

$schema = $session->getSchema("addressbook");
$collection = $schema->createCollection("people");

$collection->add('{"name": "Alfred", "age": 18, "job": "Butler"}')->execute();
$collection->add('{"name": "Bob", "age": 19, "job": "Painter"}')->execute();

// Add two new jobs for all Painters: Artist and Crafter
$collection
 ->modify("job in ('Butler', 'Painter')")
 ->arrayAppend('job', 'Artist')
 ->arrayAppend('job', 'Crafter')
 ->execute();

// Remove the 'beer' field from all documents with the age 21
$collection
 ->modify('age < 21')
 ->unset(['beer'])
 ->execute();
?>

5.6.14 Collection::remove

Copyright 1997-2019 the PHP Documentation Group.

• Collection::remove

Remove collection documents

Description

 public mysql_xdevapi\CollectionRemove mysql_xdevapi\Collection::remove(
 string search_condition);

Remove collections that meet specific search conditions. Multiple operations are allowed, and parameter
binding is supported.

Parameters

search_condition Must be a valid SQL expression used to match the documents to
modify. This expression might be as simple as TRUE, which matches all
documents, or it might use functions and operators such as 'CAST(_id
AS SIGNED) >= 10', 'age MOD 2 = 0 OR age MOD 3 = 0', or
'_id IN ["2","5","7","10"]'.

Return Values

If the operation is not executed, then the function will return a Remove object that can be used to add
additional remove operations.

If the remove operation is executed, then the returned object will contain the result of the operation.

Examples

Example 5.23 mysql_xdevapi\Collection::remove example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

http://www.php.net/mysql_xdevapiCollection::remove

Collection::removeOne

291

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$collection = $schema->createCollection("people");

$collection->add('{"name": "Alfred", "age": 18, "job": "Butler"}')->execute();
$collection->add('{"name": "Bob", "age": 19, "job": "Painter"}')->execute();

// Remove all painters
$collection
 ->remove("job in ('Painter')")
 ->execute();

// Remove the oldest butler
$collection
 ->remove("job in ('Butler')")
 ->sort('age desc')
 ->limit(1)
 ->execute();

// Remove record with lowest age
$collection
 ->remove('true')
 ->sort('age desc')
 ->limit(1)
 ->execute();
?>

5.6.15 Collection::removeOne

Copyright 1997-2019 the PHP Documentation Group.

• Collection::removeOne

Remove one collection document

Description

 public mysql_xdevapi\Result mysql_xdevapi\Collection::removeOne(
 string id);

Remove one document from the collection with the correspending ID. This is a shortcut for
Collection.remove("_id = :id").bind("id", id).execute().

Parameters

id The ID of the collection document to remove. Typically this is the _id
that was generated by MySQL Server when the record was added.

Return Values

A Result object that can be used to query the number of affected items or the number warnings generated
by the operation.

Examples

Example 5.24 mysql_xdevapi\Collection::removeOne example

http://www.php.net/mysql_xdevapiCollection::removeOne

Collection::replaceOne

292

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$collection = $schema->createCollection("people");

$result = $collection->add('{"name": "Alfred", "age": 18, "job": "Butler"}')->execute();

// Normally the _id is known by other means,
// but for this example let's fetch the generated id and use it
$ids = $result->getGeneratedIds();
$alfred_id = $ids[0];

$result = $collection->removeOne($alfred_id);

if(!$result->getAffectedItemsCount()) {
 echo "Alfred with id $alfred_id was not removed.";
} else {
 echo "Goodbye, Alfred, you can take _id $alfred_id with you.";
}
?>

The above example will output something similar to:

Goodbye, Alfred, you can take _id 00005b6b536100000000000000cb with you.

5.6.16 Collection::replaceOne

Copyright 1997-2019 the PHP Documentation Group.

• Collection::replaceOne

Replace one collection document

Description

 public mysql_xdevapi\Result mysql_xdevapi\Collection::replaceOne(
 string id,
 string doc);

Updates (or replaces) the document identified by ID, if it exists.

Parameters

id ID of the document to replace or update. Typically this is the _id that
was generated by MySQL Server when the record was added.

doc Collection document to update or replace the document matching the
id parameter.

This document can be either a document object or a valid JSON string
describing the new document.

Return Values

CollectionAdd class

293

A Result object that can be used to query the number of affected items and the number warnings
generated by the operation.

Examples

Example 5.25 mysql_xdevapi\Collection::replaceOne example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$collection = $schema->createCollection("people");

$result = $collection->add('{"name": "Alfred", "age": 18, "job": "Butler"}')->execute();

// Normally the _id is known by other means,
// but for this example let's fetch the generated id and use it
$ids = $result->getGeneratedIds();
$alfred_id = $ids[0];

// ...

$alfred = $collection->getOne($alfred_id);
$alfred['age'] = 81;
$alfred['job'] = 'Guru';

$collection->replaceOne($alfred_id, $alfred);

?>

5.7 CollectionAdd class

Copyright 1997-2019 the PHP Documentation Group.

mysql_xdevapi\CollectionAdd {
mysql_xdevapi\CollectionAdd

 mysql_xdevapi\Executable

 Methods

 public mysql_xdevapi\Result mysql_xdevapi\CollectionAdd::execute();

}

5.7.1 CollectionAdd::__construct

Copyright 1997-2019 the PHP Documentation Group.

• CollectionAdd::__construct

CollectionAdd constructor

http://www.php.net/mysql_xdevapiCollection::replaceOne

CollectionAdd::__construct

294

Description

 private mysql_xdevapi\CollectionAdd::__construct();

Use to add a document to a collection; called from a Collection object.

Parameters

This function has no parameters.

Examples

Example 5.26 mysql_xdevapi\CollectionAdd::__construct example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$create = $schema->createCollection("people");

$collection = $schema->getCollection("people");

// Add two documents
$collection
 ->add('{"name": "Fred", "age": 21, "job": "Construction"}')
 ->execute();

$collection
 ->add('{"name": "Wilma", "age": 23, "job": "Teacher"}')
 ->execute();

// Add two documents using a single JSON object
$result = $collection
 ->add(
 '{"name": "Bernie",
 "jobs": [{"title":"Cat Herder","Salary":42000}, {"title":"Father","Salary":0}],
 "hobbies": ["Sports","Making cupcakes"]}',
 '{"name": "Jane",
 "jobs": [{"title":"Scientist","Salary":18000}, {"title":"Mother","Salary":0}],
 "hobbies": ["Walking","Making pies"]}')
 ->execute();

// Fetch a list of generated ID's from the last add()
$ids = $result->getGeneratedIds();
print_r($ids);

?>

The above example will output something similar to:

Array
(
 [0] => 00005b6b53610000000000000056
 [1] => 00005b6b53610000000000000057
)

http://www.php.net/mysql_xdevapiCollectionAdd::__construct

CollectionAdd::execute

295

Notes

Note

A unique _id is generated by MySQL Server 8.0 or higher, as demonstrated in the
example. The _id field must be manually defined if using MySQL Server 5.7.

5.7.2 CollectionAdd::execute

Copyright 1997-2019 the PHP Documentation Group.

• CollectionAdd::execute

Execute the statement

Description

 public mysql_xdevapi\Result mysql_xdevapi\CollectionAdd::execute();

The execute method is required to send the CRUD operation request to the MySQL server.

Parameters

This function has no parameters.

Return Values

A Result object that can be used to verify the status of the operation, such as the number of affected rows.

Examples

Example 5.27 mysql_xdevapi\CollectionAdd::execute example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$create = $schema->createCollection("people");

$collection = $schema->getCollection("people");

// Add two documents
$collection
 ->add('{"name": "Fred", "age": 21, "job": "Construction"}')
 ->execute();

$collection
 ->add('{"name": "Wilma", "age": 23, "job": "Teacher"}')
 ->execute();

// Add two documents using a single JSON object
$result = $collection
 ->add(
 '{"name": "Bernie",
 "jobs": [{"title":"Cat Herder","Salary":42000}, {"title":"Father","Salary":0}],
 "hobbies": ["Sports","Making cupcakes"]}',
 '{"name": "Jane",
 "jobs": [{"title":"Scientist","Salary":18000}, {"title":"Mother","Salary":0}],
 "hobbies": ["Walking","Making pies"]}')

http://www.php.net/mysql_xdevapiCollectionAdd::execute

CollectionFind class

296

 ->execute();

// Fetch a list of generated ID's from the last add()
$ids = $result->getGeneratedIds();
print_r($ids);
?>

The above example will output something similar to:

Array
(
 [0] => 00005b6b53610000000000000056
 [1] => 00005b6b53610000000000000057
)

5.8 CollectionFind class

Copyright 1997-2019 the PHP Documentation Group.

mysql_xdevapi\CollectionFind {
mysql_xdevapi\CollectionFind

 mysql_xdevapi\Executable

 mysql_xdevapi\CrudOperationBindable

 mysql_xdevapi\CrudOperationLimitable

 mysql_xdevapi\CrudOperationSortable

 Methods

 public mysql_xdevapi\CollectionFind mysql_xdevapi\CollectionFind::bind(
 array placeholder_values);

 public mysql_xdevapi\DocResult mysql_xdevapi\CollectionFind::execute();

 public mysql_xdevapi\CollectionFind mysql_xdevapi\CollectionFind::fields(
 string projection);

 public mysql_xdevapi\CollectionFind mysql_xdevapi\CollectionFind::groupBy(
 string sort_expr);

 public mysql_xdevapi\CollectionFind mysql_xdevapi\CollectionFind::having(
 string sort_expr);

 public mysql_xdevapi\CollectionFind mysql_xdevapi\CollectionFind::limit(
 integer rows);

 public mysql_xdevapi\CollectionFind mysql_xdevapi\CollectionFind::lockExclusive(
 integer lock_waiting_option);

 public mysql_xdevapi\CollectionFind mysql_xdevapi\CollectionFind::lockShared(
 integer lock_waiting_option);

 public mysql_xdevapi\CollectionFind mysql_xdevapi\CollectionFind::offset(

CollectionFind::bind

297

 integer position);

 public mysql_xdevapi\CollectionFind mysql_xdevapi\CollectionFind::sort(
 string sort_expr);

}

5.8.1 CollectionFind::bind

Copyright 1997-2019 the PHP Documentation Group.

• CollectionFind::bind

Bind value to query placeholder

Description

 public mysql_xdevapi\CollectionFind mysql_xdevapi\CollectionFind::bind(
 array placeholder_values);

It allows the user to bind a parameter to the placeholder in the search condition of the find operation. The
placeholder has the form of :NAME where ':' is a common prefix that must always exists before any NAME,
NAME is the actual name of the placeholder. The bind function accepts a list of placeholders if multiple
entities have to be substituted in the search condition.

Parameters

placeholder_values Values to substitute in the search condition; multiple values are allowed
and are passed as an array where "PLACEHOLDER_NAME =>
PLACEHOLDER_VALUE".

Return Values

A CollectionFind object, or chain with execute() to return a Result object.

Examples

Example 5.28 mysql_xdevapi\CollectionFind::bind example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$create = $schema->createCollection("people");
$result = $create
 ->add('{"name": "Alfred", "age": 18, "job": "Butler"}')
 ->execute();

// ...

$collection = $schema->getCollection("people");

$result = $collection
 ->find('job like :job and age > :age')
 ->bind(['job' => 'Butler', 'age' => 16])
 ->execute();

var_dump($result->fetchAll());

http://www.php.net/mysql_xdevapiCollectionFind::bind

CollectionFind::__construct

298

?>

The above example will output something similar to:

array(1) {
 [0]=>
 array(4) {
 ["_id"]=>
 string(28) "00005b6b536100000000000000cf"
 ["age"]=>
 int(18)
 ["job"]=>
 string(6) "Butler"
 ["name"]=>
 string(6) "Alfred"
 }
}

5.8.2 CollectionFind::__construct

Copyright 1997-2019 the PHP Documentation Group.

• CollectionFind::__construct

CollectionFind constructor

Description

 private mysql_xdevapi\CollectionFind::__construct();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Examples

Example 5.29 CollectionFind example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$create = $schema->createCollection("people");
$result = $create
 ->add('{"name": "Alfred", "age": 18, "job": "Butler"}')
 ->execute();

// ...

CollectionFind::execute

299

$collection = $schema->getCollection("people");

$result = $collection
 ->find('job like :job and age > :age')
 ->bind(['job' => 'Butler', 'age' => 16])
 ->execute();

var_dump($result->fetchAll());
?>

The above example will output something similar to:

array(1) {
 [0]=>
 array(4) {
 ["_id"]=>
 string(28) "00005b6b536100000000000000cf"
 ["age"]=>
 int(18)
 ["job"]=>
 string(6) "Butler"
 ["name"]=>
 string(6) "Alfred"
 }
}

5.8.3 CollectionFind::execute

Copyright 1997-2019 the PHP Documentation Group.

• CollectionFind::execute

Execute the statement

Description

 public mysql_xdevapi\DocResult mysql_xdevapi\CollectionFind::execute();

Execute the find operation; this functionality allows for method chaining.

Parameters

This function has no parameters.

Return Values

A DocResult object that to either fetch results from, or to query the status of the operation.

Examples

Example 5.30 CollectionFind example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

CollectionFind::fields

300

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$create = $schema->createCollection("people");

$create
 ->add('{"name": "Alfred", "age": 18, "job": "Butler"}')
 ->execute();

// ...

$collection = $schema->getCollection("people");

$result = $collection
 ->find('job like :job and age > :age')
 ->bind(['job' => 'Butler', 'age' => 16])
 ->execute();

var_dump($result->fetchAll());
?>

The above example will output something similar to:

array(1) {
 [0]=>
 array(4) {
 ["_id"]=>
 string(28) "00005b6b536100000000000000cf"
 ["age"]=>
 int(18)
 ["job"]=>
 string(6) "Butler"
 ["name"]=>
 string(6) "Alfred"
 }
}

5.8.4 CollectionFind::fields

Copyright 1997-2019 the PHP Documentation Group.

• CollectionFind::fields

Set document field filter

Description

 public mysql_xdevapi\CollectionFind mysql_xdevapi\CollectionFind::fields(
 string projection);

Defined the columns for the query to return. If not defined then all columns are used.

Parameters

projection Can either be a single string or an array of string, those strings are
identifying the columns that have to be returned for each document that
match the search condition.

CollectionFind::groupBy

301

Return Values

A CollectionFind object that can be used for further processing.

Examples

Example 5.31 mysql_xdevapi\CollectionFind::fields example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$create = $schema->createCollection("people");

$create
 ->add('{"name": "Alfred", "age": 18, "job": "Butler"}')
 ->execute();

// ...

$collection = $schema->getCollection("people");

$result = $collection
 ->find('job like :job and age > :age')
 ->bind(['job' => 'Butler', 'age' => 16])
 ->fields('name')
 ->execute();

var_dump($result->fetchAll());
?>

The above example will output something similar to:

array(1) {
 [0]=>
 array(1) {
 ["name"]=>
 string(6) "Alfred"
 }
}

5.8.5 CollectionFind::groupBy

Copyright 1997-2019 the PHP Documentation Group.

• CollectionFind::groupBy

Set grouping criteria

Description

 public mysql_xdevapi\CollectionFind mysql_xdevapi\CollectionFind::groupBy(
 string sort_expr);

http://www.php.net/mysql_xdevapiCollectionFind::fields

CollectionFind::having

302

This function can be used to group the result-set by one more columns, frequently this is used with
aggregate functions like COUNT,MAX,MIN,SUM etc.

Parameters

sort_expr The columns or columns that have to be used for the group operation,
this can either be a single string or an array of string arguments, one for
each column.

Return Values

A CollectionFind that can be used for further processing

Examples

Example 5.32 mysql_xdevapi\CollectionFind::groupBy example

<?php

//Assuming $coll is a valid Collection object

//Extract all the documents from the Collection and group the results by the 'name' field
$res = $coll->find()->groupBy('name')->execute();

?>

5.8.6 CollectionFind::having

Copyright 1997-2019 the PHP Documentation Group.

• CollectionFind::having

Set condition for aggregate functions

Description

 public mysql_xdevapi\CollectionFind mysql_xdevapi\CollectionFind::having(
 string sort_expr);

This function can be used after the 'field' operation in order to make a selection on the documents to
extract.

Parameters

sort_expr This must be a valid SQL expression, the use of aggreate functions is
allowed

Return Values

CollectionFind object that can be used for further processing

Examples

Example 5.33 mysql_xdevapi\CollectionFind::having example

http://www.php.net/mysql_xdevapiCollectionFind::groupBy
http://www.php.net/mysql_xdevapiCollectionFind::having

CollectionFind::limit

303

<?php

//Assuming $coll is a valid Collection object

//Find all the documents for which the 'age' is greather than 40,
//Only the columns 'name' and 'age' are returned in the Result object
$res = $coll->find()->fields(['name','age'])->having('age > 40')->execute();

?>

5.8.7 CollectionFind::limit

Copyright 1997-2019 the PHP Documentation Group.

• CollectionFind::limit

Limit number of returned documents

Description

 public mysql_xdevapi\CollectionFind mysql_xdevapi\CollectionFind::limit(
 integer rows);

Set the maximum number of documents to return.

Parameters

rows Maximum number of documents.

Return Values

A CollectionFind object that can be used for additional processing; chain with the execute() method to
return a DocResult object.

Examples

Example 5.34 mysql_xdevapi\CollectionFind::limit example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$create = $schema->createCollection("people");
$create
 ->add('{"name": "Alfred", "age": 18, "job": "Butler"}')
 ->execute();
$create
 ->add('{"name": "Reginald", "age": 42, "job": "Butler"}')
 ->execute();

// ...

$collection = $schema->getCollection("people");

$result = $collection
 ->find('job like :job and age > :age')
 ->bind(['job' => 'Butler', 'age' => 16])

http://www.php.net/mysql_xdevapiCollectionFind::limit

CollectionFind::lockExclusive

304

 ->sort('age desc')
 ->limit(1)
 ->execute();

var_dump($result->fetchAll());
?>

The above example will output something similar to:

array(1) {
 [0]=>
 array(4) {
 ["_id"]=>
 string(28) "00005b6b536100000000000000f3"
 ["age"]=>
 int(42)
 ["job"]=>
 string(6) "Butler"
 ["name"]=>
 string(8) "Reginald"
 }
}

5.8.8 CollectionFind::lockExclusive

Copyright 1997-2019 the PHP Documentation Group.

• CollectionFind::lockExclusive

Execute operation with EXCLUSIVE LOCK

Description

 public mysql_xdevapi\CollectionFind mysql_xdevapi\CollectionFind::lockExclusive(
 integer lock_waiting_option);

Lock exclusively the document, other transactions are blocked from updating the document until the
document is locked While the document is locked, other transactions are blocked from updating those
docs, from doing SELECT ... LOCK IN SHARE MODE, or from reading the data in certain transaction
isolation levels. Consistent reads ignore any locks set on the records that exist in the read view.

This feature is directly useful with the modify() command, to avoid concurrency problems. Basically, it
serializes access to a row through row locking

Parameters

lock_waiting_option Optional waiting option. By default it is MYSQLX_LOCK_DEFAULT. Valid
values are these constants:

• MYSQLX_LOCK_DEFAULT

• MYSQLX_LOCK_NOWAIT

• MYSQLX_LOCK_SKIP_LOCKED

Return Values

CollectionFind::lockShared

305

Returns a CollectionFind object that can be used for further processing

Examples

Example 5.35 mysql_xdevapi\CollectionFind::lockExclusive example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$schema = $session->getSchema("addressbook");
$collection = $schema->createCollection("people");

$session->startTransaction();

$result = $collection
 ->find("age > 50")
 ->lockExclusive()
 ->execute();

// ... do an operation on the object

// Complete the transaction and unlock the document
$session->commit();
?>

5.8.9 CollectionFind::lockShared

Copyright 1997-2019 the PHP Documentation Group.

• CollectionFind::lockShared

Execute operation with SHARED LOCK

Description

 public mysql_xdevapi\CollectionFind mysql_xdevapi\CollectionFind::lockShared(
 integer lock_waiting_option);

Allows to share the documents between multiple transactions which are locking in shared mode.

Other sessions can read the rows, but cannot modify them until your transaction commits.

If any of these rows were changed by another transaction that has not yet committed,

your query waits until that transaction ends and then uses the latest values.

Parameters

lock_waiting_option Optional waiting option. By default it is MYSQLX_LOCK_DEFAULT. Valid
values are these constants:

• MYSQLX_LOCK_DEFAULT

• MYSQLX_LOCK_NOWAIT

• MYSQLX_LOCK_SKIP_LOCKED

Return Values

http://www.php.net/mysql_xdevapiCollectionFind::lockExclusive

CollectionFind::offset

306

A CollectionFind object that can be used for further processing

Examples

Example 5.36 mysql_xdevapi\CollectionFind::lockShared example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$schema = $session->getSchema("addressbook");
$collection = $schema->createCollection("people");

$session->startTransaction();

$result = $collection
 ->find("age > 50")
 ->lockShared()
 ->execute();

// ... read the object in shared mode

// Complete the transaction and unlock the document
$session->commit();
?>

5.8.10 CollectionFind::offset

Copyright 1997-2019 the PHP Documentation Group.

• CollectionFind::offset

Skip given number of elements to be returned

Description

 public mysql_xdevapi\CollectionFind mysql_xdevapi\CollectionFind::offset(
 integer position);

Skip (offset) these number of elements that otherwise would be returned by the find operation. Use with the
limit() method.

Defining an offset larger than the result set size results in an empty set.

Parameters

position Number of elements to skip for the limit() operation.

Return Values

A CollectionFind object that can be used for additional processing.

Examples

Example 5.37 mysql_xdevapi\CollectionFind::offset example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

http://www.php.net/mysql_xdevapiCollectionFind::lockShared
http://www.php.net/mysql_xdevapiCollectionFind::offset

CollectionFind::sort

307

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$create = $schema->createCollection("people");
$create
 ->add('{"name": "Alfred", "age": 18, "job": "Butler"}')
 ->execute();
$create
 ->add('{"name": "Reginald", "age": 42, "job": "Butler"}')
 ->execute();

// ...

$collection = $schema->getCollection("people");

$result = $collection
 ->find()
 ->sort('age asc')
 ->offset(1)
 ->limit(1)
 ->execute();

var_dump($result->fetchAll());
?>

The above example will output something similar to:

array(1) {
 [0]=>
 array(4) {
 ["_id"]=>
 string(28) "00005b6b536100000000000000f3"
 ["age"]=>
 int(42)
 ["job"]=>
 string(6) "Butler"
 ["name"]=>
 string(8) "Reginald"
 }
}

5.8.11 CollectionFind::sort

Copyright 1997-2019 the PHP Documentation Group.

• CollectionFind::sort

Set the sorting criteria

Description

 public mysql_xdevapi\CollectionFind mysql_xdevapi\CollectionFind::sort(
 string sort_expr);

Sort the result set by the field selected in the sort_expr argument. The allowed orders are ASC (Ascending)
or DESC (Descending). This operation is equivalent to the 'ORDER BY' SQL operation and it follows the
same set of rules.

CollectionFind::sort

308

Parameters

sort_expr One or more sorting expressions can be provided. The evaluation is
from left to right, and each expression is separated by a comma.

Return Values

A CollectionFind object that can be used to execute the command, or to add additional operations.

Examples

Example 5.38 mysql_xdevapi\CollectionFind::sort example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$create = $schema->createCollection("people");
$create
 ->add('{"name": "Alfred", "age": 18, "job": "Butler"}')
 ->execute();
$create
 ->add('{"name": "Reginald", "age": 42, "job": "Butler"}')
 ->execute();

// ...

$collection = $schema->getCollection("people");

$result = $collection
 ->find()
 ->sort('job desc', 'age asc')
 ->execute();

var_dump($result->fetchAll());
?>

The above example will output something similar to:

array(2) {
 [0]=>
 array(4) {
 ["_id"]=>
 string(28) "00005b6b53610000000000000106"
 ["age"]=>
 int(18)
 ["job"]=>
 string(6) "Butler"
 ["name"]=>
 string(6) "Alfred"
 }
 [1]=>
 array(4) {
 ["_id"]=>
 string(28) "00005b6b53610000000000000107"
 ["age"]=>
 int(42)

http://www.php.net/mysql_xdevapiCollectionFind::sort

CollectionModify class

309

 ["job"]=>
 string(6) "Butler"
 ["name"]=>
 string(8) "Reginald"
 }
}

5.9 CollectionModify class
Copyright 1997-2019 the PHP Documentation Group.

mysql_xdevapi\CollectionModify {
mysql_xdevapi\CollectionModify

 mysql_xdevapi\Executable

 mysql_xdevapi\CrudOperationBindable

 mysql_xdevapi\CrudOperationLimitable

 mysql_xdevapi\CrudOperationSkippable

 mysql_xdevapi\CrudOperationSortable

 Methods

 public mysql_xdevapi\CollectionModify mysql_xdevapi\CollectionModify::arrayAppend(
 string collection_field,
 string expression_or_literal);

 public mysql_xdevapi\CollectionModify mysql_xdevapi\CollectionModify::arrayInsert(
 string collection_field,
 string expression_or_literal);

 public mysql_xdevapi\CollectionModify mysql_xdevapi\CollectionModify::bind(
 array placeholder_values);

 public mysql_xdevapi\Result mysql_xdevapi\CollectionModify::execute();

 public mysql_xdevapi\CollectionModify mysql_xdevapi\CollectionModify::limit(
 integer rows);

 public mysql_xdevapi\CollectionModify mysql_xdevapi\CollectionModify::patch(
 string document);

 public mysql_xdevapi\CollectionModify mysql_xdevapi\CollectionModify::replace(
 string collection_field,
 string expression_or_literal);

 public mysql_xdevapi\CollectionModify mysql_xdevapi\CollectionModify::set(
 string collection_field,
 string expression_or_literal);

 public mysql_xdevapi\CollectionModify mysql_xdevapi\CollectionModify::skip(
 integer position);

 public mysql_xdevapi\CollectionModify mysql_xdevapi\CollectionModify::sort(
 string sort_expr);

 public mysql_xdevapi\CollectionModify mysql_xdevapi\CollectionModify::unset(
 array fields);

CollectionModify::arrayAppend

310

}

5.9.1 CollectionModify::arrayAppend

Copyright 1997-2019 the PHP Documentation Group.

• CollectionModify::arrayAppend

Append element to an array field

Description

 public mysql_xdevapi\CollectionModify mysql_xdevapi\CollectionModify::arrayAppend(
 string collection_field,
 string expression_or_literal);

Add an element to a document's field, as multiple elements of a field are represented as an array.
Unlike arrayInsert(), arrayAppend() always appends the new element at the end of the array, whereas
arrayInsert() can define the location.

Parameters

collection_field The identifier of the field where the new element is inserted.

expression_or_literal The new element to insert at the end of the document field array.

Return Values

A CollectionModify object that can be used to execute the command, or to add additional operations.

Examples

Example 5.39 mysql_xdevapi\CollectionModify::arrayAppend example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$collection = $schema->createCollection("people");

$result = $collection
 ->add(
 '{"name": "Bernie",
 "traits": ["Friend", "Brother", "Human"]}')
 ->execute();

$collection
 ->modify("name in ('Bernie', 'Jane')")
 ->arrayAppend('traits', 'Happy')
 ->execute();

$result = $collection
 ->find()
 ->execute();

print_r($result->fetchAll());
?>

http://www.php.net/mysql_xdevapiCollectionModify::arrayAppend

CollectionModify::arrayInsert

311

The above example will output something similar to:

Array
(
 [0] => Array
 (
 [_id] => 00005b6b5361000000000000010c
 [name] => Bernie
 [traits] => Array
 (
 [0] => Friend
 [1] => Brother
 [2] => Human
 [3] => Happy
)
)
)

5.9.2 CollectionModify::arrayInsert

Copyright 1997-2019 the PHP Documentation Group.

• CollectionModify::arrayInsert

Insert element into an array field

Description

 public mysql_xdevapi\CollectionModify mysql_xdevapi\CollectionModify::arrayInsert(
 string collection_field,
 string expression_or_literal);

Add an element to a document's field, as multiple elements of a field are represented as an array. Unlike
arrayAppend(), arrayInsert() allows you to specify where the new element is inserted by defining which
item it is after, whereas arrayAppend() always appends the new element at the end of the array.

Parameters

collection_field Identify the item in the array that the new element is inserted after.
The format of this parameter is FIELD_NAME[INDEX] where
FIELD_NAME is the name of the document field to remove the element
from, and INDEX is the INDEX of the element within the field.

The INDEX field is zero based, so the leftmost item from the array has
an index of 0.

expression_or_literal The new element to insert after FIELD_NAME[INDEX]

Return Values

A CollectionModify object that can be used to execute the command, or to add additional operations

Examples

Example 5.40 mysql_xdevapi\CollectionModify::arrayInsert example

http://www.php.net/mysql_xdevapiCollectionModify::arrayInsert

CollectionModify::bind

312

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$collection = $schema->createCollection("people");

$result = $collection
 ->add(
 '{"name": "Bernie",
 "traits": ["Friend", "Brother", "Human"]}')
 ->execute();

$collection
 ->modify("name in ('Bernie', 'Jane')")
 ->arrayInsert('traits[1]', 'Happy')
 ->execute();

$result = $collection
 ->find()
 ->execute();

print_r($result->fetchAll());
?>

The above example will output something similar to:

Array
(
 [0] => Array
 (
 [_id] => 00005b6b5361000000000000010d
 [name] => Bernie
 [traits] => Array
 (
 [0] => Friend
 [1] => Happy
 [2] => Brother
 [3] => Human
)
)
)

5.9.3 CollectionModify::bind

Copyright 1997-2019 the PHP Documentation Group.

• CollectionModify::bind

Bind value to query placeholder

Description

 public mysql_xdevapi\CollectionModify mysql_xdevapi\CollectionModify::bind(
 array placeholder_values);

Bind a parameter to the placeholder in the search condition of the modify operation.

CollectionModify::bind

313

The placeholder has the form of :NAME where ':' is a common prefix that must always exists before any
NAME where NAME is the name of the placeholder. The bind method accepts a list of placeholders if
multiple entities have to be substituted in the search condition of the modify operation.

Parameters

placeholder_values Placeholder values to substitute in the search condition. Multiple
values are allowed and have to be passed as an array of mappings
PLACEHOLDER_NAME->PLACEHOLDER_VALUE.

Return Values

A CollectionModify object that can be used to execute the command, or to add additional operations.

Examples

Example 5.41 mysql_xdevapi\CollectionModify::bind example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$collection = $schema->createCollection("people");

$result = $collection
 ->add(
 '{"name": "Bernie",
 "traits": ["Friend", "Brother", "Human"]}')
 ->execute();

$collection
 ->modify("name = :name")
 ->bind(['name' => 'Bernie'])
 ->arrayAppend('traits', 'Happy')
 ->execute();

$result = $collection
 ->find()
 ->execute();

print_r($result->fetchAll());
?>

The above example will output something similar to:

Array
(
 [0] => Array
 (
 [_id] => 00005b6b53610000000000000110
 [name] => Bernie
 [traits] => Array
 (
 [0] => Friend
 [1] => Brother
 [2] => Human

http://www.php.net/mysql_xdevapiCollectionModify::bind

CollectionModify::__construct

314

 [3] => Happy
)
)
)

5.9.4 CollectionModify::__construct

Copyright 1997-2019 the PHP Documentation Group.

• CollectionModify::__construct

CollectionModify constructor

Description

 private mysql_xdevapi\CollectionModify::__construct();

Modify (update) a collection, and is instantiated by the Collection::modify() method.

Parameters

This function has no parameters.

Examples

Example 5.42 mysql_xdevapi\CollectionModify::__construct example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$collection = $schema->createCollection("people");

$result = $collection
 ->add(
 '{"name": "Bernie",
 "traits": ["Friend", "Brother", "Human"]}')
 ->execute();

$collection
 ->modify("name in ('Bernie', 'Jane')")
 ->arrayAppend('traits', 'Happy')
 ->execute();

$result = $collection
 ->find()
 ->execute();

print_r($result->fetchAll());
?>

The above example will output something similar to:

http://www.php.net/mysql_xdevapiCollectionModify::__construct

CollectionModify::execute

315

Array
(
 [0] => Array
 (
 [_id] => 00005b6b5361000000000000010c
 [name] => Bernie
 [traits] => Array
 (
 [0] => Friend
 [1] => Brother
 [2] => Human
 [3] => Happy
)
)
)

5.9.5 CollectionModify::execute

Copyright 1997-2019 the PHP Documentation Group.

• CollectionModify::execute

Execute modify operation

Description

 public mysql_xdevapi\Result mysql_xdevapi\CollectionModify::execute();

The execute method is required to send the CRUD operation request to the MySQL server.

Parameters

This function has no parameters.

Return Values

A Result object that can be used to verify the status of the operation, such as the number of affected rows.

Examples

Example 5.43 mysql_xdevapi\CollectionModify::execute example

<?php

/* ... */

?>

5.9.6 CollectionModify::limit

Copyright 1997-2019 the PHP Documentation Group.

• CollectionModify::limit

Limit number of modified documents

http://www.php.net/mysql_xdevapiCollectionModify::execute

CollectionModify::limit

316

Description

 public mysql_xdevapi\CollectionModify mysql_xdevapi\CollectionModify::limit(
 integer rows);

Limit the number of documents modified by this operation. Optionally combine with skip() to define an
offset value.

Parameters

rows The maximum number of documents to modify.

Return Values

A CollectionModify object.

Examples

Example 5.44 mysql_xdevapi\CollectionModify::limit example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$collection = $schema->createCollection("people");

$collection->add('{"name": "Fred", "age": 21, "job": "Construction"}')->execute();
$collection->add('{"name": "Wilma", "age": 23, "job": "Teacher"}')->execute();
$collection->add('{"name": "Betty", "age": 24, "job": "Teacher"}')->execute();

$collection
 ->modify("job = :job")
 ->bind(['job' => 'Teacher'])
 ->set('job', 'Principal')
 ->limit(1)
 ->execute();

$result = $collection
 ->find()
 ->execute();

print_r($result->fetchAll());
?>

The above example will output something similar to:

Array
(
 [0] => Array
 (
 [_id] => 00005b6b53610000000000000118
 [age] => 21
 [job] => Construction
 [name] => Fred
)
 [1] => Array
 (

http://www.php.net/mysql_xdevapiCollectionModify::limit

CollectionModify::patch

317

 [_id] => 00005b6b53610000000000000119
 [age] => 23
 [job] => Principal
 [name] => Wilma
)
 [2] => Array
 (
 [_id] => 00005b6b5361000000000000011a
 [age] => 24
 [job] => Teacher
 [name] => Betty
)
)

5.9.7 CollectionModify::patch

Copyright 1997-2019 the PHP Documentation Group.

• CollectionModify::patch

Patch document

Description

 public mysql_xdevapi\CollectionModify mysql_xdevapi\CollectionModify::patch(
 string document);

Takes a patch object and applies it on one or more documents, and can update multiple document
properties.

Warning

This function is currently not documented; only its argument list is available.

Parameters

document A document with the properties to apply to the matching documents.

Return Values

A CollectionModify object.

Examples

Example 5.45 mysql_xdevapi\CollectionModify::patch example

<?php

$res = $coll->modify('"Programmatore" IN job')->patch('{"Hobby" : "Programmare"}')->execute();

?>

5.9.8 CollectionModify::replace

Copyright 1997-2019 the PHP Documentation Group.

http://www.php.net/mysql_xdevapiCollectionModify::patch

CollectionModify::replace

318

• CollectionModify::replace

Replace document field

Description

 public mysql_xdevapi\CollectionModify mysql_xdevapi\CollectionModify::replace(
 string collection_field,
 string expression_or_literal);

Replace (update) a given field value with a new one.

Parameters

collection_field The document path of the item to set.

expression_or_literal The value to set on the specified attribute.

Return Values

A CollectionModify object.

Examples

Example 5.46 mysql_xdevapi\CollectionModify::replace example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$collection = $schema->createCollection("people");

$result = $collection
 ->add(
 '{"name": "Bernie",
 "traits": ["Friend", "Brother", "Human"]}')
 ->execute();

$collection
 ->modify("name = :name")
 ->bind(['name' => 'Bernie'])
 ->replace("name", "Bern")
 ->execute();

$result = $collection
 ->find()
 ->execute();

print_r($result->fetchAll());
?>

The above example will output something similar to:

Array
(
 [0] => Array

http://www.php.net/mysql_xdevapiCollectionModify::replace

CollectionModify::set

319

 (
 [_id] => 00005b6b5361000000000000011b
 [name] => Bern
 [traits] => Array
 (
 [0] => Friend
 [1] => Brother
 [2] => Human
)
)
)

5.9.9 CollectionModify::set

Copyright 1997-2019 the PHP Documentation Group.

• CollectionModify::set

Set document attribute

Description

 public mysql_xdevapi\CollectionModify mysql_xdevapi\CollectionModify::set(
 string collection_field,
 string expression_or_literal);

Sets or updates attributes on documents in a collection.

Parameters

collection_field The document path (name) of the item to set.

expression_or_literal The value to set it to.

Return Values

A CollectionModify object.

Examples

Example 5.47 mysql_xdevapi\CollectionModify::set example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$collection = $schema->createCollection("people");

$result = $collection
 ->add(
 '{"name": "Bernie",
 "traits": ["Friend", "Brother", "Human"]}')
 ->execute();

$collection
 ->modify("name = :name")
 ->bind(['name' => 'Bernie'])

http://www.php.net/mysql_xdevapiCollectionModify::set

CollectionModify::skip

320

 ->set("name", "Bern")
 ->execute();

$result = $collection
 ->find()
 ->execute();

print_r($result->fetchAll());
?>

The above example will output something similar to:

Array
(
 [0] => Array
 (
 [_id] => 00005b6b53610000000000000111
 [name] => Bern
 [traits] => Array
 (
 [0] => Friend
 [1] => Brother
 [2] => Human
)
)
)

5.9.10 CollectionModify::skip

Copyright 1997-2019 the PHP Documentation Group.

• CollectionModify::skip

Skip elements

Description

 public mysql_xdevapi\CollectionModify mysql_xdevapi\CollectionModify::skip(
 integer position);

Skip the first N elements that would otherwise be returned by a find operation. If the number of elements
skipped is larger than the size of the result set, then the find operation returns an empty set.

Warning

This function is currently not documented; only its argument list is available.

Parameters

position Number of elements to skip.

Return Values

A CollectionModify object to use for further processing.

Examples

CollectionModify::sort

321

Example 5.48 mysql_xdevapi\CollectionModify::skip example

<?php

$coll->modify('age > :age')->sort('age desc')->unset(['age'])->bind(['age' => 20])->limit(4)->skip(1)->execute();

?>

5.9.11 CollectionModify::sort

Copyright 1997-2019 the PHP Documentation Group.

• CollectionModify::sort

Set the sorting criteria

Description

 public mysql_xdevapi\CollectionModify mysql_xdevapi\CollectionModify::sort(
 string sort_expr);

Sort the result set by the field selected in the sort_expr argument. The allowed orders are ASC (Ascending)
or DESC (Descending). This operation is equivalent to the 'ORDER BY' SQL operation and it follows the
same set of rules.

Warning

This function is currently not documented; only its argument list is available.

Parameters

sort_expr One or more sorting expression can be provided, the evaluation of
these will be from the leftmost to the rightmost, each expression must
be separated by a comma.

Return Values

CollectionModify object that can be used for further processing.

Examples

Example 5.49 mysql_xdevapi\CollectionModify::sort example

<?php

$res = $coll->modify('true')->sort('name desc', 'age asc')->limit(4)->set('Married', 'NO')->execute();

?>

5.9.12 CollectionModify::unset

Copyright 1997-2019 the PHP Documentation Group.

http://www.php.net/mysql_xdevapiCollectionModify::skip
http://www.php.net/mysql_xdevapiCollectionModify::sort

CollectionRemove class

322

• CollectionModify::unset

Unset the value of document fields

Description

 public mysql_xdevapi\CollectionModify mysql_xdevapi\CollectionModify::unset(
 array fields);

Removes attributes from documents in a collection.

Warning

This function is currently not documented; only its argument list is available.

Parameters

fields The attributes to remove from documents in a collection.

Return Values

CollectionModify object that can be used for further processing.

Examples

Example 5.50 mysql_xdevapi\CollectionModify::unset example

<?php

$res = $coll->modify('job like :job_name')->unset(["age", "name"])->bind(['job_name' => 'Plumber'])->execute();

?>

5.10 CollectionRemove class

Copyright 1997-2019 the PHP Documentation Group.

mysql_xdevapi\CollectionRemove {
mysql_xdevapi\CollectionRemove

 mysql_xdevapi\Executable

 mysql_xdevapi\CrudOperationBindable

 mysql_xdevapi\CrudOperationLimitable

 mysql_xdevapi\CrudOperationSortable

 Methods

 public mysql_xdevapi\CollectionRemove mysql_xdevapi\CollectionRemove::bind(
 array placeholder_values);

 public mysql_xdevapi\Result mysql_xdevapi\CollectionRemove::execute();

 public mysql_xdevapi\CollectionRemove mysql_xdevapi\CollectionRemove::limit(

http://www.php.net/mysql_xdevapiCollectionModify::unset

CollectionRemove::bind

323

 integer rows);

 public mysql_xdevapi\CollectionRemove mysql_xdevapi\CollectionRemove::sort(
 string sort_expr);

}

5.10.1 CollectionRemove::bind

Copyright 1997-2019 the PHP Documentation Group.

• CollectionRemove::bind

Bind value to placeholder

Description

 public mysql_xdevapi\CollectionRemove mysql_xdevapi\CollectionRemove::bind(
 array placeholder_values);

Bind a parameter to the placeholder in the search condition of the remove operation.

The placeholder has the form of :NAME where ':' is a common prefix that must always exists before any
NAME where NAME is the name of the placeholder. The bind method accepts a list of placeholders if
multiple entities have to be substituted in the search condition of the remove operation.

Warning

This function is currently not documented; only its argument list is available.

Parameters

placeholder_values Placeholder values to substitute in the search condition. Multiple
values are allowed and have to be passed as an array of mappings
PLACEHOLDER_NAME->PLACEHOLDER_VALUE.

Return Values

A CollectionRemove object that can be used to execute the command, or to add additional operations.

Examples

Example 5.51 mysql_xdevapi\CollectionRemove::bind example

<?php

$res = $coll->remove('age > :age_from and age < :age_to')->bind(['age_from' => 20, 'age_to' => 50])->limit(7)->execute();

?>

5.10.2 CollectionRemove::__construct

Copyright 1997-2019 the PHP Documentation Group.

• CollectionRemove::__construct

CollectionRemove constructor

http://www.php.net/mysql_xdevapiCollectionRemove::bind

CollectionRemove::execute

324

Description

 private mysql_xdevapi\CollectionRemove::__construct();

Remove collection documents, and is instantiated by the Collection::remove() method.

Parameters

This function has no parameters.

Examples

Example 5.52 mysql_xdevapi\Collection::remove example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$collection = $schema->createCollection("people");

$collection->add('{"name": "Alfred", "age": 18, "job": "Butler"}')->execute();
$collection->add('{"name": "Bob", "age": 19, "job": "Painter"}')->execute();

// Remove all painters
$collection
 ->remove("job in ('Painter')")
 ->execute();

// Remove the oldest butler
$collection
 ->remove("job in ('Butler')")
 ->sort('age desc')
 ->limit(1)
 ->execute();

// Remove record with lowest age
$collection
 ->remove('true')
 ->sort('age desc')
 ->limit(1)
 ->execute();
?>

5.10.3 CollectionRemove::execute

Copyright 1997-2019 the PHP Documentation Group.

• CollectionRemove::execute

Execute remove operation

Description

 public mysql_xdevapi\Result mysql_xdevapi\CollectionRemove::execute();

The execute function needs to be invoked in order to trigger the client to send the CRUD operation request
to the server.

http://www.php.net/mysql_xdevapiCollection::remove

CollectionRemove::limit

325

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

Result object.

Examples

Example 5.53 mysql_xdevapi\CollectionRemove::execute example

<?php

$res = $coll->remove('true')->sort('age desc')->limit(2)->execute();

?>

5.10.4 CollectionRemove::limit

Copyright 1997-2019 the PHP Documentation Group.

• CollectionRemove::limit

Limit number of documents to remove

Description

 public mysql_xdevapi\CollectionRemove mysql_xdevapi\CollectionRemove::limit(
 integer rows);

Sets the maximum number of documents to remove.

Warning

This function is currently not documented; only its argument list is available.

Parameters

rows The maximum number of documents to remove.

Return Values

Returns a CollectionRemove object that can be used to execute the command, or to add additional
operations.

Examples

Example 5.54 mysql_xdevapi\CollectionRemove::limit example

<?php

http://www.php.net/mysql_xdevapiCollectionRemove::execute
http://www.php.net/mysql_xdevapiCollectionRemove::limit

CollectionRemove::sort

326

$res = $coll->remove('job in (\'Barista\', \'Programmatore\', \'Ballerino\', \'Programmatrice\')')->limit(5)->sort(['age desc', 'name asc'])->execute();

?>

5.10.5 CollectionRemove::sort

Copyright 1997-2019 the PHP Documentation Group.

• CollectionRemove::sort

Set the sorting criteria

Description

 public mysql_xdevapi\CollectionRemove mysql_xdevapi\CollectionRemove::sort(
 string sort_expr);

Sort the result set by the field selected in the sort_expr argument. The allowed orders are ASC (Ascending)
or DESC (Descending). This operation is equivalent to the 'ORDER BY' SQL operation and it follows the
same set of rules.

Warning

This function is currently not documented; only its argument list is available.

Parameters

sort_expr One or more sorting expressions can be provided. The evaluation is
from left to right, and each expression is separated by a comma.

Return Values

A CollectionRemove object that can be used to execute the command, or to add additional operations.

Examples

Example 5.55 mysql_xdevapi\CollectionRemove::sort example

<?php

$res = $coll->remove('true')->sort('age desc')->limit(2)->execute();

?>

5.11 ColumnResult class
Copyright 1997-2019 the PHP Documentation Group.

mysql_xdevapi\ColumnResult {
mysql_xdevapi\ColumnResult

 Methods

http://www.php.net/mysql_xdevapiCollectionRemove::sort

ColumnResult::__construct

327

 public string mysql_xdevapi\ColumnResult::getCharacterSetName();

 public string mysql_xdevapi\ColumnResult::getCollationName();

 public string mysql_xdevapi\ColumnResult::getColumnLabel();

 public string mysql_xdevapi\ColumnResult::getColumnName();

 public integer mysql_xdevapi\ColumnResult::getFractionalDigits();

 public integer mysql_xdevapi\ColumnResult::getLength();

 public string mysql_xdevapi\ColumnResult::getSchemaName();

 public string mysql_xdevapi\ColumnResult::getTableLabel();

 public string mysql_xdevapi\ColumnResult::getTableName();

 public integer mysql_xdevapi\ColumnResult::getType();

 public integer mysql_xdevapi\ColumnResult::isNumberSigned();

 public integer mysql_xdevapi\ColumnResult::isPadded();

}

5.11.1 ColumnResult::__construct

Copyright 1997-2019 the PHP Documentation Group.

• ColumnResult::__construct

ColumnResult constructor

Description

 private mysql_xdevapi\ColumnResult::__construct();

Retrieve column metadata, such as its character set; this is instantiated by the RowResult::getColumns()
method.

Parameters

This function has no parameters.

Examples

Example 5.56 mysql_xdevapi\ColumnResult::__construct example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS nonsense")->execute();
$session->sql("CREATE DATABASE nonsense")->execute();
$session->sql("CREATE TABLE nonsense.numbers (hello int, world float unsigned)")->execute();
$session->sql("INSERT INTO nonsense.numbers values (42, 42)")->execute();

$schema = $session->getSchema("nonsense");
$table = $schema->getTable("numbers");

$result1 = $table->select('hello','world')->execute();

http://www.php.net/mysql_xdevapiColumnResult::__construct

ColumnResult::getCharacterSetName

328

// Returns an array of ColumnResult objects
$columns = $result1->getColumns();

foreach ($columns as $column) {
 echo "\nColumn label " , $column->getColumnLabel();
 echo " is type " , $column->getType();
 echo " and is ", ($column->isNumberSigned() === 0) ? "Unsigned." : "Signed.";
}

// Alternatively
$result2 = $session->sql("SELECT * FROM nonsense.numbers")->execute();

// Returns an array of FieldMetadata objects
print_r($result2->getColumns());

The above example will output something similar to:

Column label hello is type 19 and is Signed.
Column label world is type 4 and is Unsigned.

Array
(
 [0] => mysql_xdevapi\FieldMetadata Object
 (
 [type] => 1
 [type_name] => SINT
 [name] => hello
 [original_name] => hello
 [table] => numbers
 [original_table] => numbers
 [schema] => nonsense
 [catalog] => def
 [collation] => 0
 [fractional_digits] => 0
 [length] => 11
 [flags] => 0
 [content_type] => 0
)
 [1] => mysql_xdevapi\FieldMetadata Object
 (
 [type] => 6
 [type_name] => FLOAT
 [name] => world
 [original_name] => world
 [table] => numbers
 [original_table] => numbers
 [schema] => nonsense
 [catalog] => def
 [collation] => 0
 [fractional_digits] => 31
 [length] => 12
 [flags] => 1
 [content_type] => 0
)
)

5.11.2 ColumnResult::getCharacterSetName

Copyright 1997-2019 the PHP Documentation Group.

ColumnResult::getCollationName

329

• ColumnResult::getCharacterSetName

Get character set

Description

 public string mysql_xdevapi\ColumnResult::getCharacterSetName();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

Examples

Example 5.57 mysql_xdevapi\ColumnResult::getCharacterSetName example

<?php

/* ... */

?>

5.11.3 ColumnResult::getCollationName

Copyright 1997-2019 the PHP Documentation Group.

• ColumnResult::getCollationName

Get collation name

Description

 public string mysql_xdevapi\ColumnResult::getCollationName();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

Examples

http://www.php.net/mysql_xdevapiColumnResult::getCharacterSetName

ColumnResult::getColumnLabel

330

Example 5.58 mysql_xdevapi\ColumnResult::getCollationName example

<?php

/* ... */

?>

5.11.4 ColumnResult::getColumnLabel

Copyright 1997-2019 the PHP Documentation Group.

• ColumnResult::getColumnLabel

Get column label

Description

 public string mysql_xdevapi\ColumnResult::getColumnLabel();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

Examples

Example 5.59 mysql_xdevapi\ColumnResult::getColumnLabel example

<?php

/* ... */

?>

5.11.5 ColumnResult::getColumnName

Copyright 1997-2019 the PHP Documentation Group.

• ColumnResult::getColumnName

Get column name

Description

 public string mysql_xdevapi\ColumnResult::getColumnName();

http://www.php.net/mysql_xdevapiColumnResult::getCollationName
http://www.php.net/mysql_xdevapiColumnResult::getColumnLabel

ColumnResult::getFractionalDigits

331

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

Examples

Example 5.60 mysql_xdevapi\ColumnResult::getColumnName example

<?php

/* ... */

?>

5.11.6 ColumnResult::getFractionalDigits

Copyright 1997-2019 the PHP Documentation Group.

• ColumnResult::getFractionalDigits

Get fractional digit length

Description

 public integer mysql_xdevapi\ColumnResult::getFractionalDigits();

Fetch the number of fractional digits for column.

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

Examples

Example 5.61 mysql_xdevapi\ColumnResult::getFractionalDigits example

<?php

/* ... */

?>

http://www.php.net/mysql_xdevapiColumnResult::getColumnName
http://www.php.net/mysql_xdevapiColumnResult::getFractionalDigits

ColumnResult::getLength

332

5.11.7 ColumnResult::getLength

Copyright 1997-2019 the PHP Documentation Group.

• ColumnResult::getLength

Get column field length

Description

 public integer mysql_xdevapi\ColumnResult::getLength();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

Examples

Example 5.62 mysql_xdevapi\ColumnResult::getLength example

<?php

/* ... */

?>

5.11.8 ColumnResult::getSchemaName

Copyright 1997-2019 the PHP Documentation Group.

• ColumnResult::getSchemaName

Get schema name

Description

 public string mysql_xdevapi\ColumnResult::getSchemaName();

Fetch the schema name where the column is stored.

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

http://www.php.net/mysql_xdevapiColumnResult::getLength

ColumnResult::getTableLabel

333

Return Values

Examples

Example 5.63 mysql_xdevapi\ColumnResult::getSchemaName example

<?php

/* ... */

?>

5.11.9 ColumnResult::getTableLabel

Copyright 1997-2019 the PHP Documentation Group.

• ColumnResult::getTableLabel

Get table label

Description

 public string mysql_xdevapi\ColumnResult::getTableLabel();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

Examples

Example 5.64 mysql_xdevapi\ColumnResult::getTableLabel example

<?php

/* ... */

?>

5.11.10 ColumnResult::getTableName

Copyright 1997-2019 the PHP Documentation Group.

• ColumnResult::getTableName

Get table name

http://www.php.net/mysql_xdevapiColumnResult::getSchemaName
http://www.php.net/mysql_xdevapiColumnResult::getTableLabel

ColumnResult::getType

334

Description

 public string mysql_xdevapi\ColumnResult::getTableName();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

Name of the table for the column.

Examples

Example 5.65 mysql_xdevapi\ColumnResult::getTableName example

<?php

/* ... */

?>

5.11.11 ColumnResult::getType

Copyright 1997-2019 the PHP Documentation Group.

• ColumnResult::getType

Get column type

Description

 public integer mysql_xdevapi\ColumnResult::getType();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

Examples

Example 5.66 mysql_xdevapi\ColumnResult::getType example

http://www.php.net/mysql_xdevapiColumnResult::getTableName
http://www.php.net/mysql_xdevapiColumnResult::getType

ColumnResult::isNumberSigned

335

<?php

/* ... */

?>

5.11.12 ColumnResult::isNumberSigned

Copyright 1997-2019 the PHP Documentation Group.

• ColumnResult::isNumberSigned

Check if signed type

Description

 public integer mysql_xdevapi\ColumnResult::isNumberSigned();

Retrieve a table's column information, and is instantiated by the RowResult::getColumns() method.

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

TRUE if a given column as a signed type.

Examples

Example 5.67 mysql_xdevapi\ColumnResult::isNumberSigned example

<?php

/* ... */

?>

5.11.13 ColumnResult::isPadded

Copyright 1997-2019 the PHP Documentation Group.

• ColumnResult::isPadded

Check if padded

Description

 public integer mysql_xdevapi\ColumnResult::isPadded();

http://www.php.net/mysql_xdevapiColumnResult::isNumberSigned

CrudOperationBindable interface

336

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

TRUE if a given column is padded.

Examples

Example 5.68 mysql_xdevapi\ColumnResult::isPadded example

<?php

/* ... */

?>

5.12 CrudOperationBindable interface

Copyright 1997-2019 the PHP Documentation Group.

mysql_xdevapi\CrudOperationBindable {
mysql_xdevapi\CrudOperationBindable

 Methods

 abstract public mysql_xdevapi\CrudOperationBindable mysql_xdevapi\CrudOperationBindable::bind(
 array placeholder_values);

}

5.12.1 CrudOperationBindable::bind

Copyright 1997-2019 the PHP Documentation Group.

• CrudOperationBindable::bind

Bind value to placeholder

Description

 abstract public mysql_xdevapi\CrudOperationBindable mysql_xdevapi\CrudOperationBindable::bind(
 array placeholder_values);

Binds a value to a specific placeholder.

Warning

This function is currently not documented; only its argument list is available.

http://www.php.net/mysql_xdevapiColumnResult::isPadded

CrudOperationLimitable interface

337

Parameters

placeholder_values The name of the placeholders and the values to bind.

Return Values

A CrudOperationBindable object.

Examples

Example 5.69 mysql_xdevapi\CrudOperationBindable::bind example

<?php

$res = $coll->modify('name like :name')->arrayInsert('job[0]', 'Calciatore')->bind(['name' => 'ENTITY'])->execute();
$res = $table->delete()->orderby('age desc')->where('age < 20 and age > 12 and name != :name')->bind(['name' => 'Tierney'])->limit(2)->execute();

?>

5.13 CrudOperationLimitable interface
Copyright 1997-2019 the PHP Documentation Group.

mysql_xdevapi\CrudOperationLimitable {
mysql_xdevapi\CrudOperationLimitable

 Methods

 abstract public mysql_xdevapi\CrudOperationLimitable mysql_xdevapi\CrudOperationLimitable::limit(
 integer rows);

}

5.13.1 CrudOperationLimitable::limit

Copyright 1997-2019 the PHP Documentation Group.

• CrudOperationLimitable::limit

Set result limit

Description

 abstract public mysql_xdevapi\CrudOperationLimitable mysql_xdevapi\CrudOperationLimitable::limit(
 integer rows);

Sets the maximum number of records or documents to return.

Warning

This function is currently not documented; only its argument list is available.

Parameters

rows The maximum number of records or documents.

http://www.php.net/mysql_xdevapiCrudOperationBindable::bind

CrudOperationSkippable interface

338

Return Values

A CrudOperationLimitable object.

Examples

Example 5.70 mysql_xdevapi\CrudOperationLimitable::limit example

<?php

$res = $coll->find()->fields(['name as n','age as a','job as j'])->groupBy('j')->limit(11)->execute();
$res = $table->update()->set('age',69)->where('age > 15 and age < 22')->limit(4)->orderby(['age asc','name desc'])->execute();

?>

5.14 CrudOperationSkippable interface
Copyright 1997-2019 the PHP Documentation Group.

mysql_xdevapi\CrudOperationSkippable {
mysql_xdevapi\CrudOperationSkippable

 Methods

 abstract public mysql_xdevapi\CrudOperationSkippable mysql_xdevapi\CrudOperationSkippable::skip(
 integer skip);

}

5.14.1 CrudOperationSkippable::skip

Copyright 1997-2019 the PHP Documentation Group.

• CrudOperationSkippable::skip

Number of operations to skip

Description

 abstract public mysql_xdevapi\CrudOperationSkippable mysql_xdevapi\CrudOperationSkippable::skip(
 integer skip);

Skip this number of records in the returned operation.

Warning

This function is currently not documented; only its argument list is available.

Parameters

skip Number of elements to skip.

Return Values

A CrudOperationSkippable object.

http://www.php.net/mysql_xdevapiCrudOperationLimitable::limit

CrudOperationSortable interface

339

Examples

Example 5.71 mysql_xdevapi\CrudOperationSkippable::skip example

<?php

$res = $coll->find('job like \'Programmatore\'')->limit(1)->skip(3)->sort('age asc')->execute();

?>

5.15 CrudOperationSortable interface

Copyright 1997-2019 the PHP Documentation Group.

mysql_xdevapi\CrudOperationSortable {
mysql_xdevapi\CrudOperationSortable

 Methods

 abstract public mysql_xdevapi\CrudOperationSortable mysql_xdevapi\CrudOperationSortable::sort(
 string sort_expr);

}

5.15.1 CrudOperationSortable::sort

Copyright 1997-2019 the PHP Documentation Group.

• CrudOperationSortable::sort

Sort results

Description

 abstract public mysql_xdevapi\CrudOperationSortable mysql_xdevapi\CrudOperationSortable::sort(
 string sort_expr);

Sort the result set by the field selected in the sort_expr argument. The allowed orders are ASC (Ascending)
or DESC (Descending). This operation is equivalent to the 'ORDER BY' SQL operation and it follows the
same set of rules.

Warning

This function is currently not documented; only its argument list is available.

Parameters

sort_expr One or more sorting expressions can be provided. The evaluation is
from left to right, and each expression is separated by a comma.

Return Values

A CrudOperationSortable object.

http://www.php.net/mysql_xdevapiCrudOperationSkippable::skip

DatabaseObject interface

340

Examples

Example 5.72 mysql_xdevapi\CrudOperationSortable::sort example

<?php

$res = $coll->find('job like \'Cavia\'')->sort('age desc', '_id desc')->execute();

?>

5.16 DatabaseObject interface

Copyright 1997-2019 the PHP Documentation Group.

mysql_xdevapi\DatabaseObject {
mysql_xdevapi\DatabaseObject

 Methods

 abstract public bool mysql_xdevapi\DatabaseObject::existsInDatabase();

 abstract public string mysql_xdevapi\DatabaseObject::getName();

 abstract public mysql_xdevapi\Session mysql_xdevapi\DatabaseObject::getSession();

}

5.16.1 DatabaseObject::existsInDatabase

Copyright 1997-2019 the PHP Documentation Group.

• DatabaseObject::existsInDatabase

Check if object exists in database

Description

 abstract public bool mysql_xdevapi\DatabaseObject::existsInDatabase();

Verifies if the database object refers to an object that exists in the database.

Parameters

This function has no parameters.

Return Values

Returns TRUE if object exists in the database, else FALSE if it does not.

Examples

Example 5.73 mysql_xdevapi\DatabaseObject::existsInDatabase example

http://www.php.net/mysql_xdevapiCrudOperationSortable::sort
http://www.php.net/mysql_xdevapiDatabaseObject::existsInDatabase

DatabaseObject::getName

341

<?php

$existInDb = $dbObj->existsInDatabase();

?>

5.16.2 DatabaseObject::getName

Copyright 1997-2019 the PHP Documentation Group.

• DatabaseObject::getName

Get object name

Description

 abstract public string mysql_xdevapi\DatabaseObject::getName();

Fetch name of this database object.

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

The name of this database object.

Examples

Example 5.74 mysql_xdevapi\DatabaseObject::getName example

<?php

$dbObjName = $dbObj->getName();

?>

5.16.3 DatabaseObject::getSession

Copyright 1997-2019 the PHP Documentation Group.

• DatabaseObject::getSession

Get session name

Description

 abstract public mysql_xdevapi\Session mysql_xdevapi\DatabaseObject::getSession();

Fetch session associated to the database object.

http://www.php.net/mysql_xdevapiDatabaseObject::getName

DocResult class

342

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

The Session object.

Examples

Example 5.75 mysql_xdevapi\DatabaseObject::getSession example

<?php

$session = $dbObj->getSession();

?>

5.17 DocResult class

Copyright 1997-2019 the PHP Documentation Group.

mysql_xdevapi\DocResult {
mysql_xdevapi\DocResult

 mysql_xdevapi\BaseResult

 Traversable

 Methods

 public Array mysql_xdevapi\DocResult::fetchAll();

 public Object mysql_xdevapi\DocResult::fetchOne();

 public Array mysql_xdevapi\DocResult::getWarnings();

 public integer mysql_xdevapi\DocResult::getWarningsCount();

}

5.17.1 DocResult::__construct

Copyright 1997-2019 the PHP Documentation Group.

• DocResult::__construct

DocResult constructor

Description

http://www.php.net/mysql_xdevapiDatabaseObject::getSession

DocResult::fetchAll

343

 private mysql_xdevapi\DocResult::__construct();

Fetch document results and warnings, and is instantiated by CollectionFind.

Parameters

This function has no parameters.

Examples

Example 5.76 A DocResult example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$create = $schema->createCollection("people");

$create->add('{"name": "Alfred", "age": 18, "job": "Butler"}')->execute();
$create->add('{"name": "Reginald", "age": 42, "job": "Butler"}')->execute();

// ...

$collection = $schema->getCollection("people");

// Yields a DocResult object
$result = $collection
 ->find('job like :job and age > :age')
 ->bind(['job' => 'Butler', 'age' => 16])
 ->sort('age desc')
 ->limit(1)
 ->execute();

var_dump($result->fetchAll());
?>

The above example will output something similar to:

array(1) {
 [0]=>
 array(4) {
 ["_id"]=>
 string(28) "00005b6b536100000000000000f3"
 ["age"]=>
 int(42)
 ["job"]=>
 string(6) "Butler"
 ["name"]=>
 string(8) "Reginald"
 }
}

5.17.2 DocResult::fetchAll

Copyright 1997-2019 the PHP Documentation Group.

DocResult::fetchAll

344

• DocResult::fetchAll

Get all rows

Description

 public Array mysql_xdevapi\DocResult::fetchAll();

Fetch all results from a result set.

Parameters

This function has no parameters.

Return Values

An array with all results from the query; each result is an associative array.

Examples

Example 5.77 mysql_xdevapi\DocResult::fetchAll example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$create = $schema->createCollection("people");

$create->add('{"name": "Alfred", "age": 18, "job": "Butler"}')->execute();
$create->add('{"name": "Reginald", "age": 42, "job": "Butler"}')->execute();

// ...

$collection = $schema->getCollection("people");

// Yields a DocResult object
$result = $collection
 ->find('job like :job and age > :age')
 ->bind(['job' => 'Butler', 'age' => 16])
 ->sort('age desc')
 ->execute();

var_dump($result->fetchAll());
?>

The above example will output something similar to:

array(2) {

 [0]=>
 array(4) {
 ["_id"]=>
 string(28) "00005b6b53610000000000000123"
 ["age"]=>
 int(42)
 ["job"]=>

http://www.php.net/mysql_xdevapiDocResult::fetchAll

DocResult::fetchOne

345

 string(6) "Butler"
 ["name"]=>
 string(8) "Reginald"
 }

 [1]=>
 array(4) {
 ["_id"]=>
 string(28) "00005b6b53610000000000000122"
 ["age"]=>
 int(18)
 ["job"]=>
 string(6) "Butler"
 ["name"]=>
 string(6) "Alfred"
 }

}

5.17.3 DocResult::fetchOne

Copyright 1997-2019 the PHP Documentation Group.

• DocResult::fetchOne

Get one row

Description

 public Object mysql_xdevapi\DocResult::fetchOne();

Fetch one result from a result set.

Parameters

This function has no parameters.

Return Values

The result, as an associative array.

Examples

Example 5.78 mysql_xdevapi\DocResult::fetchOne example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$create = $schema->createCollection("people");

$create->add('{"name": "Alfred", "age": 18, "job": "Butler"}')->execute();
$create->add('{"name": "Reginald", "age": 42, "job": "Butler"}')->execute();

// ...

$collection = $schema->getCollection("people");

http://www.php.net/mysql_xdevapiDocResult::fetchOne

DocResult::getWarnings

346

// Yields a DocResult object
$result = $collection
 ->find('job like :job and age > :age')
 ->bind(['job' => 'Butler', 'age' => 16])
 ->sort('age desc')
 ->execute();

var_dump($result->fetchOne());
?>

The above example will output something similar to:

array(4) {
 ["_id"]=>
 string(28) "00005b6b53610000000000000125"
 ["age"]=>
 int(42)
 ["job"]=>
 string(6) "Butler"
 ["name"]=>
 string(8) "Reginald"
}

5.17.4 DocResult::getWarnings

Copyright 1997-2019 the PHP Documentation Group.

• DocResult::getWarnings

Get warnings from last operation

Description

 public Array mysql_xdevapi\DocResult::getWarnings();

Fetches warnings generated by MySQL server's last operation.

Parameters

This function has no parameters.

Return Values

An array of warnings raised by the last operation, or FALSE if no warnings are present.

Examples

Example 5.79 mysql_xdevapi\DocResult::getWarnings example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

http://www.php.net/mysql_xdevapiDocResult::getWarnings

DocResult::getWarningsCount

347

$schema = $session->getSchema("addressbook");
$create = $schema->createCollection("people");

$create->add('{"name": "Alfred", "age": 18, "job": "Butler"}')->execute();
$create->add('{"name": "Reginald", "age": 42, "job": "Butler"}')->execute();

// ...

$collection = $schema->getCollection("people");

// Yields a DocResult object
$result = $collection
 ->find('job like :job and age > :age')
 ->bind(['job' => 'Butler', 'age' => 16])
 ->sort('age desc')
 ->execute();

if (!$result->getWarningsCount()) {
 echo "There was an error:\n";
 print_r($result->getWarnings());
 exit;
}

var_dump($result->fetchOne());
?>

The above example will output something similar to:

There was an error:

Array
(
 [0] => mysql_xdevapi\Warning Object
 (
 [message] => Something bad and so on
 [level] => 2
 [code] => 1365
)
 [1] => mysql_xdevapi\Warning Object
 (
 [message] => Something bad and so on
 [level] => 2
 [code] => 1365
)
)

5.17.5 DocResult::getWarningsCount

Copyright 1997-2019 the PHP Documentation Group.

• DocResult::getWarningsCount

Get warning count from last operation

Description

 public integer mysql_xdevapi\DocResult::getWarningsCount();

DocResult::getWarningsCount

348

Returns the number of warnings raised by the last operation. Specifically, these warnings are raised by the
MySQL server.

Parameters

This function has no parameters.

Return Values

The number of warnings from the last operation, or FALSE if there are no warnings.

Examples

Example 5.80 mysql_xdevapi\DocResult::getWarningsCount example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$create = $schema->createCollection("people");

$create->add('{"name": "Alfred", "age": 18, "job": "Butler"}')->execute();
$create->add('{"name": "Reginald", "age": 42, "job": "Butler"}')->execute();

// ...

$collection = $schema->getCollection("people");

// Yields a DocResult object
$result = $collection
 ->find('job like :job and age > :age')
 ->bind(['job' => 'Butler', 'age' => 16])
 ->sort('age desc')
 ->execute();

if (!$result->getWarningsCount()) {
 echo "There was an error:\n";
 print_r($result->getWarnings());
 exit;
}

var_dump($result->fetchOne());
?>

The above example will output something similar to:

array(4) {
 ["_id"]=>
 string(28) "00005b6b53610000000000000135"
 ["age"]=>
 int(42)
 ["job"]=>
 string(6) "Butler"
 ["name"]=>
 string(8) "Reginald"
}

http://www.php.net/mysql_xdevapiDocResult::getWarningsCount

Driver class

349

5.18 Driver class

Copyright 1997-2019 the PHP Documentation Group.

mysql_xdevapi\Driver {
mysql_xdevapi\Driver

 Constants

 const string
 mysql_xdevapi\Driver::version
 = =8.0.3;

Constructor

 private mysql_xdevapi\Driver::__construct();

}

mysql_xdevapi
\Driver::version

5.18.1 Driver::__construct

Copyright 1997-2019 the PHP Documentation Group.

• Driver::__construct

Driver constructor

Description

 private mysql_xdevapi\Driver::__construct();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Examples

Example 5.81 mysql_xdevapi\Driver::__construct example

<?php

/* ... */

?>

http://www.php.net/mysql_xdevapiDriver::__construct

Exception class

350

5.19 Exception class

Copyright 1997-2019 the PHP Documentation Group.

mysql_xdevapi\Exception {
mysql_xdevapi\Exceptionextends RuntimeException

 Throwable

 }

5.20 Executable interface

Copyright 1997-2019 the PHP Documentation Group.

mysql_xdevapi\Executable {
mysql_xdevapi\Executable

 Methods

 abstract public mysql_xdevapi\Result mysql_xdevapi\Executable::execute();

}

5.20.1 Executable::execute

Copyright 1997-2019 the PHP Documentation Group.

• Executable::execute

Execute statement

Description

 abstract public mysql_xdevapi\Result mysql_xdevapi\Executable::execute();

Execute the statement from either a collection operation or a table query; this functionality allows for
method chaining.

Parameters

This function has no parameters.

Return Values

One of the Result objects, such as Result or SqlStatementResult.

Examples

Example 5.82 execute() examples

<?php

ExecutionStatus class

351

$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$result_sql = $session->sql("CREATE DATABASE addressbook")->execute();

var_dump($result_sql);

$schema = $session->getSchema("addressbook");
$collection = $schema->createCollection("humans");

$result_collection = $collection->add(
 '{"name": "Jane",
 "jobs": [{"title":"Scientist","Salary":18000}, {"title":"Mother","Salary":0}],
 "hobbies": ["Walking","Making pies"]}');

$result_collection_executed = $result_collection->execute();

var_dump($result_collection);
var_dump($result_collection_executed);
?>

The above example will output something similar to:

object(mysql_xdevapi\SqlStatementResult)#3 (0) {
}

object(mysql_xdevapi\CollectionAdd)#5 (0) {
}

object(mysql_xdevapi\Result)#7 (0) {
}

5.21 ExecutionStatus class

Copyright 1997-2019 the PHP Documentation Group.

mysql_xdevapi\ExecutionStatus {
mysql_xdevapi\ExecutionStatus

 Properties

 public
 affectedItems ;

 public
 matchedItems ;

 public
 foundItems ;

 public
 lastInsertId ;

 public
 lastDocumentId ;

ExecutionStatus::__construct

352

Constructor

 private mysql_xdevapi\ExecutionStatus::__construct();

}

affectedItems

matchedItems

foundItems

lastInsertId

lastDocumentId

5.21.1 ExecutionStatus::__construct

Copyright 1997-2019 the PHP Documentation Group.

• ExecutionStatus::__construct

ExecutionStatus constructor

Description

 private mysql_xdevapi\ExecutionStatus::__construct();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Examples

Example 5.83 mysql_xdevapi\ExecutionStatus::__construct example

<?php

/* ... */

?>

5.22 Expression class

Copyright 1997-2019 the PHP Documentation Group.

mysql_xdevapi\Expression {
mysql_xdevapi\Expression

http://www.php.net/mysql_xdevapiExecutionStatus::__construct

Expression::__construct

353

 Properties

 public
 name ;

Constructor

 public mysql_xdevapi\Expression::__construct(
 string expression);

}

name

5.22.1 Expression::__construct

Copyright 1997-2019 the PHP Documentation Group.

• Expression::__construct

Expression constructor

Description

 public mysql_xdevapi\Expression::__construct(
 string expression);

Warning

This function is currently not documented; only its argument list is available.

Parameters

expression

Examples

Example 5.84 mysql_xdevapi\Expression::__construct example

<?php

/* ... */

?>

5.23 FieldMetadata class

Copyright 1997-2019 the PHP Documentation Group.

mysql_xdevapi\FieldMetadata {
mysql_xdevapi\FieldMetadata

http://www.php.net/mysql_xdevapiExpression::__construct

FieldMetadata class

354

 Properties

 public
 type ;

 public
 type_name ;

 public
 name ;

 public
 original_name ;

 public
 table ;

 public
 original_table ;

 public
 schema ;

 public
 catalog ;

 public
 collation ;

 public
 fractional_digits ;

 public
 length ;

 public
 flags ;

 public
 content_type ;

Constructor

 private mysql_xdevapi\FieldMetadata::__construct();

}

type

type_name

name

original_name

table

original_table

schema

catalog

collation

FieldMetadata::__construct

355

fractional_digits

length

flags

content_type

5.23.1 FieldMetadata::__construct

Copyright 1997-2019 the PHP Documentation Group.

• FieldMetadata::__construct

FieldMetadata constructor

Description

 private mysql_xdevapi\FieldMetadata::__construct();

Provides metadata about a table. A FieldMetadata object is provided by other methods, such as
RowResult::getColumns() as demonstrated in the example that follows.

Parameters

This function has no parameters.

Examples

Example 5.85 mysql_xdevapi\RowResult::getColumns example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE foo")->execute();
$session->sql("CREATE TABLE foo.test_table(x int)")->execute();
$session->sql("INSERT INTO addressbook.names values ('John', 42), ('Sam', 33)")->execute();

$sql = $session->sql("SELECT * from addressbook.names")->execute();

$cols = $sql->getColumns();

print_r($cols);

The above example will output something similar to:

Array
(
 [0] => mysql_xdevapi\FieldMetadata Object
 (
 [type] => 7
 [type_name] => BYTES
 [name] => name
 [original_name] => name
 [table] => names

http://www.php.net/mysql_xdevapiRowResult::getColumns

Result class

356

 [original_table] => names
 [schema] => addressbook
 [catalog] => def
 [collation] => 255
 [fractional_digits] => 0
 [length] => 65535
 [flags] => 0
 [content_type] => 0
)
 [1] => mysql_xdevapi\FieldMetadata Object
 (
 [type] => 1
 [type_name] => SINT
 [name] => age
 [original_name] => age
 [table] => names
 [original_table] => names
 [schema] => addressbook
 [catalog] => def
 [collation] => 0
 [fractional_digits] => 0
 [length] => 11
 [flags] => 0
 [content_type] => 0
)
)

5.24 Result class

Copyright 1997-2019 the PHP Documentation Group.

mysql_xdevapi\Result {
mysql_xdevapi\Result

 mysql_xdevapi\BaseResult

 Traversable

 Methods

 public int mysql_xdevapi\Result::getAutoIncrementValue();

 public ArrayOfInt mysql_xdevapi\Result::getGeneratedIds();

 public array mysql_xdevapi\Result::getWarnings();

 public integer mysql_xdevapi\Result::getWarningsCount();

}

5.24.1 Result::__construct

Copyright 1997-2019 the PHP Documentation Group.

• Result::__construct

Result constructor

Description

Result::getAutoIncrementValue

357

 private mysql_xdevapi\Result::__construct();

An object that retrieves generated IDs, AUTO_INCREMENT values, and warnings, for a Result set.

Parameters

This function has no parameters.

Examples

Example 5.86 mysql_xdevapi\Result::__construct example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();
$session->sql("
 CREATE TABLE addressbook.names
 (id INT NOT NULL AUTO_INCREMENT, name VARCHAR(30), age INT, PRIMARY KEY (id))
 ")->execute();

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$result = $table->insert("name", "age")->values(["Suzanne", 31],["Julie", 43])->execute();
$result = $table->insert("name", "age")->values(["Suki", 34])->execute();

$ai = $result->getAutoIncrementValue();
var_dump($ai);
?>

The above example will output:

int(3)

5.24.2 Result::getAutoIncrementValue

Copyright 1997-2019 the PHP Documentation Group.

• Result::getAutoIncrementValue

Get autoincremented value

Description

 public int mysql_xdevapi\Result::getAutoIncrementValue();

Get the last AUTO_INCREMENT value (last insert id).

Parameters

This function has no parameters.

Return Values

http://www.php.net/mysql_xdevapiResult::__construct

Result::getGeneratedIds

358

The last AUTO_INCREMENT value.

Examples

Example 5.87 mysql_xdevapi\Result::getAutoIncrementValue example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();
$session->sql("
 CREATE TABLE addressbook.names
 (id INT NOT NULL AUTO_INCREMENT, name VARCHAR(30), age INT, PRIMARY KEY (id))
 ")->execute();

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$result = $table->insert("name", "age")->values(["Suzanne", 31],["Julie", 43])->execute();
$result = $table->insert("name", "age")->values(["Suki", 34])->execute();

$ai = $result->getAutoIncrementValue();
var_dump($ai);
?>

The above example will output:

int(3)

5.24.3 Result::getGeneratedIds

Copyright 1997-2019 the PHP Documentation Group.

• Result::getGeneratedIds

Get generated ids

Description

 public ArrayOfInt mysql_xdevapi\Result::getGeneratedIds();

Fetch the generated _id values from the last operation. The unique _id field is generated by the MySQL
server.

Parameters

This function has no parameters.

Return Values

An array of generated _id's from the last operation.

Examples

http://www.php.net/mysql_xdevapiResult::getAutoIncrementValue

Result::getWarnings

359

Example 5.88 mysql_xdevapi\Result::getGeneratedIds example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$create = $schema->createCollection("people");

$collection = $schema->getCollection("people");

$result = $collection->add(
 '{"name": "Bernie",
 "jobs": [{"title":"Cat Herder","Salary":42000}, {"title":"Father","Salary":0}],
 "hobbies": ["Sports","Making cupcakes"]}',
 '{"name": "Jane",
 "jobs": [{"title":"Scientist","Salary":18000}, {"title":"Mother","Salary":0}],
 "hobbies": ["Walking","Making pies"]}')->execute();

$ids = $result->getGeneratedIds();
var_dump($ids);
?>

The above example will output something similar to:

array(2) {
 [0]=>
 string(28) "00005b6b53610000000000000064"
 [1]=>
 string(28) "00005b6b53610000000000000065"
}

5.24.4 Result::getWarnings

Copyright 1997-2019 the PHP Documentation Group.

• Result::getWarnings

Get warnings from last operation

Description

 public array mysql_xdevapi\Result::getWarnings();

Retrieve warnings from the last Result operation.

Parameters

This function has no parameters.

Return Values

An array of Warning objects from the last operation. Each object defines an error 'message', error 'level',
and error 'code'.

http://www.php.net/mysql_xdevapiResult::getGeneratedIds

Result::getWarningsCount

360

Examples

Example 5.89 mysql_xdevapi\RowResult::getWarnings example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("CREATE DATABASE foo")->execute();
$session->sql("CREATE TABLE foo.test_table(x int)")->execute();

$schema = $session->getSchema("foo");
$table = $schema->getTable("test_table");

$table->insert(['x'])->values([1])->values([2])->execute();

$res = $table->select(['x/0 as bad_x'])->execute();
$warnings = $res->getWarnings();

print_r($warnings);
?>

The above example will output something similar to:

Array
(
 [0] => mysql_xdevapi\Warning Object
 (
 [message] => Division by 0
 [level] => 2
 [code] => 1365
)
 [1] => mysql_xdevapi\Warning Object
 (
 [message] => Division by 0
 [level] => 2
 [code] => 1365
)
)

5.24.5 Result::getWarningsCount

Copyright 1997-2019 the PHP Documentation Group.

• Result::getWarningsCount

Get warning count from last operation

Description

 public integer mysql_xdevapi\Result::getWarningsCount();

Retrieve the number of warnings from the last Result operation.

Parameters

This function has no parameters.

http://www.php.net/mysql_xdevapiRowResult::getWarnings

RowResult class

361

Return Values

The number of warnings generated by the last operation, or FALSE if the result set is empty or there are no
warnings.

Examples

Example 5.90 mysql_xdevapi\RowResult::getWarningsCount example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS foo")->execute();
$session->sql("CREATE DATABASE foo")->execute();
$session->sql("CREATE TABLE foo.test_table(x int)")->execute();

$schema = $session->getSchema("foo");
$table = $schema->getTable("test_table");

$table->insert(['x'])->values([1])->values([2])->execute();

$res = $table->select(['x/0 as bad_x'])->execute();

echo $res->getWarningsCount();
?>

The above example will output something similar to:

2

5.25 RowResult class
Copyright 1997-2019 the PHP Documentation Group.

mysql_xdevapi\RowResult {
mysql_xdevapi\RowResult

 mysql_xdevapi\BaseResult

 Traversable

 Methods

 public array mysql_xdevapi\RowResult::fetchAll();

 public object mysql_xdevapi\RowResult::fetchOne();

 public integer mysql_xdevapi\RowResult::getColumnCount();

 public array mysql_xdevapi\RowResult::getColumnNames();

 public array mysql_xdevapi\RowResult::getColumns();

 public array mysql_xdevapi\RowResult::getWarnings();

http://www.php.net/mysql_xdevapiRowResult::getWarningsCount

RowResult::__construct

362

 public integer mysql_xdevapi\RowResult::getWarningsCount();

}

5.25.1 RowResult::__construct

Copyright 1997-2019 the PHP Documentation Group.

• RowResult::__construct

RowResult constructor

Description

 private mysql_xdevapi\RowResult::__construct();

Represents the result set obtained from querying the database.

Parameters

This function has no parameters.

Examples

Example 5.91 mysql_xdevapi\RowResult::__construct example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$row = $table->select('name', 'age')->where('age > 18')->execute()->fetchAll();

print_r($row);

The above example will output something similar to:

Array
(
 [0] => Array
 (
 [name] => John
 [age] => 42
)
 [1] => Array
 (
 [name] => Sam
 [age] => 33
)
)

5.25.2 RowResult::fetchAll

Copyright 1997-2019 the PHP Documentation Group.

http://www.php.net/mysql_xdevapiRowResult::__construct

RowResult::fetchOne

363

• RowResult::fetchAll

Get all rows from result

Description

 public array mysql_xdevapi\RowResult::fetchAll();

Fetch all the rows from the result set.

Parameters

This function has no parameters.

Return Values

A numerical array of results, with each row as an array.

Examples

Example 5.92 mysql_xdevapi\RowResult::fetchAll example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();
$session->sql("CREATE TABLE addressbook.names(name text, age int)")->execute();
$session->sql("INSERT INTO addressbook.names values ('John', 42), ('Sam', 33)")->execute();

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$row = $table->select('name', 'age')->execute()->fetchAll();

print_r($row);

The above example will output something similar to:

Array
(
 [0] => Array
 (
 [name] => John
 [age] => 42
)
 [1] => Array
 (
 [name] => Sam
 [age] => 33
)
)

5.25.3 RowResult::fetchOne

Copyright 1997-2019 the PHP Documentation Group.

http://www.php.net/mysql_xdevapiRowResult::fetchAll

RowResult::getColumnCount

364

• RowResult::fetchOne

Get row from result

Description

 public object mysql_xdevapi\RowResult::fetchOne();

Fetch one result from the result set.

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

Examples

Example 5.93 mysql_xdevapi\RowResult::fetchOne example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();
$session->sql("CREATE TABLE addressbook.names(name text, age int)")->execute();
$session->sql("INSERT INTO addressbook.names values ('John', 42), ('Sam', 33)")->execute();

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$row = $table->select('name', 'age')->where('age < 40')->execute()->fetchOne();

print_r($row);

The above example will output something similar to:

Array
(
 [name] => Sam
 [age] => 33
)

5.25.4 RowResult::getColumnCount

Copyright 1997-2019 the PHP Documentation Group.

• RowResult::getColumnCount

Get column count

http://www.php.net/mysql_xdevapiRowResult::fetchOne

RowResult::getColumnNames

365

Description

 public integer mysql_xdevapi\RowResult::getColumnCount();

Retrieve the column count for columns present in the result set.

Parameters

This function has no parameters.

Return Values

The number of columns, or FALSE if the result set is empty.

Examples

Example 5.94 mysql_xdevapi\RowResult::getColumnCount example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE addressbook")->execute();
$session->sql("CREATE DATABASE foo")->execute();
$session->sql("CREATE TABLE foo.test_table(x int)")->execute();
$session->sql("INSERT INTO addressbook.names values ('John', 42), ('Sam', 33)")->execute();

$sql = $session->sql("SELECT * from addressbook.names")->execute();

echo $sql->getColumnCount();

The above example will output something similar to:

2

5.25.5 RowResult::getColumnNames

Copyright 1997-2019 the PHP Documentation Group.

• RowResult::getColumnNames

Get all column names

Description

 public array mysql_xdevapi\RowResult::getColumnNames();

Retrieve column names for columns present in the result set.

Warning

This function is currently not documented; only its argument list is available.

Parameters

http://www.php.net/mysql_xdevapiRowResult::getColumnCount

RowResult::getColumns

366

This function has no parameters.

Return Values

A numerical array of table columns names, or FALSE if the result set is empty.

Examples

Example 5.95 mysql_xdevapi\RowResult::getColumnNames example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE addressbook")->execute();
$session->sql("CREATE DATABASE foo")->execute();
$session->sql("CREATE TABLE foo.test_table(x int)")->execute();
$session->sql("INSERT INTO addressbook.names values ('John', 42), ('Sam', 33)")->execute();

$sql = $session->sql("SELECT * from addressbook.names")->execute();

$colnames = $sql->getColumnNames();

print_r($colnames);

The above example will output something similar to:

Array
(
 [0] => name
 [1] => age
)

5.25.6 RowResult::getColumns

Copyright 1997-2019 the PHP Documentation Group.

• RowResult::getColumns

Get column metadata

Description

 public array mysql_xdevapi\RowResult::getColumns();

Retrieve column metadata for columns present in the result set.

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

http://www.php.net/mysql_xdevapiRowResult::getColumnNames

RowResult::getColumns

367

An array of FieldMetadata objects representing the columns in the result, or FALSE if the result set is
empty.

Examples

Example 5.96 mysql_xdevapi\RowResult::getColumns example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE addressbook")->execute();
$session->sql("CREATE DATABASE foo")->execute();
$session->sql("CREATE TABLE foo.test_table(x int)")->execute();
$session->sql("INSERT INTO addressbook.names values ('John', 42), ('Sam', 33)")->execute();

$sql = $session->sql("SELECT * from addressbook.names")->execute();

$cols = $sql->getColumns();

print_r($cols);

The above example will output something similar to:

Array
(
 [0] => mysql_xdevapi\FieldMetadata Object
 (
 [type] => 7
 [type_name] => BYTES
 [name] => name
 [original_name] => name
 [table] => names
 [original_table] => names
 [schema] => addressbook
 [catalog] => def
 [collation] => 255
 [fractional_digits] => 0
 [length] => 65535
 [flags] => 0
 [content_type] => 0
)
 [1] => mysql_xdevapi\FieldMetadata Object
 (
 [type] => 1
 [type_name] => SINT
 [name] => age
 [original_name] => age
 [table] => names
 [original_table] => names
 [schema] => addressbook
 [catalog] => def
 [collation] => 0
 [fractional_digits] => 0
 [length] => 11
 [flags] => 0
 [content_type] => 0
)
)

http://www.php.net/mysql_xdevapiRowResult::getColumns

RowResult::getWarnings

368

5.25.7 RowResult::getWarnings

Copyright 1997-2019 the PHP Documentation Group.

• RowResult::getWarnings

Get warnings from last operation

Description

 public array mysql_xdevapi\RowResult::getWarnings();

Retrieve warnings from the last RowResult operation.

Parameters

This function has no parameters.

Return Values

An array of Warning objects from the last operation. Each object defines an error 'message', error 'level',
and error 'code'.

Examples

Example 5.97 mysql_xdevapi\RowResult::getWarnings example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->executeSql("CREATE DATABASE foo");
$session->executeSql("CREATE TABLE foo.test_table(x int)");

$schema = $session->getSchema("foo");
$table = $schema->getTable("test_table");

$table->insert(['x'])->values([1])->values([2])->execute();

$res = $table->select(['x/0 as bad_x'])->execute();
$warnings = $res->getWarnings();

print_r($warnings);
?>

The above example will output something similar to:

Array
(
 [0] => mysql_xdevapi\Warning Object
 (
 [message] => Division by 0
 [level] => 2
 [code] => 1365
)
 [1] => mysql_xdevapi\Warning Object
 (
 [message] => Division by 0

http://www.php.net/mysql_xdevapiRowResult::getWarnings

RowResult::getWarningsCount

369

 [level] => 2
 [code] => 1365
)
)

5.25.8 RowResult::getWarningsCount

Copyright 1997-2019 the PHP Documentation Group.

• RowResult::getWarningsCount

Get warning count from last operation

Description

 public integer mysql_xdevapi\RowResult::getWarningsCount();

Retrieve the number of warnings from the last RowResult operation.

Parameters

This function has no parameters.

Return Values

The number of warnings generated by the last operation, or FALSE if the result set is empty or there are no
warnings.

Examples

Example 5.98 mysql_xdevapi\RowResult::getWarningsCount example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS foo")->execute();
$session->sql("CREATE DATABASE foo")->execute();
$session->sql("CREATE TABLE foo.test_table(x int)")->execute();

$schema = $session->getSchema("foo");
$table = $schema->getTable("test_table");

$table->insert(['x'])->values([1])->values([2])->execute();

$res = $table->select(['x/0 as bad_x'])->execute();

echo $res->getWarningsCount();
?>

The above example will output something similar to:

2

http://www.php.net/mysql_xdevapiRowResult::getWarningsCount

Schema class

370

5.26 Schema class
Copyright 1997-2019 the PHP Documentation Group.

mysql_xdevapi\Schema {
mysql_xdevapi\Schema

 mysql_xdevapi\DatabaseObject

 Properties

 public
 name ;

Methods

 public mysql_xdevapi\Collection mysql_xdevapi\Schema::createCollection(
 string name);

 public bool mysql_xdevapi\Schema::dropCollection(
 string collection_name);

 public bool mysql_xdevapi\Schema::existsInDatabase();

 public mysql_xdevapi\Collection mysql_xdevapi\Schema::getCollection(
 string name);

 public mysql_xdevapi\Table mysql_xdevapi\Schema::getCollectionAsTable(
 string name);

 public array mysql_xdevapi\Schema::getCollections();

 public string mysql_xdevapi\Schema::getName();

 public mysql_xdevapi\Session mysql_xdevapi\Schema::getSession();

 public mysql_xdevapi\Table mysql_xdevapi\Schema::getTable(
 string name);

 public array mysql_xdevapi\Schema::getTables();

}

name

5.26.1 Schema::__construct

Copyright 1997-2019 the PHP Documentation Group.

• Schema::__construct

constructor

Description

 private mysql_xdevapi\Schema::__construct();

The Schema object provides full access to the schema (database).

Parameters

Schema::createCollection

371

This function has no parameters.

Examples

Example 5.99 Schema::__construct example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS food")->execute();
$session->sql("CREATE DATABASE food")->execute();
$session->sql("CREATE TABLE food.fruit(name text, rating text)")->execute();

$schema = $session->getSchema("food");
$schema->createCollection("trees");

print_r($schema->gettables());
print_r($schema->getcollections());

The above example will output something similar to:

Array
(
 [fruit] => mysql_xdevapi\Table Object
 (
 [name] => fruit
)
)
Array
(
 [trees] => mysql_xdevapi\Collection Object
 (
 [name] => trees
)
)

5.26.2 Schema::createCollection

Copyright 1997-2019 the PHP Documentation Group.

• Schema::createCollection

Add collection to schema

Description

 public mysql_xdevapi\Collection mysql_xdevapi\Schema::createCollection(
 string name);

Create a collection within the schema.

Warning

This function is currently not documented; only its argument list is available.

Parameters

Schema::dropCollection

372

name

Return Values

Examples

Example 5.100 Schema::createCollection example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS food")->execute();
$session->sql("CREATE DATABASE food")->execute();
$session->sql("CREATE TABLE food.fruit(name text, rating text)")->execute();

$schema = $session->getSchema("food");
$schema->createCollection("trees");

print_r($schema->gettables());
print_r($schema->getcollections());

The above example will output something similar to:

Array
(
 [fruit] => mysql_xdevapi\Table Object
 (
 [name] => fruit
)
)
Array
(
 [trees] => mysql_xdevapi\Collection Object
 (
 [name] => trees
)
)

5.26.3 Schema::dropCollection

Copyright 1997-2019 the PHP Documentation Group.

• Schema::dropCollection

Drop collection from schema

Description

 public bool mysql_xdevapi\Schema::dropCollection(
 string collection_name);

Warning

This function is currently not documented; only its argument list is available.

Schema::existsInDatabase

373

Parameters

collection_name

Return Values

Examples

Example 5.101 Schema::dropCollection example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS food")->execute();
$session->sql("CREATE DATABASE food")->execute();
$session->sql("CREATE TABLE food.fruit(name text, rating text)")->execute();

$schema = $session->getSchema("food");

$schema->createCollection("trees");
$schema->dropCollection("trees");
$schema->createCollection("buildings");

print_r($schema->gettables());
print_r($schema->getcollections());

The above example will output something similar to:

Array
(
 [fruit] => mysql_xdevapi\Table Object
 (
 [name] => fruit
)
)
Array
(
 [buildings] => mysql_xdevapi\Collection Object
 (
 [name] => buildings
)
)

5.26.4 Schema::existsInDatabase

Copyright 1997-2019 the PHP Documentation Group.

• Schema::existsInDatabase

Check if exists in database

Description

 public bool mysql_xdevapi\Schema::existsInDatabase();

Schema::getCollection

374

Checks if the current object (schema, table, collection, or view) exists in the schema object.

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

TRUE if the schema, table, collection, or view still exists in the schema, else FALSE.

Examples

Example 5.102 Schema::existsInDatabase example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS food")->execute();
$session->sql("CREATE DATABASE food")->execute();
$session->sql("CREATE TABLE food.fruit(name text, rating text)")->execute();

$schema = $session->getSchema("food");
$schema->createCollection("trees");

// ...

$trees = $schema->getCollection("trees");

// ...

// Is this collection still in the database (schema)?
if ($trees->existsInDatabase()) {
 echo "Yes, the 'trees' collection is still present.";
}

The above example will output something similar to:

Yes, the 'trees' collection is still present.

5.26.5 Schema::getCollection

Copyright 1997-2019 the PHP Documentation Group.

• Schema::getCollection

Get collection from schema

Description

 public mysql_xdevapi\Collection mysql_xdevapi\Schema::getCollection(
 string name);

Schema::getCollectionAsTable

375

Get a collection from the schema.

Parameters

name Collection name to retrieve.

Return Values

The Collection object for the selected collection.

Examples

Example 5.103 Schema::getCollection example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS food")->execute();
$session->sql("CREATE DATABASE food")->execute();

$schema = $session->getSchema("food");
$schema->createCollection("trees");

// ...

$trees = $schema->getCollection("trees");

var_dump($trees);

The above example will output something similar to:

object(mysql_xdevapi\Collection)#3 (1) {
 ["name"]=>
 string(5) "trees"
}

5.26.6 Schema::getCollectionAsTable

Copyright 1997-2019 the PHP Documentation Group.

• Schema::getCollectionAsTable

Get collection table object

Description

 public mysql_xdevapi\Table mysql_xdevapi\Schema::getCollectionAsTable(
 string name);

Get a collection, but as a Table object instead of a Collection object.

Parameters

name Name of the collection to instantiate a Table object from.

Schema::getCollections

376

Return Values

A table object for the collection.

Examples

Example 5.104 Schema::getCollectionAsTable example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$collect = $schema->createCollection("people");
$collect->add('{"name": "Fred", "age": 21, "job": "Construction"}')->execute();
$collect->add('{"name": "Wilma", "age": 23, "job": "Teacher"}')->execute();

$table = $schema->getCollectionAsTable("people");
$collection = $schema->getCollection("people");

var_dump($table);
var_dump($collection);

The above example will output something similar to:

object(mysql_xdevapi\Table)#4 (1) {
 ["name"]=>
 string(6) "people"
}

object(mysql_xdevapi\Collection)#5 (1) {
 ["name"]=>
 string(6) "people"
}

5.26.7 Schema::getCollections

Copyright 1997-2019 the PHP Documentation Group.

• Schema::getCollections

Get all schema collections

Description

 public array mysql_xdevapi\Schema::getCollections();

Fetch a list of collections for this schema.

Parameters

This function has no parameters.

Return Values

Schema::getName

377

Array of all collections in this schema, where each array element value is a Collection object with the
collection name as the key.

Examples

Example 5.105 mysql_xdevapi\Schema::getCollections example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");
$collect = $schema->createCollection("people");
$collect->add('{"name": "Fred", "age": 21, "job": "Construction"}')->execute();
$collect->add('{"name": "Wilma", "age": 23, "job": "Teacher"}')->execute();

$collections = $schema->getCollections();
var_dump($collections);
?>

The above example will output something similar to:

array(1) {
 ["people"]=>
 object(mysql_xdevapi\Collection)#4 (1) {
 ["name"]=>
 string(6) "people"
 }
}

5.26.8 Schema::getName

Copyright 1997-2019 the PHP Documentation Group.

• Schema::getName

Get schema name

Description

 public string mysql_xdevapi\Schema::getName();

Get the name of the schema.

Parameters

This function has no parameters.

Return Values

The name of the schema connected to the schema object, as a string.

Examples

http://www.php.net/mysql_xdevapiSchema::getCollections

Schema::getSession

378

Example 5.106 mysql_xdevapi\Schema::getName example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");

// ...

var_dump($schema->getName());
?>

The above example will output something similar to:

string(11) "addressbook"

5.26.9 Schema::getSession

Copyright 1997-2019 the PHP Documentation Group.

• Schema::getSession

Get schema session

Description

 public mysql_xdevapi\Session mysql_xdevapi\Schema::getSession();

Get a new Session object from the Schema object.

Parameters

This function has no parameters.

Return Values

A Session object.

Examples

Example 5.107 mysql_xdevapi\Schema::getSession example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$schema = $session->getSchema("addressbook");

// ...

http://www.php.net/mysql_xdevapiSchema::getName
http://www.php.net/mysql_xdevapiSchema::getSession

Schema::getTable

379

$newsession = $schema->getSession();

var_dump($session);
var_dump($newsession);
?>

The above example will output something similar to:

object(mysql_xdevapi\Session)#1 (0) {
}

object(mysql_xdevapi\Session)#3 (0) {
}

5.26.10 Schema::getTable

Copyright 1997-2019 the PHP Documentation Group.

• Schema::getTable

Get schema table

Description

 public mysql_xdevapi\Table mysql_xdevapi\Schema::getTable(
 string name);

Fetch a Table object for the provided table in the schema.

Parameters

name Name of the table.

Return Values

A Table object.

Examples

Example 5.108 mysql_xdevapi\Schema::getTable example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();
$session->sql("CREATE TABLE addressbook.names(name text, age int)")->execute();
$session->sql("INSERT INTO addressbook.names values ('John', 42), ('Sam', 33)")->execute();

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$row = $table->select('name', 'age')->execute()->fetchAll();

print_r($row);

http://www.php.net/mysql_xdevapiSchema::getTable

Schema::getTables

380

?>

The above example will output something similar to:

Array
(
 [0] => Array
 (
 [name] => John
 [age] => 42
)
 [1] => Array
 (
 [name] => Sam
 [age] => 33
)
)

5.26.11 Schema::getTables

Copyright 1997-2019 the PHP Documentation Group.

• Schema::getTables

Get schema tables

Description

 public array mysql_xdevapi\Schema::getTables();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

Array of all tables in this schema, where each array element value is a Table object with the table name as
the key.

Examples

Example 5.109 mysql_xdevapi\Schema::getTables example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

$session->sql("CREATE TABLE addressbook.names(name text, age int)")->execute();

http://www.php.net/mysql_xdevapiSchema::getTables

SchemaObject interface

381

$session->sql("INSERT INTO addressbook.names values ('John', 42), ('Sam', 33)")->execute();

$session->sql("CREATE TABLE addressbook.cities(name text, population int)")->execute();
$session->sql("INSERT INTO addressbook.names values ('Portland', 639863), ('Seattle', 704352)")->execute();

$schema = $session->getSchema("addressbook");
$tables = $schema->getTables();

var_dump($tables);
?>

The above example will output something similar to:

array(2) {
 ["cities"]=>
 object(mysql_xdevapi\Table)#3 (1) {
 ["name"]=>
 string(6) "cities"
 }

 ["names"]=>
 object(mysql_xdevapi\Table)#4 (1) {
 ["name"]=>
 string(5) "names"
 }
}

5.27 SchemaObject interface
Copyright 1997-2019 the PHP Documentation Group.

mysql_xdevapi\SchemaObject {
mysql_xdevapi\SchemaObject

 mysql_xdevapi\DatabaseObject

 Methods

 abstract mysql_xdevapi\Schema mysql_xdevapi\SchemaObject::getSchema();

}

5.27.1 SchemaObject::getSchema

Copyright 1997-2019 the PHP Documentation Group.

• SchemaObject::getSchema

Get schema object

Description

 abstract mysql_xdevapi\Schema mysql_xdevapi\SchemaObject::getSchema();

Used by other objects to retrieve a schema object.

Session class

382

Parameters

This function has no parameters.

Return Values

The current Schema object.

Examples

Example 5.110 mysql_xdevapi\Session::getSchema example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$schema = $session->getSchema("addressbook");

print_r($schema);

The above example will output something similar to:

mysql_xdevapi\Schema Object
(
 [name] => addressbook
)

5.28 Session class

Copyright 1997-2019 the PHP Documentation Group.

mysql_xdevapi\Session {
mysql_xdevapi\Session

 Methods

 public bool mysql_xdevapi\Session::close();

 public Object mysql_xdevapi\Session::commit();

 public mysql_xdevapi\Schema mysql_xdevapi\Session::createSchema(
 string schema_name);

 public bool mysql_xdevapi\Session::dropSchema(
 string schema_name);

 public Object mysql_xdevapi\Session::executeSql(
 string statement);

 public string mysql_xdevapi\Session::generateUUID();

 public integer mysql_xdevapi\Session::getClientId();

 public mysql_xdevapi\Schema mysql_xdevapi\Session::getSchema(
 string schema_name);

http://www.php.net/mysql_xdevapiSession::getSchema

Session::close

383

 public array mysql_xdevapi\Session::getSchemas();

 public integer mysql_xdevapi\Session::getServerVersion();

 public object mysql_xdevapi\Session::killClient(
 integer client_id);

 public array mysql_xdevapi\Session::listClients();

 public string mysql_xdevapi\Session::quoteName(
 string name);

 public void mysql_xdevapi\Session::releaseSavepoint(
 string name);

 public void mysql_xdevapi\Session::rollback();

 public void mysql_xdevapi\Session::rollbackTo(
 string name);

 public string mysql_xdevapi\Session::setSavepoint(
 string name);

 public mysql_xdevapi\SqlStatement mysql_xdevapi\Session::sql(
 string query);

 public void mysql_xdevapi\Session::startTransaction();

}

5.28.1 Session::close

Copyright 1997-2019 the PHP Documentation Group.

• Session::close

Close session

Description

 public bool mysql_xdevapi\Session::close();

Close the session with the server.

Parameters

This function has no parameters.

Return Values

TRUE if the session closed.

Examples

Example 5.111 mysql_xdevapi\Session::close example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

http://www.php.net/mysql_xdevapiSession::close

Session::commit

384

$session->close();

5.28.2 Session::commit

Copyright 1997-2019 the PHP Documentation Group.

• Session::commit

Commit transaction

Description

 public Object mysql_xdevapi\Session::commit();

Commit the transaction.

Parameters

This function has no parameters.

Return Values

An SqlStatementResult object.

Examples

Example 5.112 mysql_xdevapi\Session::commit example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$collection = $session->getSchema("addressbook")->getCollection("friends");

$session->startTransaction();

$collection->add('{"John":42, "Sam":33}')->execute();
$savepoint = $session->setSavepoint();

$session->commit();
$session->close();

5.28.3 Session::__construct

Copyright 1997-2019 the PHP Documentation Group.

• Session::__construct

Description constructor

Description

 private mysql_xdevapi\Session::__construct();

A Session object, as initiated by getSession().

Parameters

http://www.php.net/mysql_xdevapiSession::commit

Session::createSchema

385

This function has no parameters.

Examples

Example 5.113 mysql_xdevapi\Session::__construct example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$session->close();
?>

5.28.4 Session::createSchema

Copyright 1997-2019 the PHP Documentation Group.

• Session::createSchema

Create new schema

Description

 public mysql_xdevapi\Schema mysql_xdevapi\Session::createSchema(
 string schema_name);

Creates a new schema.

Parameters

schema_name Name of the schema to create.

Return Values

A Schema object on success, and emits an exception on failure.

Examples

Example 5.114 mysql_xdevapi\Session::createSchema example

<?php
$uri = 'mysqlx://happyuser:password@127.0.0.1:33060/';
$sess = mysql_xdevapi\getSession($uri);

try {

 if ($schema = $sess->createSchema('fruit')) {
 echo "Info: I created a schema named 'fruit'\n";
 }

} catch (Exception $e) {

 echo $e->getMessage();

}
?>

http://www.php.net/mysql_xdevapiSession::__construct
http://www.php.net/mysql_xdevapiSession::createSchema

Session::dropSchema

386

The above example will output something similar to:

Info: I created a schema named 'fruit'

5.28.5 Session::dropSchema

Copyright 1997-2019 the PHP Documentation Group.

• Session::dropSchema

Drop a schema

Description

 public bool mysql_xdevapi\Session::dropSchema(
 string schema_name);

Drop a schema (database).

Parameters

schema_name Name of the schema to drop.

Return Values

TRUE if the schema is dropped, or FALSE if it does not exist or can't be dropped.

An E_WARNING level error is generated if the schema does not exist.

Examples

Example 5.115 mysql_xdevapi\Session::dropSchema example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$session->dropSchema("addressbook");

$session->close();
?>

5.28.6 Session::executeSql

Copyright 1997-2019 the PHP Documentation Group.

• Session::executeSql

Execute an SQL statement

Description

 public Object mysql_xdevapi\Session::executeSql(
 string statement);

http://www.php.net/mysql_xdevapiSession::dropSchema

Session::generateUUID

387

Execute an SQL statement, similar to executing the sql() and execute() methods.

Parameters

statement SQL statement to execute

Return Values

An SqlStatementResult object on success, or throws an Exception if the SQL statement fails.

Examples

Example 5.116 mysql_xdevapi\Session::executeSql example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->executeSql("CREATE DATABASE addressbook");

5.28.7 Session::generateUUID

Copyright 1997-2019 the PHP Documentation Group.

• Session::generateUUID

Get new UUID

Description

 public string mysql_xdevapi\Session::generateUUID();

Generate a Universal Unique IDentifier (UUID) generated according to RFC 4122.

Parameters

This function has no parameters.

Return Values

The UUID; a string with a length of 32.

Examples

Example 5.117 mysql_xdevapi\Session::generateUuid example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$uuid = $session->generateUuid();

var_dump($uuid);

The above example will output something similar to:

http://www.php.net/mysql_xdevapiSession::executeSql
http://www.faqs.org/rfcs/rfc4122
http://www.php.net/mysql_xdevapiSession::generateUuid

Session::getClientId

388

string(32) "484B18AC7980F8D4FE84613CDA5EE84B"

5.28.8 Session::getClientId

Copyright 1997-2019 the PHP Documentation Group.

• Session::getClientId

Get client ID

Description

 public integer mysql_xdevapi\Session::getClientId();

Get ID of the connected client.

Parameters

This function has no parameters.

Return Values

ID of the connected client.

Examples

Example 5.118 mysql_xdevapi\Session::getClientId example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$clientid = $session->getClientId();

var_dump($clientid);

The above example will output something similar to:

int(53)

5.28.9 Session::getSchema

Copyright 1997-2019 the PHP Documentation Group.

• Session::getSchema

Get a new schema object

Description

http://www.php.net/mysql_xdevapiSession::getClientId

Session::getSchemas

389

 public mysql_xdevapi\Schema mysql_xdevapi\Session::getSchema(
 string schema_name);

A new Schema object for the provided schema name.

Parameters

schema_name Name of the schema (database) to fetch a Schema object for.

Return Values

A Schema object.

Examples

Example 5.119 mysql_xdevapi\Session::getSchema example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$schema = $session->getSchema("addressbook");

print_r($schema);

The above example will output something similar to:

mysql_xdevapi\Schema Object
(
 [name] => addressbook
)

5.28.10 Session::getSchemas

Copyright 1997-2019 the PHP Documentation Group.

• Session::getSchemas

Get the schemas

Description

 public array mysql_xdevapi\Session::getSchemas();

Get schema objects for all schemas available to the session.

Parameters

This function has no parameters.

Return Values

An array containing objects that represent all of the schemas available to the session.

Examples

http://www.php.net/mysql_xdevapiSession::getSchema

Session::getServerVersion

390

Example 5.120 mysql_xdevapi\Session::getSchemas example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$schemas = $session->getSchemas();

print_r($schemas);

The above example will output something similar to:

Array
(
 [0] => mysql_xdevapi\Schema Object
 (
 [name] => addressbook
)
 [1] => mysql_xdevapi\Schema Object
 (
 [name] => information_schema
)
 ...

5.28.11 Session::getServerVersion

Copyright 1997-2019 the PHP Documentation Group.

• Session::getServerVersion

Get server version

Description

 public integer mysql_xdevapi\Session::getServerVersion();

Retrieve the MySQL server version for the session.

Parameters

This function has no parameters.

Return Values

The MySQL server version for the session, as an integer such as "80012".

Examples

Example 5.121 mysql_xdevapi\Session::getServerVersion example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$version = $session->getServerVersion();

http://www.php.net/mysql_xdevapiSession::getSchemas
http://www.php.net/mysql_xdevapiSession::getServerVersion

Session::killClient

391

var_dump($version);

The above example will output something similar to:

int(80012)

5.28.12 Session::killClient

Copyright 1997-2019 the PHP Documentation Group.

• Session::killClient

Kill the client

Description

 public object mysql_xdevapi\Session::killClient(
 integer client_id);

Kill the selected client and terminate the collection

Warning

This function is currently not documented; only its argument list is available.

Parameters

client_id A connection's client ID.

Return Values

Examples

Example 5.122 mysql_xdevapi\Session::killClient example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$clientid = $session->getClientId();

// ...

$session->killClient($clientid);

5.28.13 Session::listClients

Copyright 1997-2019 the PHP Documentation Group.

• Session::listClients

Get client list

http://www.php.net/mysql_xdevapiSession::killClient

Session::quoteName

392

Description

 public array mysql_xdevapi\Session::listClients();

Get a list of client connections to the session's MySQL server.

Parameters

This function has no parameters.

Return Values

An array containing the currently logged clients. The array elements are "client_id", "user", "host", and
"sql_session".

Examples

Example 5.123 mysql_xdevapi\Session::listClients example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$ids = $session->listClients();

var_dump($ids);
?>

The above example will output something similar to:

array(1) {
 [0]=>
 array(4) {
 ["client_id"]=>
 int(61)
 ["user"]=>
 string(4) "root"
 ["host"]=>
 string(9) "localhost"
 ["sql_session"]=>
 int(72)
 }
}

5.28.14 Session::quoteName

Copyright 1997-2019 the PHP Documentation Group.

• Session::quoteName

Add quotes

Description

 public string mysql_xdevapi\Session::quoteName(
 string name);

http://www.php.net/mysql_xdevapiSession::listClients

Session::releaseSavepoint

393

A quoting function to escape SQL names and identifiers. It escapes the identifier given in accordance to
the settings of the current connection. This escape function should not be used to escape values.

Parameters

name The string to quote.

Return Values

The quoted string.

Examples

Example 5.124 mysql_xdevapi\Session::quoteName example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$first = "MySQL's test";
var_dump($first);
var_dump($session->quoteName($first));

$second = 'Another `test` "like" `this`';
var_dump($second);
var_dump($session->quoteName($second));
?>

The above example will output something similar to:

string(12) "MySQL's test"
string(14) "`MySQL's test`"

string(28) "Another `test` "like" `this`"
string(34) "`Another ``test`` "like" ``this```"

5.28.15 Session::releaseSavepoint

Copyright 1997-2019 the PHP Documentation Group.

• Session::releaseSavepoint

Release set savepoint

Description

 public void mysql_xdevapi\Session::releaseSavepoint(
 string name);

Release a previously set savepoint.

Parameters

name Name of the savepoint to release.

http://www.php.net/mysql_xdevapiSession::quoteName

Session::rollback

394

Return Values

An SqlStatementResult object.

Examples

Example 5.125 mysql_xdevapi\Session::releaseSavepoint example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$collection = $session->getSchema("addressbook")->getCollection("friends");

$session->startTransaction();
$collection->add('{"test1":1, "test2":2}')->execute();

$savepoint = $session->setSavepoint();

$collection->add('{"test3":3, "test4":4}')->execute();

$session->releaseSavepoint($savepoint);
$session->rollback();
?>

5.28.16 Session::rollback

Copyright 1997-2019 the PHP Documentation Group.

• Session::rollback

Rollback transaction

Description

 public void mysql_xdevapi\Session::rollback();

Rollback the transaction.

Parameters

This function has no parameters.

Return Values

An SqlStatementResult object.

Examples

Example 5.126 mysql_xdevapi\Session::rollback example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$collection = $session->getSchema("addressbook")->getCollection("names");

$session->startTransaction();
$collection->add('{"test1":1, "test2":2}')->execute();

http://www.php.net/mysql_xdevapiSession::releaseSavepoint
http://www.php.net/mysql_xdevapiSession::rollback

Session::rollbackTo

395

$savepoint = $session->setSavepoint();

$collection->add('{"test3":3, "test4":4}')->execute();

$session->releaseSavepoint($savepoint);
$session->rollback();
?>

5.28.17 Session::rollbackTo

Copyright 1997-2019 the PHP Documentation Group.

• Session::rollbackTo

Rollback transaction to savepoint

Description

 public void mysql_xdevapi\Session::rollbackTo(
 string name);

Rollback the transaction back to the savepoint.

Parameters

name Name of the savepoint to rollback to; case-insensitive.

Return Values

An SqlStatementResult object.

Examples

Example 5.127 mysql_xdevapi\Session::rollbackTo example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$collection = $session->getSchema("addressbook")->getCollection("names");

$session->startTransaction();
$collection->add('{"test1":1, "test2":2}')->execute();

$savepoint1 = $session->setSavepoint();

$collection->add('{"test3":3, "test4":4}')->execute();

$savepoint2 = $session->setSavepoint();

$session->rollbackTo($savepoint1);
?>

5.28.18 Session::setSavepoint

Copyright 1997-2019 the PHP Documentation Group.

• Session::setSavepoint

http://www.php.net/mysql_xdevapiSession::rollbackTo

Session::sql

396

Create savepoint

Description

 public string mysql_xdevapi\Session::setSavepoint(
 string name);

Create a new savepoint for the transaction.

Warning

This function is currently not documented; only its argument list is available.

Parameters

name The name of the savepoint. The name is auto-generated if the optional
name parameter is not defined as 'SAVEPOINT1', 'SAVEPOINT2', and
so on.

Return Values

The name of the save point.

Examples

Example 5.128 mysql_xdevapi\Session::setSavepoint example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$collection = $session->getSchema("addressbook")->getCollection("names");

$session->startTransaction();
$collection->add('{"test1":1, "test2":2}')->execute();

$savepoint = $session->setSavepoint();

$collection->add('{"test3":3, "test4":4}')->execute();

$session->releaseSavepoint($savepoint);
$session->rollback();
?>

5.28.19 Session::sql

Copyright 1997-2019 the PHP Documentation Group.

• Session::sql

Execute SQL query

Description

 public mysql_xdevapi\SqlStatement mysql_xdevapi\Session::sql(
 string query);

Create a native SQL statement. Placeholders are supported using the native "?" syntax. Use the execute
method to execute the SQL statement.

http://www.php.net/mysql_xdevapiSession::setSavepoint

Session::startTransaction

397

Parameters

query SQL statement to execute.

Return Values

An SqlStatement object.

Examples

Example 5.129 mysql_xdevapi\Session::sql example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("CREATE DATABASE addressbook")->execute();
?>

5.28.20 Session::startTransaction

Copyright 1997-2019 the PHP Documentation Group.

• Session::startTransaction

Start transaction

Description

 public void mysql_xdevapi\Session::startTransaction();

Start a new transaction.

Parameters

This function has no parameters.

Return Values

An SqlStatementResult object.

Examples

Example 5.130 mysql_xdevapi\Session::startTransaction example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");
$collection = $session->getSchema("addressbook")->getCollection("friends");

$session->startTransaction();
$collection->add('{"test1":1, "test2":2}')->execute();

$savepoint = $session->setSavepoint();

$collection->add('{"test3":3, "test4":4}')->execute();

http://www.php.net/mysql_xdevapiSession::sql
http://www.php.net/mysql_xdevapiSession::startTransaction

SqlStatement class

398

$session->releaseSavepoint($savepoint);
$session->rollback();
?>

5.29 SqlStatement class

Copyright 1997-2019 the PHP Documentation Group.

mysql_xdevapi\SqlStatement {
mysql_xdevapi\SqlStatement

 Constants

 const integer
 mysql_xdevapi\SqlStatement::EXECUTE_ASYNC
 = =1;

 const integer
 mysql_xdevapi\SqlStatement::BUFFERED
 = =2;

Properties

 public
 statement ;

Methods

 public mysql_xdevapi\SqlStatement mysql_xdevapi\SqlStatement::bind(
 string param);

 public mysql_xdevapi\Result mysql_xdevapi\SqlStatement::execute();

 public mysql_xdevapi\Result mysql_xdevapi\SqlStatement::getNextResult();

 public mysql_xdevapi\Result mysql_xdevapi\SqlStatement::getResult();

 public bool mysql_xdevapi\SqlStatement::hasMoreResults();

}

statement

mysql_xdevapi
\SqlStatement::EXECUTE_ASYNC

mysql_xdevapi
\SqlStatement::BUFFERED

5.29.1 SqlStatement::bind

Copyright 1997-2019 the PHP Documentation Group.

• SqlStatement::bind

Bind statement parameters

SqlStatement::__construct

399

Description

 public mysql_xdevapi\SqlStatement mysql_xdevapi\SqlStatement::bind(
 string param);

Warning

This function is currently not documented; only its argument list is available.

Parameters

param

Return Values

Examples

Example 5.131 mysql_xdevapi\SqlStatement::bind example

<?php

/* ... */

?>

5.29.2 SqlStatement::__construct

Copyright 1997-2019 the PHP Documentation Group.

• SqlStatement::__construct

Description constructor

Description

 private mysql_xdevapi\SqlStatement::__construct();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Examples

Example 5.132 mysql_xdevapi\SqlStatement::__construct example

<?php

/* ... */

http://www.php.net/mysql_xdevapiSqlStatement::bind
http://www.php.net/mysql_xdevapiSqlStatement::__construct

SqlStatement::execute

400

?>

5.29.3 SqlStatement::execute

Copyright 1997-2019 the PHP Documentation Group.

• SqlStatement::execute

Execute the operation

Description

 public mysql_xdevapi\Result mysql_xdevapi\SqlStatement::execute();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

Examples

Example 5.133 mysql_xdevapi\SqlStatement::execute example

<?php

/* ... */

?>

5.29.4 SqlStatement::getNextResult

Copyright 1997-2019 the PHP Documentation Group.

• SqlStatement::getNextResult

Get next result

Description

 public mysql_xdevapi\Result mysql_xdevapi\SqlStatement::getNextResult();

Warning

This function is currently not documented; only its argument list is available.

Parameters

http://www.php.net/mysql_xdevapiSqlStatement::execute

SqlStatement::getResult

401

This function has no parameters.

Return Values

Examples

Example 5.134 mysql_xdevapi\SqlStatement::getNextResult example

<?php

/* ... */

?>

5.29.5 SqlStatement::getResult

Copyright 1997-2019 the PHP Documentation Group.

• SqlStatement::getResult

Get result

Description

 public mysql_xdevapi\Result mysql_xdevapi\SqlStatement::getResult();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

Examples

Example 5.135 mysql_xdevapi\SqlStatement::getResult example

<?php

/* ... */

?>

5.29.6 SqlStatement::hasMoreResults

Copyright 1997-2019 the PHP Documentation Group.

http://www.php.net/mysql_xdevapiSqlStatement::getNextResult
http://www.php.net/mysql_xdevapiSqlStatement::getResult

SqlStatementResult class

402

• SqlStatement::hasMoreResults

Check for more results

Description

 public bool mysql_xdevapi\SqlStatement::hasMoreResults();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

TRUE if the result set has more objects to fetch.

Examples

Example 5.136 mysql_xdevapi\SqlStatement::hasMoreResults example

<?php

/* ... */

?>

5.30 SqlStatementResult class

Copyright 1997-2019 the PHP Documentation Group.

mysql_xdevapi\SqlStatementResult {
mysql_xdevapi\SqlStatementResult

 mysql_xdevapi\BaseResult

 Traversable

 Methods

 public array mysql_xdevapi\SqlStatementResult::fetchAll();

 public object mysql_xdevapi\SqlStatementResult::fetchOne();

 public integer mysql_xdevapi\SqlStatementResult::getAffectedItemsCount();

 public integer mysql_xdevapi\SqlStatementResult::getColumnCount();

 public array mysql_xdevapi\SqlStatementResult::getColumnNames();

 public Array mysql_xdevapi\SqlStatementResult::getColumns();

http://www.php.net/mysql_xdevapiSqlStatement::hasMoreResults

SqlStatementResult::__construct

403

 public array mysql_xdevapi\SqlStatementResult::getGeneratedIds();

 public String mysql_xdevapi\SqlStatementResult::getLastInsertId();

 public array mysql_xdevapi\SqlStatementResult::getWarnings();

 public integer mysql_xdevapi\SqlStatementResult::getWarningCounts();

 public bool mysql_xdevapi\SqlStatementResult::hasData();

 public mysql_xdevapi\Result mysql_xdevapi\SqlStatementResult::nextResult();

}

5.30.1 SqlStatementResult::__construct

Copyright 1997-2019 the PHP Documentation Group.

• SqlStatementResult::__construct

Description constructor

Description

 private mysql_xdevapi\SqlStatementResult::__construct();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Examples

Example 5.137 mysql_xdevapi\SqlStatementResult::__construct example

<?php

/* ... */

?>

5.30.2 SqlStatementResult::fetchAll

Copyright 1997-2019 the PHP Documentation Group.

• SqlStatementResult::fetchAll

Get all rows

Description

 public array mysql_xdevapi\SqlStatementResult::fetchAll();

http://www.php.net/mysql_xdevapiSqlStatementResult::__construct

SqlStatementResult::fetchOne

404

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

Examples

Example 5.138 mysql_xdevapi\SqlStatementResult::fetchAll example

<?php

/* ... */

?>

5.30.3 SqlStatementResult::fetchOne

Copyright 1997-2019 the PHP Documentation Group.

• SqlStatementResult::fetchOne

Get single row

Description

 public object mysql_xdevapi\SqlStatementResult::fetchOne();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

Examples

Example 5.139 mysql_xdevapi\SqlStatementResult::fetchOne example

<?php

/* ... */

?>

http://www.php.net/mysql_xdevapiSqlStatementResult::fetchAll
http://www.php.net/mysql_xdevapiSqlStatementResult::fetchOne

SqlStatementResult::getAffectedItemsCount

405

5.30.4 SqlStatementResult::getAffectedItemsCount

Copyright 1997-2019 the PHP Documentation Group.

• SqlStatementResult::getAffectedItemsCount

Get affected row count

Description

 public integer mysql_xdevapi\SqlStatementResult::getAffectedItemsCount();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

Examples

Example 5.140 mysql_xdevapi\SqlStatementResult::getAffectedItemsCount example

<?php

/* ... */

?>

5.30.5 SqlStatementResult::getColumnCount

Copyright 1997-2019 the PHP Documentation Group.

• SqlStatementResult::getColumnCount

Get column count

Description

 public integer mysql_xdevapi\SqlStatementResult::getColumnCount();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

http://www.php.net/mysql_xdevapiSqlStatementResult::getAffectedItemsCount

SqlStatementResult::getColumnNames

406

Examples

Example 5.141 mysql_xdevapi\SqlStatementResult::getColumnCount example

<?php

/* ... */

?>

5.30.6 SqlStatementResult::getColumnNames

Copyright 1997-2019 the PHP Documentation Group.

• SqlStatementResult::getColumnNames

Get column names

Description

 public array mysql_xdevapi\SqlStatementResult::getColumnNames();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

Examples

Example 5.142 mysql_xdevapi\SqlStatementResult::getColumnNames example

<?php

/* ... */

?>

5.30.7 SqlStatementResult::getColumns

Copyright 1997-2019 the PHP Documentation Group.

• SqlStatementResult::getColumns

Get columns

http://www.php.net/mysql_xdevapiSqlStatementResult::getColumnCount
http://www.php.net/mysql_xdevapiSqlStatementResult::getColumnNames

SqlStatementResult::getGeneratedIds

407

Description

 public Array mysql_xdevapi\SqlStatementResult::getColumns();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

Examples

Example 5.143 mysql_xdevapi\SqlStatementResult::getColumns example

<?php

/* ... */

?>

5.30.8 SqlStatementResult::getGeneratedIds

Copyright 1997-2019 the PHP Documentation Group.

• SqlStatementResult::getGeneratedIds

Get generated ids

Description

 public array mysql_xdevapi\SqlStatementResult::getGeneratedIds();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

An array of generated IDs from the last operation.

Examples

Example 5.144 mysql_xdevapi\SqlStatementResult::getGeneratedIds example

http://www.php.net/mysql_xdevapiSqlStatementResult::getColumns
http://www.php.net/mysql_xdevapiSqlStatementResult::getGeneratedIds

SqlStatementResult::getLastInsertId

408

<?php

/* ... */

?>

5.30.9 SqlStatementResult::getLastInsertId

Copyright 1997-2019 the PHP Documentation Group.

• SqlStatementResult::getLastInsertId

Get last insert id

Description

 public String mysql_xdevapi\SqlStatementResult::getLastInsertId();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

The ID for the last insert operation.

Examples

Example 5.145 mysql_xdevapi\SqlStatementResult::getLastInsertId example

<?php

/* ... */

?>

5.30.10 SqlStatementResult::getWarnings

Copyright 1997-2019 the PHP Documentation Group.

• SqlStatementResult::getWarnings

Get warnings from last operation

Description

 public array mysql_xdevapi\SqlStatementResult::getWarnings();

http://www.php.net/mysql_xdevapiSqlStatementResult::getLastInsertId

SqlStatementResult::getWarningsCount

409

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

All warnings raised by the last CRUD operation, as an array.

Examples

Example 5.146 mysql_xdevapi\SqlStatementResult::getWarnings example

<?php

/* ... */

?>

5.30.11 SqlStatementResult::getWarningsCount

Copyright 1997-2019 the PHP Documentation Group.

• SqlStatementResult::getWarningsCount

Get warning count from last operation

Description

 public integer mysql_xdevapi\SqlStatementResult::getWarningCounts();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

The number of warnings raised during the last CRUD operation.

Examples

Example 5.147 mysql_xdevapi\SqlStatementResult::getWarningsCount example

<?php

/* ... */

http://www.php.net/mysql_xdevapiSqlStatementResult::getWarnings
http://www.php.net/mysql_xdevapiSqlStatementResult::getWarningsCount

SqlStatementResult::hasData

410

?>

5.30.12 SqlStatementResult::hasData

Copyright 1997-2019 the PHP Documentation Group.

• SqlStatementResult::hasData

Check if result has data

Description

 public bool mysql_xdevapi\SqlStatementResult::hasData();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

TRUE if the result set has data.

Examples

Example 5.148 mysql_xdevapi\SqlStatementResult::hasData example

<?php

/* ... */

?>

5.30.13 SqlStatementResult::nextResult

Copyright 1997-2019 the PHP Documentation Group.

• SqlStatementResult::nextResult

Get next result

Description

 public mysql_xdevapi\Result mysql_xdevapi\SqlStatementResult::nextResult();

Warning

This function is currently not documented; only its argument list is available.

Parameters

http://www.php.net/mysql_xdevapiSqlStatementResult::hasData

Statement class

411

This function has no parameters.

Return Values

The next Result object from the result set.

Examples

Example 5.149 mysql_xdevapi\SqlStatementResult::nextResult example

<?php

/* ... */

?>

5.31 Statement class

Copyright 1997-2019 the PHP Documentation Group.

mysql_xdevapi\Statement {
mysql_xdevapi\Statement

 Constants

 const integer
 mysql_xdevapi\Statement::EXECUTE_ASYNC
 = =1;

 const integer
 mysql_xdevapi\Statement::BUFFERED
 = =2;

Methods

 public mysql_xdevapi\Result mysql_xdevapi\Statement::getNextResult();

 public mysql_xdevapi\Result mysql_xdevapi\Statement::getResult();

 public bool mysql_xdevapi\Statement::hasMoreResults();

}

mysql_xdevapi
\Statement::EXECUTE_ASYNC

mysql_xdevapi
\Statement::BUFFERED

5.31.1 Statement::__construct

Copyright 1997-2019 the PHP Documentation Group.

• Statement::__construct

http://www.php.net/mysql_xdevapiSqlStatementResult::nextResult

Statement::getNextResult

412

Description constructor

Description

 private mysql_xdevapi\Statement::__construct();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Examples

Example 5.150 mysql_xdevapi\Statement::__construct example

<?php

/* ... */

?>

5.31.2 Statement::getNextResult

Copyright 1997-2019 the PHP Documentation Group.

• Statement::getNextResult

Get next result

Description

 public mysql_xdevapi\Result mysql_xdevapi\Statement::getNextResult();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

Examples

Example 5.151 mysql_xdevapi\Statement::getNextResult example

<?php

http://www.php.net/mysql_xdevapiStatement::__construct
http://www.php.net/mysql_xdevapiStatement::getNextResult

Statement::getResult

413

/* ... */

?>

5.31.3 Statement::getResult

Copyright 1997-2019 the PHP Documentation Group.

• Statement::getResult

Get result

Description

 public mysql_xdevapi\Result mysql_xdevapi\Statement::getResult();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

Examples

Example 5.152 mysql_xdevapi\Statement::getResult example

<?php

/* ... */

?>

5.31.4 Statement::hasMoreResults

Copyright 1997-2019 the PHP Documentation Group.

• Statement::hasMoreResults

Check if more results

Description

 public bool mysql_xdevapi\Statement::hasMoreResults();

Warning

This function is currently not documented; only its argument list is available.

http://www.php.net/mysql_xdevapiStatement::getResult

Table class

414

Parameters

This function has no parameters.

Return Values

Examples

Example 5.153 mysql_xdevapi\Statement::hasMoreResults example

<?php

/* ... */

?>

5.32 Table class

Copyright 1997-2019 the PHP Documentation Group.

Provides access to the table through INSERT/SELECT/UPDATE/DELETE statements.

mysql_xdevapi\Table {
mysql_xdevapi\Table

 mysql_xdevapi\SchemaObject

 Properties

 public
 name ;

Methods

 public integer mysql_xdevapi\Table::count();

 public mysql_xdevapi\TableDelete mysql_xdevapi\Table::delete();

 public bool mysql_xdevapi\Table::existsInDatabase();

 public string mysql_xdevapi\Table::getName();

 public mysql_xdevapi\Schema mysql_xdevapi\Table::getSchema();

 public mysql_xdevapi\Session mysql_xdevapi\Table::getSession();

 public mysql_xdevapi\TableInsert mysql_xdevapi\Table::insert(
 mixed columns,
 mixed ...);

 public bool mysql_xdevapi\Table::isView();

 public mysql_xdevapi\TableSelect mysql_xdevapi\Table::select(
 mixed columns,
 mixed ...);

 public mysql_xdevapi\TableUpdate mysql_xdevapi\Table::update();

http://www.php.net/mysql_xdevapiStatement::hasMoreResults

Table::__construct

415

}

name

5.32.1 Table::__construct

Copyright 1997-2019 the PHP Documentation Group.

• Table::__construct

Table constructor

Description

 private mysql_xdevapi\Table::__construct();

Construct a table object.

Parameters

This function has no parameters.

Examples

Example 5.154 mysql_xdevapi\Table::__construct example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");
?>

5.32.2 Table::count

Copyright 1997-2019 the PHP Documentation Group.

• Table::count

Get row count

Description

 public integer mysql_xdevapi\Table::count();

Fetch the number of rows in the table.

Parameters

This function has no parameters.

Return Values

The total number of rows in the table.

http://www.php.net/mysql_xdevapiTable::__construct

Table::delete

416

Examples

Example 5.155 mysql_xdevapi\Table::count example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();
$session->sql("CREATE TABLE addressbook.names(name text, age int)")->execute();
$session->sql("INSERT INTO addressbook.names values ('John', 42), ('Sam', 33)")->execute();

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

var_dump($table->count());
?>

The above example will output:

int(2)

5.32.3 Table::delete

Copyright 1997-2019 the PHP Documentation Group.

• Table::delete

Delete rows from table

Description

 public mysql_xdevapi\TableDelete mysql_xdevapi\Table::delete();

Deletes rows from a table.

Parameters

This function has no parameters.

Return Values

A TableDelete object; use the execute() method to execute the delete query.

Examples

Example 5.156 mysql_xdevapi\Table::delete example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();

http://www.php.net/mysql_xdevapiTable::count
http://www.php.net/mysql_xdevapiTable::delete

Table::existsInDatabase

417

$session->sql("CREATE TABLE addressbook.names(name text, age int)")->execute();
$session->sql("INSERT INTO addressbook.names values ('John', 42), ('Sam', 33)")->execute();

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$table->delete()->where("name = :name")->orderby("age DESC")->limit(1)->bind(['name' => 'John'])->execute();
?>

5.32.4 Table::existsInDatabase

Copyright 1997-2019 the PHP Documentation Group.

• Table::existsInDatabase

Check if table exists in database

Description

 public bool mysql_xdevapi\Table::existsInDatabase();

Verifies if this table exists in the database.

Parameters

This function has no parameters.

Return Values

Returns TRUE if table exists in the database, else FALSE if it does not.

Examples

Example 5.157 mysql_xdevapi\Table::existsInDatabase example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();
$session->sql("CREATE TABLE addressbook.names(name text, age int)")->execute();
$session->sql("INSERT INTO addressbook.names values ('John', 42), ('Sam', 33)")->execute();

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

if ($table->existsInDatabase()) {
 echo "Yes, this table still exists in the session's schema.";
}
?>

The above example will output something similar to:

Yes, this table still exists in the session's schema.

http://www.php.net/mysql_xdevapiTable::existsInDatabase

Table::getName

418

5.32.5 Table::getName

Copyright 1997-2019 the PHP Documentation Group.

• Table::getName

Get table name

Description

 public string mysql_xdevapi\Table::getName();

Returns the name of this database object.

Parameters

This function has no parameters.

Return Values

The name of this database object.

Examples

Example 5.158 mysql_xdevapi\Table::getName example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();
$session->sql("CREATE TABLE addressbook.names(name text, age int)")->execute();
$session->sql("INSERT INTO addressbook.names values ('John', 42), ('Sam', 33)")->execute();

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

var_dump($table->getName());
?>

The above example will output something similar to:

string(5) "names"

5.32.6 Table::getSchema

Copyright 1997-2019 the PHP Documentation Group.

• Table::getSchema

Get table schema

http://www.php.net/mysql_xdevapiTable::getName

Table::getSession

419

Description

 public mysql_xdevapi\Schema mysql_xdevapi\Table::getSchema();

Fetch the schema associated with the table.

Parameters

This function has no parameters.

Return Values

A Schema object.

Examples

Example 5.159 mysql_xdevapi\Table::getSchema example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();
$session->sql("CREATE TABLE addressbook.names(name text, age int)")->execute();
$session->sql("INSERT INTO addressbook.names values ('John', 42), ('Sam', 33)")->execute();

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

var_dump($table->getSchema());
?>

The above example will output something similar to:

object(mysql_xdevapi\Schema)#9 (1) {
 ["name"]=>
 string(11) "addressbook"
}

5.32.7 Table::getSession

Copyright 1997-2019 the PHP Documentation Group.

• Table::getSession

Get table session

Description

 public mysql_xdevapi\Session mysql_xdevapi\Table::getSession();

Get session associated with the table.

Parameters

http://www.php.net/mysql_xdevapiTable::getSchema

Table::insert

420

This function has no parameters.

Return Values

A Session object.

Examples

Example 5.160 mysql_xdevapi\Table::getSession example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();
$session->sql("CREATE TABLE addressbook.names(name text, age int)")->execute();
$session->sql("INSERT INTO addressbook.names values ('John', 42), ('Sam', 33)")->execute();

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

var_dump($table->getSession());
?>

The above example will output something similar to:

object(mysql_xdevapi\Session)#9 (0) {
}

5.32.8 Table::insert

Copyright 1997-2019 the PHP Documentation Group.

• Table::insert

Insert table rows

Description

 public mysql_xdevapi\TableInsert mysql_xdevapi\Table::insert(
 mixed columns,
 mixed ...);

Inserts rows into a table.

Parameters

columns The columns to insert data into. Can be an array with one or more
values, or a string.

... Additional columns definitions.

Return Values

http://www.php.net/mysql_xdevapiTable::getSession

Table::isView

421

A TableInsert object; use the execute() method to execute the insert statement.

Examples

Example 5.161 mysql_xdevapi\Table::insert example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();
$session->sql("CREATE TABLE addressbook.names(name text, age int)")->execute();
$session->sql("INSERT INTO addressbook.names values ('John', 42), ('Sam', 33)")->execute();

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$table ->insert("name", "age")
 ->values(["Suzanne", 31],["Julie", 43])
 ->execute();
?>

5.32.9 Table::isView

Copyright 1997-2019 the PHP Documentation Group.

• Table::isView

Check if table is view

Description

 public bool mysql_xdevapi\Table::isView();

Determine if the underlying object is a view or not.

Parameters

This function has no parameters.

Return Values

TRUE if the underlying object is a view, otherwise FALSE.

Examples

Example 5.162 mysql_xdevapi\Table::isView example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();
$session->sql("CREATE TABLE addressbook.names(name text, age int)")->execute();
$session->sql("INSERT INTO addressbook.names values ('John', 42), ('Sam', 33)")->execute();

http://www.php.net/mysql_xdevapiTable::insert
http://www.php.net/mysql_xdevapiTable::isView

Table::select

422

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names

if ($table->isView()) {
 echo "This is a view.";
} else {
 echo "This is not a view.";
}
?>

The above example will output:

int(2)

5.32.10 Table::select

Copyright 1997-2019 the PHP Documentation Group.

• Table::select

Select rows from table

Description

 public mysql_xdevapi\TableSelect mysql_xdevapi\Table::select(
 mixed columns,
 mixed ...);

Fetches data from a table.

Parameters

columns The columns to select data from. Can be an array with one or more
values, or a string.

... Additional columns parameter definitions.

Return Values

A TableSelect object; use the execute() method to execute the select and return a RowResult object.

Examples

Example 5.163 mysql_xdevapi\Table::count example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();
$session->sql("CREATE TABLE addressbook.names(name text, age int)")->execute();
$session->sql("INSERT INTO addressbook.names values ('John', 42), ('Sam', 33)")->execute();

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

http://www.php.net/mysql_xdevapiTable::count

Table::update

423

$row = $table->select('name', 'age')->execute()->fetchAll();

print_r($row);

The above example will output something similar to:

Array
(
 [0] => Array
 (
 [name] => John
 [age] => 42
)
 [1] => Array
 (
 [name] => Sam
 [age] => 33
)
)

5.32.11 Table::update

Copyright 1997-2019 the PHP Documentation Group.

• Table::update

Update rows in table

Description

 public mysql_xdevapi\TableUpdate mysql_xdevapi\Table::update();

Updates columns in a table.

Parameters

This function has no parameters.

Return Values

A TableUpdate object; use the execute() method to execute the update statement.

Examples

Example 5.164 mysql_xdevapi\Table::update example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();
$session->sql("CREATE TABLE addressbook.names(name text, age int)")->execute();
$session->sql("INSERT INTO addressbook.names values ('John', 42), ('Sam', 33)")->execute();

http://www.php.net/mysql_xdevapiTable::update

TableDelete class

424

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$table->update()->set('age',34)->where('name = "Sam"')->limit(1)->execute();
?>

5.33 TableDelete class

Copyright 1997-2019 the PHP Documentation Group.

A statement for delete operations on Table.

mysql_xdevapi\TableDelete {
mysql_xdevapi\TableDelete

 mysql_xdevapi\Executable

 Methods

 public mysql_xdevapi\TableDelete mysql_xdevapi\TableDelete::bind(
 array placeholder_values);

 public mysql_xdevapi\Result mysql_xdevapi\TableDelete::execute();

 public mysql_xdevapi\TableDelete mysql_xdevapi\TableDelete::limit(
 integer rows);

 public mysql_xdevapi\TableDelete mysql_xdevapi\TableDelete::offset(
 integer position);

 public mysql_xdevapi\TableDelete mysql_xdevapi\TableDelete::orderby(
 string orderby_expr);

 public mysql_xdevapi\TableDelete mysql_xdevapi\TableDelete::where(
 string where_expr);

}

5.33.1 TableDelete::bind

Copyright 1997-2019 the PHP Documentation Group.

• TableDelete::bind

Bind delete query parameters

Description

 public mysql_xdevapi\TableDelete mysql_xdevapi\TableDelete::bind(
 array placeholder_values);

Binds a value to a specific placeholder.

Parameters

placeholder_values The name of the placeholder and the value to bind.

Return Values

TableDelete::__construct

425

A TableDelete object.

Examples

Example 5.165 mysql_xdevapi\TableDelete::bind example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();
$session->sql("CREATE TABLE addressbook.names(name text, age int)")->execute();
$session->sql("INSERT INTO addressbook.names values ('John', 42), ('Sam', 33)")->execute();

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$table->delete()
 ->where("name = :name")
 ->bind(['name' => 'John'])
 ->orderby("age DESC")
 ->limit(1)
 ->execute();

?>

5.33.2 TableDelete::__construct

Copyright 1997-2019 the PHP Documentation Group.

• TableDelete::__construct

TableDelete constructor

Description

 private mysql_xdevapi\TableDelete::__construct();

Initiated by using the delete() method.

Parameters

This function has no parameters.

Examples

Example 5.166 mysql_xdevapi\TableDelete::__construct example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();
$session->sql("CREATE TABLE addressbook.names(name text, age int)")->execute();
$session->sql("INSERT INTO addressbook.names values ('John', 42), ('Sam', 33)")->execute();

http://www.php.net/mysql_xdevapiTableDelete::bind
http://www.php.net/mysql_xdevapiTableDelete::__construct

TableDelete::execute

426

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$table->delete()
 ->where("name = :name")
 ->bind(['name' => 'John'])
 ->orderby("age DESC")
 ->limit(1)
 ->execute();

?>

5.33.3 TableDelete::execute

Copyright 1997-2019 the PHP Documentation Group.

• TableDelete::execute

Execute delete query

Description

 public mysql_xdevapi\Result mysql_xdevapi\TableDelete::execute();

Execute the delete query.

Parameters

This function has no parameters.

Return Values

A Result object.

Examples

Example 5.167 mysql_xdevapi\TableDelete::execute example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();
$session->sql("CREATE TABLE addressbook.names(name text, age int)")->execute();
$session->sql("INSERT INTO addressbook.names values ('John', 42), ('Sam', 33)")->execute();

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$table->delete()
 ->where("name = :name")
 ->bind(['name' => 'John'])
 ->orderby("age DESC")
 ->limit(1)
 ->execute();

?>

http://www.php.net/mysql_xdevapiTableDelete::execute

TableDelete::limit

427

5.33.4 TableDelete::limit

Copyright 1997-2019 the PHP Documentation Group.

• TableDelete::limit

Limit deleted rows

Description

 public mysql_xdevapi\TableDelete mysql_xdevapi\TableDelete::limit(
 integer rows);

Sets the maximum number of records or documents to delete.

Parameters

rows The maximum number of records or documents to delete.

Return Values

TableDelete object.

Examples

Example 5.168 mysql_xdevapi\TableDelete::limit example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();
$session->sql("CREATE TABLE addressbook.names(name text, age int)")->execute();
$session->sql("INSERT INTO addressbook.names values ('John', 42), ('Sam', 33)")->execute();

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$table->delete()
 ->where("name = :name")
 ->bind(['name' => 'John'])
 ->orderby("age DESC")
 ->limit(1)
 ->execute();

?>

5.33.5 TableDelete::offset

Copyright 1997-2019 the PHP Documentation Group.

• TableDelete::offset

Set delete limit offset

Description

 public mysql_xdevapi\TableDelete mysql_xdevapi\TableDelete::offset(

http://www.php.net/mysql_xdevapiTableDelete::limit

TableDelete::orderby

428

 integer position);

Sets the limit offset.

Parameters

position The limit offset.

Return Values

A TableDelete object.

Examples

Example 5.169 mysql_xdevapi\TableDelete::offset example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();
$session->sql("CREATE TABLE addressbook.names(name text, age int)")->execute();
$session->sql("INSERT INTO addressbook.names values ('John', 42), ('Sam', 33), ('Julie', 42)")->execute();

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$table->delete()
 ->where("age = :age")
 ->bind(['age' => 42])
 ->orderby("name DESC")
 ->limit(1)
 ->offset(1)
 ->execute();

?>

5.33.6 TableDelete::orderby

Copyright 1997-2019 the PHP Documentation Group.

• TableDelete::orderby

Set delete sort criteria

Description

 public mysql_xdevapi\TableDelete mysql_xdevapi\TableDelete::orderby(
 string orderby_expr);

Set the order options for a result set.

Parameters

orderby_expr The sort definition.

Return Values

A TableDelete object.

http://www.php.net/mysql_xdevapiTableDelete::offset

TableDelete::where

429

Examples

Example 5.170 mysql_xdevapi\TableDelete::orderBy example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$table->delete()
 ->where("age = :age")
 ->bind(['age' => 42])
 ->orderby("name DESC")
 ->limit(1)
 ->execute();

?>

5.33.7 TableDelete::where

Copyright 1997-2019 the PHP Documentation Group.

• TableDelete::where

Set delete search condition

Description

 public mysql_xdevapi\TableDelete mysql_xdevapi\TableDelete::where(
 string where_expr);

Sets the search condition to filter.

Parameters

where_expr Define the search condition to filter documents or records.

Return Values

TableDelete object.

Examples

Example 5.171 mysql_xdevapi\TableDelete::where example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$table->delete()
 ->where("id = :id")
 ->bind(['id' => 42])
 ->limit(1)
 ->execute();

http://www.php.net/mysql_xdevapiTableDelete::orderBy
http://www.php.net/mysql_xdevapiTableDelete::where

TableInsert class

430

?>

5.34 TableInsert class

Copyright 1997-2019 the PHP Documentation Group.

A statement for insert operations on Table.

mysql_xdevapi\TableInsert {
mysql_xdevapi\TableInsert

 mysql_xdevapi\Executable

 Methods

 public mysql_xdevapi\Result mysql_xdevapi\TableInsert::execute();

 public mysql_xdevapi\TableInsert mysql_xdevapi\TableInsert::values(
 array row_values);

}

5.34.1 TableInsert::__construct

Copyright 1997-2019 the PHP Documentation Group.

• TableInsert::__construct

TableInsert constructor

Description

 private mysql_xdevapi\TableInsert::__construct();

Initiated by using the insert() method.

Parameters

This function has no parameters.

Examples

Example 5.172 mysql_xdevapi\TableInsert::__construct example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();
$session->sql("CREATE TABLE addressbook.names(name text, age int)")->execute();
$session->sql("INSERT INTO addressbook.names values ('John', 42), ('Sam', 33)")->execute();

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

http://www.php.net/mysql_xdevapiTableInsert::__construct

TableInsert::execute

431

$table
 ->insert("name", "age")
 ->values(["Suzanne", 31],["Julie", 43])
 ->execute();
?>

5.34.2 TableInsert::execute

Copyright 1997-2019 the PHP Documentation Group.

• TableInsert::execute

Execute insert query

Description

 public mysql_xdevapi\Result mysql_xdevapi\TableInsert::execute();

Execute the statement.

Parameters

This function has no parameters.

Return Values

A Result object.

Examples

Example 5.173 mysql_xdevapi\TableInsert::execute example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();
$session->sql("CREATE TABLE addressbook.names(name text, age int)")->execute();
$session->sql("INSERT INTO addressbook.names values ('John', 42), ('Sam', 33)")->execute();

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$table
 ->insert("name", "age")
 ->values(["Suzanne", 31],["Julie", 43])
 ->execute();
?>

5.34.3 TableInsert::values

Copyright 1997-2019 the PHP Documentation Group.

• TableInsert::values

Add insert row values

http://www.php.net/mysql_xdevapiTableInsert::execute

TableSelect class

432

Description

 public mysql_xdevapi\TableInsert mysql_xdevapi\TableInsert::values(
 array row_values);

Set the values to be inserted.

Parameters

row_values Values (an array) of columns to insert.

Return Values

A TableInsert object.

Examples

Example 5.174 mysql_xdevapi\TableInsert::values example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();
$session->sql("CREATE TABLE addressbook.names(name text, age int)")->execute();
$session->sql("INSERT INTO addressbook.names values ('John', 42), ('Sam', 33)")->execute();

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$table
 ->insert("name", "age")
 ->values(["Suzanne", 31],["Julie", 43])
 ->execute();
?>

5.35 TableSelect class
Copyright 1997-2019 the PHP Documentation Group.

A statement for record retrieval operations on a Table.

mysql_xdevapi\TableSelect {
mysql_xdevapi\TableSelect

 mysql_xdevapi\Executable

 Methods

 public mysql_xdevapi\TableSelect mysql_xdevapi\TableSelect::bind(
 array placeholder_values);

 public mysql_xdevapi\RowResult mysql_xdevapi\TableSelect::execute();

 public mysql_xdevapi\TableSelect mysql_xdevapi\TableSelect::groupBy(
 mixed sort_expr);

 public mysql_xdevapi\TableSelect mysql_xdevapi\TableSelect::having(

http://www.php.net/mysql_xdevapiTableInsert::values

TableSelect::bind

433

 string sort_expr);

 public mysql_xdevapi\TableSelect mysql_xdevapi\TableSelect::limit(
 integer rows);

 public mysql_xdevapi\TableSelect mysql_xdevapi\TableSelect::lockExclusive(
 integer lock_waiting_option);

 public mysql_xdevapi\TableSelect mysql_xdevapi\TableSelect::lockShared(
 integer lock_waiting_option);

 public mysql_xdevapi\TableSelect mysql_xdevapi\TableSelect::offset(
 integer position);

 public mysql_xdevapi\TableSelect mysql_xdevapi\TableSelect::orderby(
 mixed sort_expr,
 mixed ...);

 public mysql_xdevapi\TableSelect mysql_xdevapi\TableSelect::where(
 string where_expr);

}

5.35.1 TableSelect::bind

Copyright 1997-2019 the PHP Documentation Group.

• TableSelect::bind

Bind select query parameters

Description

 public mysql_xdevapi\TableSelect mysql_xdevapi\TableSelect::bind(
 array placeholder_values);

Binds a value to a specific placeholder.

Parameters

placeholder_values The name of the placeholder, and the value to bind.

Return Values

A TableSelect object.

Examples

Example 5.175 mysql_xdevapi\TableSelect::bind example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$result = $table->select('name','age')
 ->where('name like :name and age > :age')
 ->bind(['name' => 'John', 'age' => 42])
 ->execute();

$row = $result->fetchAll();

http://www.php.net/mysql_xdevapiTableSelect::bind

TableSelect::__construct

434

print_r($row);
?>

The above example will output something similar to:

Array
(
 [0] => Array
 (
 [name] => John
 [age] => 42
)
)

5.35.2 TableSelect::__construct

Copyright 1997-2019 the PHP Documentation Group.

• TableSelect::__construct

TableSelect constructor

Description

 private mysql_xdevapi\TableSelect::__construct();

An object returned by the select() method; use execute() to execute the query.

Parameters

This function has no parameters.

Examples

Example 5.176 mysql_xdevapi\TableSelect::__construct example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();
$session->sql("CREATE TABLE addressbook.names(name text, age int)")->execute();
$session->sql("INSERT INTO addressbook.names values ('John', 42), ('Sam', 33)")->execute();

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$result = $table->select('name','age')
 ->where('name like :name and age > :age')
 ->bind(['name' => 'John', 'age' => 42])
 ->orderBy('age desc')
 ->execute();

$row = $result->fetchAll();
print_r($row);

http://www.php.net/mysql_xdevapiTableSelect::__construct

TableSelect::execute

435

?>

The above example will output something similar to:

Array
(
 [0] => Array
 (
 [name] => John
 [age] => 42
)
)

5.35.3 TableSelect::execute

Copyright 1997-2019 the PHP Documentation Group.

• TableSelect::execute

Execute select statement

Description

 public mysql_xdevapi\RowResult mysql_xdevapi\TableSelect::execute();

Execute the select statement by chaining it with the execute() method.

Parameters

This function has no parameters.

Return Values

A RowResult object.

Examples

Example 5.177 mysql_xdevapi\TableSelect::execute example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$result = $table->select('name','age')
 ->where('name like :name and age > :age')
 ->bind(['name' => 'John', 'age' => 42])
 ->orderBy('age desc')
 ->execute();

$row = $result->fetchAll();
?>

http://www.php.net/mysql_xdevapiTableSelect::execute

TableSelect::groupBy

436

The above example will output something similar to:

Array
(
 [0] => Array
 (
 [name] => John
 [age] => 42
)
)

5.35.4 TableSelect::groupBy

Copyright 1997-2019 the PHP Documentation Group.

• TableSelect::groupBy

Set select grouping criteria

Description

 public mysql_xdevapi\TableSelect mysql_xdevapi\TableSelect::groupBy(
 mixed sort_expr);

Sets a grouping criteria for the result set.

Parameters

sort_expr The grouping criteria.

Return Values

A TableSelect object.

Examples

Example 5.178 mysql_xdevapi\TableSelect::groupBy example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();
$session->sql("CREATE TABLE addressbook.names(name text, age int)")->execute();
$session->sql("INSERT INTO addressbook.names values ('John', 42), ('Sam', 42)")->execute();
$session->sql("INSERT INTO addressbook.names values ('Suki', 31)")->execute();

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$result = $table->select('count(*) as count', 'age')
 ->groupBy('age')->orderBy('age asc')
 ->execute();

$row = $result->fetchAll();
print_r($row);
?>

http://www.php.net/mysql_xdevapiTableSelect::groupBy

TableSelect::having

437

The above example will output something similar to:

Array
(
 [0] => Array
 (
 [count] => 1
 [age] => 31
)
 [1] => Array
 (
 [count] => 2
 [age] => 42
)
)

5.35.5 TableSelect::having

Copyright 1997-2019 the PHP Documentation Group.

• TableSelect::having

Set select having condition

Description

 public mysql_xdevapi\TableSelect mysql_xdevapi\TableSelect::having(
 string sort_expr);

Sets a condition for records to consider in aggregate function operations.

Parameters

sort_expr A condition on the aggregate functions used on the grouping criteria.

Return Values

A TableSelect object.

Examples

Example 5.179 mysql_xdevapi\TableSelect::having example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();
$session->sql("CREATE TABLE addressbook.names(name text, age int)")->execute();
$session->sql("INSERT INTO addressbook.names values ('John', 42), ('Sam', 42)")->execute();
$session->sql("INSERT INTO addressbook.names values ('Suki', 31)")->execute();

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

http://www.php.net/mysql_xdevapiTableSelect::having

TableSelect::limit

438

$result = $table->select('count(*) as count', 'age')
 ->groupBy('age')->orderBy('age asc')
 ->having('count > 1')
 ->execute();

$row = $result->fetchAll();
print_r($row);
?>

The above example will output something similar to:

Array
(
 [0] => Array
 (
 [count] => 2
 [age] => 42
)
)

5.35.6 TableSelect::limit

Copyright 1997-2019 the PHP Documentation Group.

• TableSelect::limit

Limit selected rows

Description

 public mysql_xdevapi\TableSelect mysql_xdevapi\TableSelect::limit(
 integer rows);

Sets the maximum number of records or documents to return.

Parameters

rows The maximum number of records or documents.

Return Values

A TableSelect object.

Examples

Example 5.180 mysql_xdevapi\TableSelect::limit example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$result = $table->select('name', 'age')

http://www.php.net/mysql_xdevapiTableSelect::limit

TableSelect::lockExclusive

439

 ->limit(1)
 ->execute();

$row = $result->fetchAll();
print_r($row);
?>

The above example will output something similar to:

Array
(
 [0] => Array
 (
 [name] => John
 [age] => 42
)
)

5.35.7 TableSelect::lockExclusive

Copyright 1997-2019 the PHP Documentation Group.

• TableSelect::lockExclusive

Execute EXCLUSIVE LOCK

Description

 public mysql_xdevapi\TableSelect mysql_xdevapi\TableSelect::lockExclusive(
 integer lock_waiting_option);

Execute a read operation with EXCLUSIVE LOCK. Only one lock can be active at a time.

Parameters

lock_waiting_option The optional waiting option that defaults to MYSQLX_LOCK_DEFAULT.
Valid values are:

• MYSQLX_LOCK_DEFAULT

• MYSQLX_LOCK_NOWAIT

• MYSQLX_LOCK_SKIP_LOCKED

Return Values

TableSelect object.

Examples

Example 5.181 mysql_xdevapi\TableSelect::lockExclusive example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

http://www.php.net/mysql_xdevapiTableSelect::lockExclusive

TableSelect::lockShared

440

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$session->startTransaction();

$result = $table->select('name', 'age')
 ->lockExclusive(MYSQLX_LOCK_NOWAIT)
 ->execute();

$session->commit();

$row = $result->fetchAll();
print_r($row);
?>

The above example will output something similar to:

Array
(
 [0] => Array
 (
 [name] => John
 [age] => 42
)
 [1] => Array
 (
 [name] => Sam
 [age] => 42
)
)

5.35.8 TableSelect::lockShared

Copyright 1997-2019 the PHP Documentation Group.

• TableSelect::lockShared

Execute SHARED LOCK

Description

 public mysql_xdevapi\TableSelect mysql_xdevapi\TableSelect::lockShared(
 integer lock_waiting_option);

Execute a read operation with SHARED LOCK. Only one lock can be active at a time.

Parameters

lock_waiting_option The optional waiting option that defaults to MYSQLX_LOCK_DEFAULT.
Valid values are:

• MYSQLX_LOCK_DEFAULT

• MYSQLX_LOCK_NOWAIT

• MYSQLX_LOCK_SKIP_LOCKED

TableSelect::offset

441

Return Values

A TableSelect object.

Examples

Example 5.182 mysql_xdevapi\TableSelect::lockShared example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$session->startTransaction();

$result = $table->select('name', 'age')
 ->lockShared(MYSQLX_LOCK_NOWAIT)
 ->execute();

$session->commit();

$row = $result->fetchAll();
print_r($row);
?>

The above example will output something similar to:

Array
(
 [0] => Array
 (
 [name] => John
 [age] => 42
)
 [1] => Array
 (
 [name] => Sam
 [age] => 42
)
)

5.35.9 TableSelect::offset

Copyright 1997-2019 the PHP Documentation Group.

• TableSelect::offset

Set limit offset

Description

 public mysql_xdevapi\TableSelect mysql_xdevapi\TableSelect::offset(
 integer position);

Skip given number of rows in result.

http://www.php.net/mysql_xdevapiTableSelect::lockShared

TableSelect::orderby

442

Parameters

position The limit offset.

Return Values

A TableSelect object.

Examples

Example 5.183 mysql_xdevapi\TableSelect::offset example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$session->sql("DROP DATABASE IF EXISTS addressbook")->execute();
$session->sql("CREATE DATABASE addressbook")->execute();
$session->sql("CREATE TABLE addressbook.names(name text, age int)")->execute();
$session->sql("INSERT INTO addressbook.names values ('John', 42), ('Sam', 42)")->execute();

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$result = $table->select('name', 'age')
 ->limit(1)
 ->offset(1)
 ->execute();

$row = $result->fetchAll();
print_r($row);
?>

The above example will output something similar to:

Array
(
 [0] => Array
 (
 [name] => Sam
 [age] => 42
)
)

5.35.10 TableSelect::orderby

Copyright 1997-2019 the PHP Documentation Group.

• TableSelect::orderby

Set select sort criteria

Description

 public mysql_xdevapi\TableSelect mysql_xdevapi\TableSelect::orderby(
 mixed sort_expr,
 mixed ...);

http://www.php.net/mysql_xdevapiTableSelect::offset

TableSelect::where

443

Sets the order by criteria.

Parameters

sort_expr The expressions that define the order by criteria. Can be an array with
one or more expressions, or a string.

... Additional sort_expr parameters.

Return Values

A TableSelect object.

Examples

Example 5.184 mysql_xdevapi\TableSelect::orderBy example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$result = $table->select('name', 'age')
 ->orderBy('name desc')
 ->execute();

$row = $result->fetchAll();
print_r($row);
?>

The above example will output something similar to:

Array
(
 [0] => Array
 (
 [name] => Sam
 [age] => 42
)
 [1] => Array
 (
 [name] => John
 [age] => 42
)
)

5.35.11 TableSelect::where

Copyright 1997-2019 the PHP Documentation Group.

• TableSelect::where

Set select search condition

http://www.php.net/mysql_xdevapiTableSelect::orderBy

TableUpdate class

444

Description

 public mysql_xdevapi\TableSelect mysql_xdevapi\TableSelect::where(
 string where_expr);

Sets the search condition to filter.

Parameters

where_expr Define the search condition to filter documents or records.

Return Values

A TableSelect object.

Examples

Example 5.185 mysql_xdevapi\TableSelect::where example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$result = $table->select('name','age')
 ->where('name like :name and age > :age')
 ->bind(['name' => 'John', 'age' => 42])
 ->execute();

$row = $result->fetchAll();
print_r($row);
?>

The above example will output something similar to:

Array
(
 [0] => Array
 (
 [name] => John
 [age] => 42
)
)

5.36 TableUpdate class

Copyright 1997-2019 the PHP Documentation Group.

A statement for record update operations on a Table.

mysql_xdevapi\TableUpdate {
mysql_xdevapi\TableUpdate

http://www.php.net/mysql_xdevapiTableSelect::where

TableUpdate::bind

445

 mysql_xdevapi\Executable

 Methods

 public mysql_xdevapi\TableUpdate mysql_xdevapi\TableUpdate::bind(
 array placeholder_values);

 public mysql_xdevapi\TableUpdate mysql_xdevapi\TableUpdate::execute();

 public mysql_xdevapi\TableUpdate mysql_xdevapi\TableUpdate::limit(
 integer rows);

 public mysql_xdevapi\TableUpdate mysql_xdevapi\TableUpdate::orderby(
 mixed orderby_expr,
 mixed ...);

 public mysql_xdevapi\TableUpdate mysql_xdevapi\TableUpdate::set(
 string table_field,
 string expression_or_literal);

 public mysql_xdevapi\TableUpdate mysql_xdevapi\TableUpdate::where(
 string where_expr);

}

5.36.1 TableUpdate::bind

Copyright 1997-2019 the PHP Documentation Group.

• TableUpdate::bind

Bind update query parameters

Description

 public mysql_xdevapi\TableUpdate mysql_xdevapi\TableUpdate::bind(
 array placeholder_values);

Binds a value to a specific placeholder.

Parameters

placeholder_values The name of the placeholder, and the value to bind, defined as a JSON
array.

Return Values

A TableUpdate object.

Examples

Example 5.186 mysql_xdevapi\TableUpdate::bind example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$table->update()
 ->set('status', 'admin')

http://www.php.net/mysql_xdevapiTableUpdate::bind

TableUpdate::__construct

446

 ->where('name = :name and age > :age')
 ->bind(['name' => 'Bernie', 'age' => 2000])
 ->execute();

?>

5.36.2 TableUpdate::__construct

Copyright 1997-2019 the PHP Documentation Group.

• TableUpdate::__construct

TableUpdate constructor

Description

 private mysql_xdevapi\TableUpdate::__construct();

Initiated by using the update() method.

Parameters

This function has no parameters.

Examples

Example 5.187 mysql_xdevapi\TableUpdate::__construct example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$res = $table->update()
 ->set('level', 3)
 ->where('age > 15 and age < 22')
 ->limit(4)
 ->orderby(['age asc','name desc'])
 ->execute();

?>

5.36.3 TableUpdate::execute

Copyright 1997-2019 the PHP Documentation Group.

• TableUpdate::execute

Execute update query

Description

 public mysql_xdevapi\TableUpdate mysql_xdevapi\TableUpdate::execute();

Executes the update statement.

http://www.php.net/mysql_xdevapiTableUpdate::__construct

TableUpdate::limit

447

Parameters

This function has no parameters.

Return Values

A TableUpdate object.

Examples

Example 5.188 mysql_xdevapi\TableUpdate::execute example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$res = $table->update()
 ->set('level', 3)
 ->where('age > 15 and age < 22')
 ->limit(4)
 ->orderby(['age asc','name desc'])
 ->execute();

?>

5.36.4 TableUpdate::limit

Copyright 1997-2019 the PHP Documentation Group.

• TableUpdate::limit

Limit update row count

Description

 public mysql_xdevapi\TableUpdate mysql_xdevapi\TableUpdate::limit(
 integer rows);

Set the maximum number of records or documents update.

Parameters

rows The maximum number of records or documents to update.

Return Values

A TableUpdate object.

Examples

Example 5.189 mysql_xdevapi\TableUpdate::limit example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

http://www.php.net/mysql_xdevapiTableUpdate::execute
http://www.php.net/mysql_xdevapiTableUpdate::limit

TableUpdate::orderby

448

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$res = $table->update()
 ->set('level', 3)
 ->where('age > 15 and age < 22')
 ->limit(4)
 ->orderby(['age asc','name desc'])
 ->execute();

?>

5.36.5 TableUpdate::orderby

Copyright 1997-2019 the PHP Documentation Group.

• TableUpdate::orderby

Set sorting criteria

Description

 public mysql_xdevapi\TableUpdate mysql_xdevapi\TableUpdate::orderby(
 mixed orderby_expr,
 mixed ...);

Sets the sorting criteria.

Parameters

orderby_expr The expressions that define the order by criteria. Can be an array with
one or more expressions, or a string.

... Additional sort_expr parameters.

Return Values

TableUpdate object.

Examples

Example 5.190 mysql_xdevapi\TableUpdate::orderby example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$res = $table->update()
 ->set('level', 3)
 ->where('age > 15 and age < 22')
 ->limit(4)
 ->orderby(['age asc','name desc'])
 ->execute();
?>

http://www.php.net/mysql_xdevapiTableUpdate::orderby

TableUpdate::set

449

5.36.6 TableUpdate::set

Copyright 1997-2019 the PHP Documentation Group.

• TableUpdate::set

Add field to be updated

Description

 public mysql_xdevapi\TableUpdate mysql_xdevapi\TableUpdate::set(
 string table_field,
 string expression_or_literal);

Updates the column value on records in a table.

Parameters

table_field The column name to be updated.

expression_or_literal The value to be set on the specified column.

Return Values

TableUpdate object.

Examples

Example 5.191 mysql_xdevapi\TableUpdate::set example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$res = $table->update()
 ->set('level', 3)
 ->where('age > 15 and age < 22')
 ->limit(4)
 ->orderby(['age asc','name desc'])
 ->execute();

?>

5.36.7 TableUpdate::where

Copyright 1997-2019 the PHP Documentation Group.

• TableUpdate::where

Set search filter

Description

 public mysql_xdevapi\TableUpdate mysql_xdevapi\TableUpdate::where(
 string where_expr);

http://www.php.net/mysql_xdevapiTableUpdate::set

Warning class

450

Set the search condition to filter.

Parameters

where_expr The search condition to filter documents or records.

Return Values

A TableUpdate object.

Examples

Example 5.192 mysql_xdevapi\TableUpdate::where example

<?php
$session = mysql_xdevapi\getSession("mysqlx://user:password@localhost");

$schema = $session->getSchema("addressbook");
$table = $schema->getTable("names");

$res = $table->update()
 ->set('level', 3)
 ->where('age > 15 and age < 22')
 ->limit(4)
 ->orderby(['age asc','name desc'])
 ->execute();

?>

5.37 Warning class

Copyright 1997-2019 the PHP Documentation Group.

mysql_xdevapi\Warning {
mysql_xdevapi\Warning

 Properties

 public
 message ;

 public
 level ;

 public
 code ;

Constructor

 private mysql_xdevapi\Warning::__construct();

}

message

level

http://www.php.net/mysql_xdevapiTableUpdate::where

Warning::__construct

451

code

5.37.1 Warning::__construct

Copyright 1997-2019 the PHP Documentation Group.

• Warning::__construct

Warning constructor

Description

 private mysql_xdevapi\Warning::__construct();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Examples

Example 5.193 mysql_xdevapi\Warning::__construct example

<?php

/* ... */

?>

5.38 XSession class

Copyright 1997-2019 the PHP Documentation Group.

mysql_xdevapi\XSession {
mysql_xdevapi\XSession

 Constructor

 private mysql_xdevapi\XSession::__construct();

}

5.38.1 XSession::__construct

Copyright 1997-2019 the PHP Documentation Group.

• XSession::__construct

Description constructor

http://www.php.net/mysql_xdevapiWarning::__construct

XSession::__construct

452

Description

 private mysql_xdevapi\XSession::__construct();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Examples

Example 5.194 mysql_xdevapi\XSession::__construct example

<?php

/* ... */

?>

http://www.php.net/mysql_xdevapiXSession::__construct

453

Chapter 6 Original MySQL API

Table of Contents
6.1 Installing/Configuring ... 454

6.1.1 Requirements .. 454
6.1.2 Installation ... 454
6.1.3 Runtime Configuration .. 456
6.1.4 Resource Types ... 457

6.2 Changelog .. 457
6.3 Predefined Constants .. 458
6.4 Examples ... 459

6.4.1 MySQL extension overview example ... 459
6.5 MySQL Functions ... 460

6.5.1 mysql_affected_rows ... 460
6.5.2 mysql_client_encoding ... 462
6.5.3 mysql_close ... 463
6.5.4 mysql_connect ... 464
6.5.5 mysql_create_db ... 467
6.5.6 mysql_data_seek ... 469
6.5.7 mysql_db_name ... 470
6.5.8 mysql_db_query ... 472
6.5.9 mysql_drop_db ... 473
6.5.10 mysql_errno ... 475
6.5.11 mysql_error ... 476
6.5.12 mysql_escape_string ... 477
6.5.13 mysql_fetch_array ... 479
6.5.14 mysql_fetch_assoc ... 481
6.5.15 mysql_fetch_field ... 483
6.5.16 mysql_fetch_lengths ... 485
6.5.17 mysql_fetch_object ... 486
6.5.18 mysql_fetch_row ... 488
6.5.19 mysql_field_flags ... 489
6.5.20 mysql_field_len ... 491
6.5.21 mysql_field_name ... 492
6.5.22 mysql_field_seek ... 493
6.5.23 mysql_field_table ... 494
6.5.24 mysql_field_type ... 495
6.5.25 mysql_free_result ... 497
6.5.26 mysql_get_client_info ... 498
6.5.27 mysql_get_host_info ... 499
6.5.28 mysql_get_proto_info ... 500
6.5.29 mysql_get_server_info ... 501
6.5.30 mysql_info ... 502
6.5.31 mysql_insert_id ... 504
6.5.32 mysql_list_dbs ... 505
6.5.33 mysql_list_fields ... 506
6.5.34 mysql_list_processes ... 508
6.5.35 mysql_list_tables ... 509
6.5.36 mysql_num_fields ... 511
6.5.37 mysql_num_rows ... 512
6.5.38 mysql_pconnect ... 513

Installing/Configuring

454

6.5.39 mysql_ping ... 515
6.5.40 mysql_query ... 516
6.5.41 mysql_real_escape_string ... 518
6.5.42 mysql_result ... 521
6.5.43 mysql_select_db ... 523
6.5.44 mysql_set_charset ... 524
6.5.45 mysql_stat ... 525
6.5.46 mysql_tablename ... 527
6.5.47 mysql_thread_id ... 528
6.5.48 mysql_unbuffered_query ... 529

Copyright 1997-2019 the PHP Documentation Group.

This extension is deprecated as of PHP 5.5.0, and has been removed as of PHP 7.0.0. Instead, either the
mysqli or PDO_MySQL extension should be used. See also the MySQL API Overview for further help while
choosing a MySQL API.

These functions allow you to access MySQL database servers. More information about MySQL can be
found at http://www.mysql.com/.

Documentation for MySQL can be found at http://dev.mysql.com/doc/.

6.1 Installing/Configuring

Copyright 1997-2019 the PHP Documentation Group.

6.1.1 Requirements

Copyright 1997-2019 the PHP Documentation Group.

In order to have these functions available, you must compile PHP with MySQL support.

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

6.1.2 Installation

Copyright 1997-2019 the PHP Documentation Group.

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

For compiling, simply use the --with-mysql[=DIR] configuration option where the optional [DIR]
points to the MySQL installation directory.

Although this MySQL extension is compatible with MySQL 4.1.0 and greater, it doesn't support the extra
functionality that these versions provide. For that, use the MySQLi extension.

http://www.mysql.com/
http://dev.mysql.com/doc/
http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/faq.databases.mysql.deprecated

Installation

455

If you would like to install the mysql extension along with the mysqli extension you have to use the same
client library to avoid any conflicts.

6.1.2.1 Installation on Linux Systems

Copyright 1997-2019 the PHP Documentation Group.

Note: [DIR] is the path to the MySQL client library files (headers and libraries), which can be downloaded
from MySQL.

Table 6.1 ext/mysql compile time support matrix

PHP Version Default Configure
Options: mysqlnd

Configure
Options:
libmysqlclient

Changelog

4.x.x libmysqlclient Not Available --without-mysql
to disable

MySQL enabled
by default, MySQL
client libraries are
bundled

5.0.x, 5.1.x, 5.2.x libmysqlclient Not Available --with-
mysql=[DIR]

MySQL is no longer
enabled by default,
and the MySQL
client libraries are
no longer bundled

5.3.x libmysqlclient --with-
mysql=mysqlnd

--with-
mysql=[DIR]

mysqlnd is now
available

5.4.x mysqlnd --with-mysql --with-
mysql=[DIR]

mysqlnd is now the
default

6.1.2.2 Installation on Windows Systems

Copyright 1997-2019 the PHP Documentation Group.

PHP 5.0.x, 5.1.x, 5.2.x

Copyright 1997-2019 the PHP Documentation Group.

MySQL is no longer enabled by default, so the php_mysql.dll DLL must be enabled inside of php.ini.
Also, PHP needs access to the MySQL client library. A file named libmysql.dll is included in the
Windows PHP distribution and in order for PHP to talk to MySQL this file needs to be available to the
Windows systems PATH. See the FAQ titled "How do I add my PHP directory to the PATH on Windows"
for information on how to do this. Although copying libmysql.dll to the Windows system directory also
works (because the system directory is by default in the system's PATH), it's not recommended.

As with enabling any PHP extension (such as php_mysql.dll), the PHP directive extension_dir should
be set to the directory where the PHP extensions are located. See also the Manual Windows Installation
Instructions. An example extension_dir value for PHP 5 is c:\php\ext

Note

If when starting the web server an error similar to the following occurs: "Unable
to load dynamic library './php_mysql.dll'", this is because
php_mysql.dll and/or libmysql.dll cannot be found by the system.

http://www.mysql.com/
http://www.php.net/manual/en/faq.installation.php#faq.installation.addtopath
http://www.php.net/manual/en/ini.core.php#ini.extension-dir
http://www.php.net/manual/en/install.windows.manual
http://www.php.net/manual/en/install.windows.manual

Runtime Configuration

456

PHP 5.3.0+

Copyright 1997-2019 the PHP Documentation Group.

The MySQL Native Driver is enabled by default. Include php_mysql.dll, but libmysql.dll is no
longer required or used.

6.1.2.3 MySQL Installation Notes

Copyright 1997-2019 the PHP Documentation Group.

Warning

Crashes and startup problems of PHP may be encountered when loading this
extension in conjunction with the recode extension. See the recode extension for
more information.

Note

If you need charsets other than latin (default), you have to install external (not
bundled) libmysqlclient with compiled charset support.

6.1.3 Runtime Configuration

Copyright 1997-2019 the PHP Documentation Group.

The behaviour of these functions is affected by settings in php.ini.

Table 6.2 MySQL Configuration Options

Name Default Changeable Changelog

mysql.allow_local_infile "1" PHP_INI_SYSTEM

mysql.allow_persistent "1" PHP_INI_SYSTEM

mysql.max_persistent "-1" PHP_INI_SYSTEM

mysql.max_links "-1" PHP_INI_SYSTEM

mysql.trace_mode "0" PHP_INI_ALL Available since PHP
4.3.0.

mysql.default_port NULL PHP_INI_ALL

mysql.default_socket NULL PHP_INI_ALL Available since PHP
4.0.1.

mysql.default_host NULL PHP_INI_ALL

mysql.default_user NULL PHP_INI_ALL

mysql.default_password NULL PHP_INI_ALL

mysql.connect_timeout "60" PHP_INI_ALL PHP_INI_SYSTEM in
PHP <= 4.3.2. Available
since PHP 4.3.0.

For further details and definitions of the PHP_INI_* modes, see the http://www.php.net/manual/en/
configuration.changes.modes.

http://www.php.net/manual/en/ref.recode
http://www.php.net/manual/en/configuration.changes.modes
http://www.php.net/manual/en/configuration.changes.modes

Resource Types

457

Here's a short explanation of the configuration directives.

mysql.allow_local_infile
integer

Allow accessing, from PHP's perspective, local files with LOAD DATA
statements

mysql.allow_persistent
boolean

Whether to allow persistent connections to MySQL.

mysql.max_persistent
integer

The maximum number of persistent MySQL connections per process.

mysql.max_links integer The maximum number of MySQL connections per process, including
persistent connections.

mysql.trace_mode boolean Trace mode. When mysql.trace_mode is enabled, warnings for table/
index scans, non free result sets, and SQL-Errors will be displayed.
(Introduced in PHP 4.3.0)

mysql.default_port string The default TCP port number to use when connecting to the database
server if no other port is specified. If no default is specified, the
port will be obtained from the MYSQL_TCP_PORT environment
variable, the mysql-tcp entry in /etc/services or the compile-
time MYSQL_PORT constant, in that order. Win32 will only use the
MYSQL_PORT constant.

mysql.default_socket
string

The default socket name to use when connecting to a local database
server if no other socket name is specified.

mysql.default_host string The default server host to use when connecting to the database server
if no other host is specified. Doesn't apply in SQL safe mode.

mysql.default_user string The default user name to use when connecting to the database server if
no other name is specified. Doesn't apply in SQL safe mode.

mysql.default_password
string

The default password to use when connecting to the database server if
no other password is specified. Doesn't apply in SQL safe mode.

mysql.connect_timeout
integer

Connect timeout in seconds. On Linux this timeout is also used for
waiting for the first answer from the server.

6.1.4 Resource Types

Copyright 1997-2019 the PHP Documentation Group.

There are two resource types used in the MySQL module. The first one is the link identifier for a database
connection, the second a resource which holds the result of a query.

6.2 Changelog

Copyright 1997-2019 the PHP Documentation Group.

The following changes have been made to classes/functions/methods of this extension.

General Changelog for the ext/mysql extension

This changelog references the ext/mysql extension.

http://www.php.net/manual/en/features.persistent-connections
http://www.php.net/manual/en/ini.core.php#ini.sql.safe-mode
http://www.php.net/manual/en/ini.core.php#ini.sql.safe-mode
http://www.php.net/manual/en/ini.core.php#ini.sql.safe-mode

Global ext/mysql changes

458

Global ext/mysql changes

The following is a list of changes to the entire ext/mysql extension.

Version Description

7.0.0 This extension was removed from PHP. For details,
see Section 2.3, “Choosing an API”.

5.5.0 This extension has been deprecated. Connecting
to a MySQL database via mysql_connect,
mysql_pconnect or an implicit connection via
any other mysql_* function will generate an
E_DEPRECATED error.

5.5.0 All of the old deprecated functions and aliases now
emit E_DEPRECATED errors. These functions are:

mysql(), mysql_fieldname(), mysql_fieldtable(),
mysql_fieldlen(), mysql_fieldtype(),
mysql_fieldflags(), mysql_selectdb(),
mysql_createdb(), mysql_dropdb(),
mysql_freeresult(), mysql_numfields(),
mysql_numrows(), mysql_listdbs(),
mysql_listtables(), mysql_listfields(),
mysql_db_name(), mysql_dbname(),
mysql_tablename(), and mysql_table_name().

Changes to existing functions

The following list is a compilation of changelog entries from the ext/mysql functions.

6.3 Predefined Constants

Copyright 1997-2019 the PHP Documentation Group.

The constants below are defined by this extension, and will only be available when the extension has either
been compiled into PHP or dynamically loaded at runtime.

It is possible to specify additional client flags for the mysql_connect and mysql_pconnect functions.
The following constants are defined:

Table 6.3 MySQL client constants

Constant Description

MYSQL_CLIENT_COMPRESS Use compression protocol

MYSQL_CLIENT_IGNORE_SPACE Allow space after function names

MYSQL_CLIENT_INTERACTIVE Allow interactive_timeout seconds (instead of
wait_timeout) of inactivity before closing the
connection.

MYSQL_CLIENT_SSL Use SSL encryption. This flag is only available with
version 4.x of the MySQL client library or newer.
Version 3.23.x is bundled both with PHP 4 and
Windows binaries of PHP 5.

Examples

459

The function mysql_fetch_array uses a constant for the different types of result arrays. The following
constants are defined:

Table 6.4 MySQL fetch constants

Constant Description

MYSQL_ASSOC Columns are returned into the array having the
fieldname as the array index.

MYSQL_BOTH Columns are returned into the array having both
a numerical index and the fieldname as the array
index.

MYSQL_NUM Columns are returned into the array having a
numerical index to the fields. This index starts with
0, the first field in the result.

6.4 Examples

Copyright 1997-2019 the PHP Documentation Group.

6.4.1 MySQL extension overview example

Copyright 1997-2019 the PHP Documentation Group.

This simple example shows how to connect, execute a query, print resulting rows and disconnect from a
MySQL database.

Example 6.1 MySQL extension overview example

<?php
// Connecting, selecting database
$link = mysql_connect('mysql_host', 'mysql_user', 'mysql_password')
 or die('Could not connect: ' . mysql_error());
echo 'Connected successfully';
mysql_select_db('my_database') or die('Could not select database');

// Performing SQL query
$query = 'SELECT * FROM my_table';
$result = mysql_query($query) or die('Query failed: ' . mysql_error());

// Printing results in HTML
echo "<table>\n";
while ($line = mysql_fetch_array($result, MYSQL_ASSOC)) {
 echo "\t<tr>\n";
 foreach ($line as $col_value) {
 echo "\t\t<td>$col_value</td>\n";
 }
 echo "\t</tr>\n";
}
echo "</table>\n";

// Free resultset
mysql_free_result($result);

// Closing connection
mysql_close($link);
?>

MySQL Functions

460

6.5 MySQL Functions

Copyright 1997-2019 the PHP Documentation Group.

Note

Most MySQL functions accept link_identifier as the last optional parameter.
If it is not provided, last opened connection is used. If it doesn't exist, connection is
tried to establish with default parameters defined in php.ini. If it is not successful,
functions return FALSE.

6.5.1 mysql_affected_rows

Copyright 1997-2019 the PHP Documentation Group.

• mysql_affected_rows

Get number of affected rows in previous MySQL operation

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_affected_rows
PDOStatement::rowCount

Description

 int mysql_affected_rows(
 resource link_identifier
 = =NULL);

Get the number of affected rows by the last INSERT, UPDATE, REPLACE or DELETE query associated
with link_identifier.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

Returns the number of affected rows on success, and -1 if the last query failed.

If the last query was a DELETE query with no WHERE clause, all of the records will have been deleted
from the table but this function will return zero with MySQL versions prior to 4.1.2.

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::rowCount

mysql_affected_rows

461

When using UPDATE, MySQL will not update columns where the new value is the same as the old value.
This creates the possibility that mysql_affected_rows may not actually equal the number of rows
matched, only the number of rows that were literally affected by the query.

The REPLACE statement first deletes the record with the same primary key and then inserts the new
record. This function returns the number of deleted records plus the number of inserted records.

In the case of "INSERT ... ON DUPLICATE KEY UPDATE" queries, the return value will be 1 if an insert
was performed, or 2 for an update of an existing row.

Examples

Example 6.2 mysql_affected_rows example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect: ' . mysql_error());
}
mysql_select_db('mydb');

/* this should return the correct numbers of deleted records */
mysql_query('DELETE FROM mytable WHERE id < 10');
printf("Records deleted: %d\n", mysql_affected_rows());

/* with a where clause that is never true, it should return 0 */
mysql_query('DELETE FROM mytable WHERE 0');
printf("Records deleted: %d\n", mysql_affected_rows());
?>

The above example will output something similar to:

Records deleted: 10
Records deleted: 0

Example 6.3 mysql_affected_rows example using transactions

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect: ' . mysql_error());
}
mysql_select_db('mydb');

/* Update records */
mysql_query("UPDATE mytable SET used=1 WHERE id < 10");
printf ("Updated records: %d\n", mysql_affected_rows());
mysql_query("COMMIT");
?>

The above example will output something similar to:

mysql_client_encoding

462

Updated Records: 10

Notes

Transactions

If you are using transactions, you need to call mysql_affected_rows after your
INSERT, UPDATE, or DELETE query, not after the COMMIT.

SELECT Statements

To retrieve the number of rows returned by a SELECT, it is possible to use
mysql_num_rows.

Cascaded Foreign Keys

mysql_affected_rows does not count rows affected implicitly through the use of
ON DELETE CASCADE and/or ON UPDATE CASCADE in foreign key constraints.

See Also

mysql_num_rows
mysql_info

6.5.2 mysql_client_encoding

Copyright 1997-2019 the PHP Documentation Group.

• mysql_client_encoding

Returns the name of the character set

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_character_set_name

Description

 string mysql_client_encoding(
 resource link_identifier
 = =NULL);

Retrieves the character_set variable from MySQL.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no

http://www.php.net/faq.databases.mysql.deprecated

mysql_close

463

arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

Returns the default character set name for the current connection.

Examples

Example 6.4 mysql_client_encoding example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
$charset = mysql_client_encoding($link);

echo "The current character set is: $charset\n";
?>

The above example will output something similar to:

The current character set is: latin1

See Also

mysql_set_charset
mysql_real_escape_string

6.5.3 mysql_close

Copyright 1997-2019 the PHP Documentation Group.

• mysql_close

Close MySQL connection

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_close
PDO: Assign the value of NULL to the PDO object

Description

 bool mysql_close(
 resource link_identifier
 = =NULL);

mysql_close closes the non-persistent connection to the MySQL server that's associated with the
specified link identifier. If link_identifier isn't specified, the last opened link is used.

http://www.php.net/faq.databases.mysql.deprecated

mysql_connect

464

Open non-persistent MySQL connections and result sets are automatically destroyed when a PHP script
finishes its execution. So, while explicitly closing open connections and freeing result sets is optional,
doing so is recommended. This will immediately return resources to PHP and MySQL, which can improve
performance. For related information, see freeing resources

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last link
opened by mysql_connect is assumed. If no connection is found or
established, an E_WARNING level error is generated.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 6.5 mysql_close example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect: ' . mysql_error());
}
echo 'Connected successfully';
mysql_close($link);
?>

The above example will output:

Connected successfully

Notes

Note

mysql_close will not close persistent links created by mysql_pconnect. For
additional details, see the manual page on persistent connections.

See Also

mysql_connect
mysql_free_result

6.5.4 mysql_connect

Copyright 1997-2019 the PHP Documentation Group.

• mysql_connect

Open a connection to a MySQL Server

http://www.php.net/manual/en/language.types.resource.php#language.types.resource.self-destruct
http://www.php.net/manual/en/features.persistent-connections

mysql_connect

465

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_connect
PDO::__construct

Description

 resource mysql_connect(
 string server
 = =ini_get("mysql.default_host"),
 string username
 = =ini_get("mysql.default_user"),
 string password
 = =ini_get("mysql.default_password"),
 bool new_link
 = =FALSE,
 int client_flags
 = =0);

Opens or reuses a connection to a MySQL server.

Parameters

server The MySQL server. It can also include a port number. e.g.
"hostname:port" or a path to a local socket e.g. ":/path/to/socket" for the
localhost.

If the PHP directive mysql.default_host is undefined (default), then the
default value is 'localhost:3306'. In SQL safe mode, this parameter is
ignored and value 'localhost:3306' is always used.

username The username. Default value is defined by mysql.default_user. In SQL
safe mode, this parameter is ignored and the name of the user that
owns the server process is used.

password The password. Default value is defined by mysql.default_password. In
SQL safe mode, this parameter is ignored and empty password is used.

new_link If a second call is made to mysql_connect with the same arguments,
no new link will be established, but instead, the link identifier of the
already opened link will be returned. The new_link parameter modifies
this behavior and makes mysql_connect always open a new link,
even if mysql_connect was called before with the same parameters.
In SQL safe mode, this parameter is ignored.

client_flags The client_flags parameter can be a combination of
the following constants: 128 (enable LOAD DATA LOCAL
handling), MYSQL_CLIENT_SSL, MYSQL_CLIENT_COMPRESS,
MYSQL_CLIENT_IGNORE_SPACE or MYSQL_CLIENT_INTERACTIVE.
Read the section about Table 6.3, “MySQL client constants” for further
information. In SQL safe mode, this parameter is ignored.

Return Values

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::__construct
http://www.php.net/manual/en/ini.core.php#ini.sql.safe-mode
http://www.php.net/manual/en/ini.core.php#ini.sql.safe-mode
http://www.php.net/manual/en/ini.core.php#ini.sql.safe-mode
http://www.php.net/manual/en/ini.core.php#ini.sql.safe-mode
http://www.php.net/manual/en/ini.core.php#ini.sql.safe-mode
http://www.php.net/manual/en/ini.core.php#ini.sql.safe-mode

mysql_connect

466

Returns a MySQL link identifier on success or FALSE on failure.

Changelog

Version Description

5.5.0 This function will generate an E_DEPRECATED error.

Examples

Example 6.6 mysql_connect example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect: ' . mysql_error());
}
echo 'Connected successfully';
mysql_close($link);
?>

Example 6.7 mysql_connect example using hostname:port syntax

<?php
// we connect to example.com and port 3307
$link = mysql_connect('example.com:3307', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect: ' . mysql_error());
}
echo 'Connected successfully';
mysql_close($link);

// we connect to localhost at port 3307
$link = mysql_connect('127.0.0.1:3307', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect: ' . mysql_error());
}
echo 'Connected successfully';
mysql_close($link);
?>

Example 6.8 mysql_connect example using ":/path/to/socket" syntax

<?php
// we connect to localhost and socket e.g. /tmp/mysql.sock

// variant 1: omit localhost
$link = mysql_connect(':/tmp/mysql', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect: ' . mysql_error());
}
echo 'Connected successfully';
mysql_close($link);

mysql_create_db

467

// variant 2: with localhost
$link = mysql_connect('localhost:/tmp/mysql.sock', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect: ' . mysql_error());
}
echo 'Connected successfully';
mysql_close($link);
?>

Notes

Note

Whenever you specify "localhost" or "localhost:port" as server, the MySQL client
library will override this and try to connect to a local socket (named pipe on
Windows). If you want to use TCP/IP, use "127.0.0.1" instead of "localhost". If the
MySQL client library tries to connect to the wrong local socket, you should set the
correct path as mysql.default_host string in your PHP configuration and
leave the server field blank.

Note

The link to the server will be closed as soon as the execution of the script ends,
unless it's closed earlier by explicitly calling mysql_close.

Note

You can suppress the error message on failure by prepending a @ to the function
name.

Note

Error "Can't create TCP/IP socket (10106)" usually means that the variables_order
configure directive doesn't contain character E. On Windows, if the environment is
not copied the SYSTEMROOT environment variable won't be available and PHP will
have problems loading Winsock.

See Also

mysql_pconnect
mysql_close

6.5.5 mysql_create_db

Copyright 1997-2019 the PHP Documentation Group.

• mysql_create_db

Create a MySQL database

Warning

This function was deprecated in PHP 4.3.0, and it and the entire original MySQL
extension was removed in PHP 7.0.0. Instead, use either the actively developed
MySQLi or PDO_MySQL extensions. See also the MySQL: choosing an API guide
and its related FAQ entry for additional information. Alternatives to this function
include:

http://www.php.net/manual/en/language.operators.errorcontrol
http://www.php.net/manual/en/ini.core.php#ini.variables-orde
http://www.php.net/faq.databases.mysql.deprecated

mysql_create_db

468

mysqli_query
PDO::query

Description

 bool mysql_create_db(
 string database_name,
 resource link_identifier
 = =NULL);

mysql_create_db attempts to create a new database on the server associated with the specified link
identifier.

Parameters

database_name The name of the database being created.

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 6.9 mysql_create_db alternative example

The function mysql_create_db is deprecated. It is preferable to use mysql_query to issue an sql
CREATE DATABASE statement instead.

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect: ' . mysql_error());
}

$sql = 'CREATE DATABASE my_db';
if (mysql_query($sql, $link)) {
 echo "Database my_db created successfully\n";
} else {
 echo 'Error creating database: ' . mysql_error() . "\n";
}
?>

The above example will output something similar to:

Database my_db created successfully

Notes

http://www.php.net/PDO::query

mysql_data_seek

469

Note

For backward compatibility, the following deprecated alias may be used:
mysql_createdb

Note

This function will not be available if the MySQL extension was built against a
MySQL 4.x client library.

See Also

mysql_query
mysql_select_db

6.5.6 mysql_data_seek

Copyright 1997-2019 the PHP Documentation Group.

• mysql_data_seek

Move internal result pointer

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_data_seek
PDO::FETCH_ORI_ABS

Description

 bool mysql_data_seek(
 resource result,
 int row_number);

mysql_data_seek moves the internal row pointer of the MySQL result associated with the specified
result identifier to point to the specified row number. The next call to a MySQL fetch function, such as
mysql_fetch_assoc, would return that row.

row_number starts at 0. The row_number should be a value in the range from 0 to mysql_num_rows -
1. However if the result set is empty (mysql_num_rows == 0), a seek to 0 will fail with a E_WARNING and
mysql_data_seek will return FALSE.

Parameters

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

row_number The desired row number of the new result pointer.

Return Values

Returns TRUE on success or FALSE on failure.

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/manual/en/errorfunc.constants.php#errorfunc.constants.errorlevels.e-warning

mysql_db_name

470

Examples

Example 6.10 mysql_data_seek example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect: ' . mysql_error());
}
$db_selected = mysql_select_db('sample_db');
if (!$db_selected) {
 die('Could not select database: ' . mysql_error());
}
$query = 'SELECT last_name, first_name FROM friends';
$result = mysql_query($query);
if (!$result) {
 die('Query failed: ' . mysql_error());
}
/* fetch rows in reverse order */
for ($i = mysql_num_rows($result) - 1; $i >= 0; $i--) {
 if (!mysql_data_seek($result, $i)) {
 echo "Cannot seek to row $i: " . mysql_error() . "\n";
 continue;
 }

 if (!($row = mysql_fetch_assoc($result))) {
 continue;
 }

 echo $row['last_name'] . ' ' . $row['first_name'] . "
\n";
}

mysql_free_result($result);
?>

Notes

Note

The function mysql_data_seek can be used in conjunction only with
mysql_query, not with mysql_unbuffered_query.

See Also

mysql_query
mysql_num_rows
mysql_fetch_row
mysql_fetch_assoc
mysql_fetch_array
mysql_fetch_object

6.5.7 mysql_db_name

Copyright 1997-2019 the PHP Documentation Group.

• mysql_db_name

Retrieves database name from the call to mysql_list_dbs

mysql_db_name

471

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

Query: SELECT DATABASE()

Description

 string mysql_db_name(
 resource result,
 int row,
 mixed field
 = =NULL);

Retrieve the database name from a call to mysql_list_dbs.

Parameters

result The result pointer from a call to mysql_list_dbs.

row The index into the result set.

field The field name.

Return Values

Returns the database name on success, and FALSE on failure. If FALSE is returned, use mysql_error to
determine the nature of the error.

Changelog

Version Description

5.5.0 The mysql_list_dbs function is deprecated, and
emits an E_DEPRECATED level error.

Examples

Example 6.11 mysql_db_name example

<?php
error_reporting(E_ALL);

$link = mysql_connect('dbhost', 'username', 'password');
$db_list = mysql_list_dbs($link);

$i = 0;
$cnt = mysql_num_rows($db_list);
while ($i < $cnt) {
 echo mysql_db_name($db_list, $i) . "\n";
 $i++;
}
?>

Notes

http://www.php.net/faq.databases.mysql.deprecated

mysql_db_query

472

Note

For backward compatibility, the following deprecated alias may be used:
mysql_dbname

See Also

mysql_list_dbs
mysql_tablename

6.5.8 mysql_db_query

Copyright 1997-2019 the PHP Documentation Group.

• mysql_db_query

Selects a database and executes a query on it

Warning

This function was deprecated in PHP 5.3.0, and it and the entire original MySQL
extension was removed in PHP 7.0.0. Instead, use either the actively developed
MySQLi or PDO_MySQL extensions. See also the MySQL: choosing an API guide
and its related FAQ entry for additional information. Alternatives to this function
include:

mysqli_select_db then the query
PDO::__construct

Description

 resource mysql_db_query(
 string database,
 string query,
 resource link_identifier
 = =NULL);

mysql_db_query selects a database, and executes a query on it.

Parameters

database The name of the database that will be selected.

query The MySQL query.

Data inside the query should be properly escaped.

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

Returns a positive MySQL result resource to the query result, or FALSE on error. The function also returns
TRUE/FALSE for INSERT/UPDATE/DELETE queries to indicate success/failure.

Changelog

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::__construct

mysql_drop_db

473

Version Description

5.3.0 This function now throws an E_DEPRECATED
notice.

Examples

Example 6.12 mysql_db_query alternative example

<?php

if (!$link = mysql_connect('mysql_host', 'mysql_user', 'mysql_password')) {
 echo 'Could not connect to mysql';
 exit;
}

if (!mysql_select_db('mysql_dbname', $link)) {
 echo 'Could not select database';
 exit;
}

$sql = 'SELECT foo FROM bar WHERE id = 42';
$result = mysql_query($sql, $link);

if (!$result) {
 echo "DB Error, could not query the database\n";
 echo 'MySQL Error: ' . mysql_error();
 exit;
}

while ($row = mysql_fetch_assoc($result)) {
 echo $row['foo'];
}

mysql_free_result($result);

?>

Notes

Note

Be aware that this function does NOT switch back to the database you were
connected before. In other words, you can't use this function to temporarily run a
sql query on another database, you would have to manually switch back. Users are
strongly encouraged to use the database.table syntax in their sql queries or
mysql_select_db instead of this function.

See Also

mysql_query
mysql_select_db

6.5.9 mysql_drop_db

Copyright 1997-2019 the PHP Documentation Group.

• mysql_drop_db

mysql_drop_db

474

Drop (delete) a MySQL database

Warning

This function was deprecated in PHP 4.3.0, and it and the entire original MySQL
extension was removed in PHP 7.0.0. Instead, use either the actively developed
MySQLi or PDO_MySQL extensions. See also the MySQL: choosing an API guide
and its related FAQ entry for additional information. Alternatives to this function
include:

Execute a DROP DATABASE query

Description

 bool mysql_drop_db(
 string database_name,
 resource link_identifier
 = =NULL);

mysql_drop_db attempts to drop (remove) an entire database from the server associated with the
specified link identifier. This function is deprecated, it is preferable to use mysql_query to issue an sql
DROP DATABASE statement instead.

Parameters

database_name The name of the database that will be deleted.

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 6.13 mysql_drop_db alternative example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect: ' . mysql_error());
}

$sql = 'DROP DATABASE my_db';
if (mysql_query($sql, $link)) {
 echo "Database my_db was successfully dropped\n";
} else {
 echo 'Error dropping database: ' . mysql_error() . "\n";
}
?>

Notes

http://www.php.net/faq.databases.mysql.deprecated

mysql_errno

475

Warning

This function will not be available if the MySQL extension was built against a
MySQL 4.x client library.

Note

For backward compatibility, the following deprecated alias may be used:
mysql_dropdb

See Also

mysql_query

6.5.10 mysql_errno

Copyright 1997-2019 the PHP Documentation Group.

• mysql_errno

Returns the numerical value of the error message from previous MySQL operation

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_errno
PDO::errorCode

Description

 int mysql_errno(
 resource link_identifier
 = =NULL);

Returns the error number from the last MySQL function.

Errors coming back from the MySQL database backend no longer issue warnings. Instead, use
mysql_errno to retrieve the error code. Note that this function only returns the error code from the most
recently executed MySQL function (not including mysql_error and mysql_errno), so if you want to use
it, make sure you check the value before calling another MySQL function.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

Returns the error number from the last MySQL function, or 0 (zero) if no error occurred.

Examples

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::errorCode

mysql_error

476

Example 6.14 mysql_errno example

<?php
$link = mysql_connect("localhost", "mysql_user", "mysql_password");

if (!mysql_select_db("nonexistentdb", $link)) {
 echo mysql_errno($link) . ": " . mysql_error($link). "\n";
}

mysql_select_db("kossu", $link);
if (!mysql_query("SELECT * FROM nonexistenttable", $link)) {
 echo mysql_errno($link) . ": " . mysql_error($link) . "\n";
}
?>

The above example will output something similar to:

1049: Unknown database 'nonexistentdb'
1146: Table 'kossu.nonexistenttable' doesn't exist

See Also

mysql_error
MySQL error codes

6.5.11 mysql_error

Copyright 1997-2019 the PHP Documentation Group.

• mysql_error

Returns the text of the error message from previous MySQL operation

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_error
PDO::errorInfo

Description

 string mysql_error(
 resource link_identifier
 = =NULL);

Returns the error text from the last MySQL function. Errors coming back from the MySQL database
backend no longer issue warnings. Instead, use mysql_error to retrieve the error text. Note that
this function only returns the error text from the most recently executed MySQL function (not including
mysql_error and mysql_errno), so if you want to use it, make sure you check the value before calling
another MySQL function.

http://dev.mysql.com/doc/mysql/en/error-handling.html
http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::errorInfo

mysql_escape_string

477

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

Returns the error text from the last MySQL function, or '' (empty string) if no error occurred.

Examples

Example 6.15 mysql_error example

<?php
$link = mysql_connect("localhost", "mysql_user", "mysql_password");

mysql_select_db("nonexistentdb", $link);
echo mysql_errno($link) . ": " . mysql_error($link). "\n";

mysql_select_db("kossu", $link);
mysql_query("SELECT * FROM nonexistenttable", $link);
echo mysql_errno($link) . ": " . mysql_error($link) . "\n";
?>

The above example will output something similar to:

1049: Unknown database 'nonexistentdb'
1146: Table 'kossu.nonexistenttable' doesn't exist

See Also

mysql_errno
MySQL error codes

6.5.12 mysql_escape_string

Copyright 1997-2019 the PHP Documentation Group.

• mysql_escape_string

Escapes a string for use in a mysql_query

Warning

This function was deprecated in PHP 4.3.0, and it and the entire original MySQL
extension was removed in PHP 7.0.0. Instead, use either the actively developed
MySQLi or PDO_MySQL extensions. See also the MySQL: choosing an API guide
and its related FAQ entry for additional information. Alternatives to this function
include:

http://dev.mysql.com/doc/mysql/en/error-handling.html
http://www.php.net/faq.databases.mysql.deprecated

mysql_escape_string

478

mysqli_escape_string
PDO::quote

Description

 string mysql_escape_string(
 string unescaped_string);

This function will escape the unescaped_string, so that it is safe to place it in a mysql_query. This
function is deprecated.

This function is identical to mysql_real_escape_string except that mysql_real_escape_string
takes a connection handler and escapes the string according to the current character set.
mysql_escape_string does not take a connection argument and does not respect the current charset
setting.

Parameters

unescaped_string The string that is to be escaped.

Return Values

Returns the escaped string.

Changelog

Version Description

5.3.0 This function now throws an E_DEPRECATED
notice.

4.3.0 This function became deprecated,
do not use this function. Instead, use
mysql_real_escape_string.

Examples

Example 6.16 mysql_escape_string example

<?php
$item = "Zak's Laptop";
$escaped_item = mysql_escape_string($item);
printf("Escaped string: %s\n", $escaped_item);
?>

The above example will output:

Escaped string: Zak\'s Laptop

Notes

Note

mysql_escape_string does not escape % and _.

http://www.php.net/PDO::quote

mysql_fetch_array

479

See Also

mysql_real_escape_string
addslashes
The magic_quotes_gpc directive.

6.5.13 mysql_fetch_array

Copyright 1997-2019 the PHP Documentation Group.

• mysql_fetch_array

Fetch a result row as an associative array, a numeric array, or both

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_fetch_array
PDOStatement::fetch

Description

 array mysql_fetch_array(
 resource result,
 int result_type
 = =MYSQL_BOTH);

Returns an array that corresponds to the fetched row and moves the internal data pointer ahead.

Parameters

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

result_type The type of array that is to be fetched. It's a constant and can take the
following values: MYSQL_ASSOC, MYSQL_NUM, and MYSQL_BOTH.

Return Values

Returns an array of strings that corresponds to the fetched row, or FALSE if there are no more rows.
The type of returned array depends on how result_type is defined. By using MYSQL_BOTH (default),
you'll get an array with both associative and number indices. Using MYSQL_ASSOC, you only get
associative indices (as mysql_fetch_assoc works), using MYSQL_NUM, you only get number indices (as
mysql_fetch_row works).

If two or more columns of the result have the same field names, the last column will take precedence. To
access the other column(s) of the same name, you must use the numeric index of the column or make an
alias for the column. For aliased columns, you cannot access the contents with the original column name.

Examples

Example 6.17 Query with aliased duplicate field names

http://www.php.net/addslashes
http://www.php.net/manual/en/ini.core.php#ini.magic-quotes-gpc
http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::fetch

mysql_fetch_array

480

SELECT table1.field AS foo, table2.field AS bar FROM table1, table2

Example 6.18 mysql_fetch_array with MYSQL_NUM

<?php
mysql_connect("localhost", "mysql_user", "mysql_password") or
 die("Could not connect: " . mysql_error());
mysql_select_db("mydb");

$result = mysql_query("SELECT id, name FROM mytable");

while ($row = mysql_fetch_array($result, MYSQL_NUM)) {
 printf("ID: %s Name: %s", $row[0], $row[1]);
}

mysql_free_result($result);
?>

Example 6.19 mysql_fetch_array with MYSQL_ASSOC

<?php
mysql_connect("localhost", "mysql_user", "mysql_password") or
 die("Could not connect: " . mysql_error());
mysql_select_db("mydb");

$result = mysql_query("SELECT id, name FROM mytable");

while ($row = mysql_fetch_array($result, MYSQL_ASSOC)) {
 printf("ID: %s Name: %s", $row["id"], $row["name"]);
}

mysql_free_result($result);
?>

Example 6.20 mysql_fetch_array with MYSQL_BOTH

<?php
mysql_connect("localhost", "mysql_user", "mysql_password") or
 die("Could not connect: " . mysql_error());
mysql_select_db("mydb");

$result = mysql_query("SELECT id, name FROM mytable");

while ($row = mysql_fetch_array($result, MYSQL_BOTH)) {
 printf ("ID: %s Name: %s", $row[0], $row["name"]);
}

mysql_free_result($result);
?>

Notes

mysql_fetch_assoc

481

Performance

An important thing to note is that using mysql_fetch_array is not significantly
slower than using mysql_fetch_row, while it provides a significant added value.

Note

Field names returned by this function are case-sensitive.

Note

This function sets NULL fields to the PHP NULL value.

See Also

mysql_fetch_row
mysql_fetch_assoc
mysql_data_seek
mysql_query

6.5.14 mysql_fetch_assoc

Copyright 1997-2019 the PHP Documentation Group.

• mysql_fetch_assoc

Fetch a result row as an associative array

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_fetch_assoc
PDOStatement::fetch(PDO::FETCH_ASSOC)

Description

 array mysql_fetch_assoc(
 resource result);

Returns an associative array that corresponds to the fetched row and moves the internal data pointer
ahead. mysql_fetch_assoc is equivalent to calling mysql_fetch_array with MYSQL_ASSOC for the
optional second parameter. It only returns an associative array.

Parameters

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

Return Values

Returns an associative array of strings that corresponds to the fetched row, or FALSE if there are no more
rows.

If two or more columns of the result have the same field names, the last column will take precedence. To
access the other column(s) of the same name, you either need to access the result with numeric indices by

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::fetch(PDO::FETCH_ASSOC)

mysql_fetch_assoc

482

using mysql_fetch_row or add alias names. See the example at the mysql_fetch_array description
about aliases.

Examples

Example 6.21 An expanded mysql_fetch_assoc example

<?php

$conn = mysql_connect("localhost", "mysql_user", "mysql_password");

if (!$conn) {
 echo "Unable to connect to DB: " . mysql_error();
 exit;
}

if (!mysql_select_db("mydbname")) {
 echo "Unable to select mydbname: " . mysql_error();
 exit;
}

$sql = "SELECT id as userid, fullname, userstatus
 FROM sometable
 WHERE userstatus = 1";

$result = mysql_query($sql);

if (!$result) {
 echo "Could not successfully run query ($sql) from DB: " . mysql_error();
 exit;
}

if (mysql_num_rows($result) == 0) {
 echo "No rows found, nothing to print so am exiting";
 exit;
}

// While a row of data exists, put that row in $row as an associative array
// Note: If you're expecting just one row, no need to use a loop
// Note: If you put extract($row); inside the following loop, you'll
// then create $userid, $fullname, and $userstatus
while ($row = mysql_fetch_assoc($result)) {
 echo $row["userid"];
 echo $row["fullname"];
 echo $row["userstatus"];
}

mysql_free_result($result);

?>

Notes

Performance

An important thing to note is that using mysql_fetch_assoc is not significantly
slower than using mysql_fetch_row, while it provides a significant added value.

Note

Field names returned by this function are case-sensitive.

mysql_fetch_field

483

Note

This function sets NULL fields to the PHP NULL value.

See Also

mysql_fetch_row
mysql_fetch_array
mysql_data_seek
mysql_query
mysql_error

6.5.15 mysql_fetch_field

Copyright 1997-2019 the PHP Documentation Group.

• mysql_fetch_field

Get column information from a result and return as an object

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_fetch_field
PDOStatement::getColumnMeta

Description

 object mysql_fetch_field(
 resource result,
 int field_offset
 = =0);

Returns an object containing field information. This function can be used to obtain information about fields
in the provided query result.

Parameters

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

field_offset The numerical field offset. If the field offset is not specified, the next
field that was not yet retrieved by this function is retrieved. The
field_offset starts at 0.

Return Values

Returns an object containing field information. The properties of the object are:

• name - column name

• table - name of the table the column belongs to, which is the alias name if one is defined

• max_length - maximum length of the column

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::getColumnMeta

mysql_fetch_field

484

• not_null - 1 if the column cannot be NULL

• primary_key - 1 if the column is a primary key

• unique_key - 1 if the column is a unique key

• multiple_key - 1 if the column is a non-unique key

• numeric - 1 if the column is numeric

• blob - 1 if the column is a BLOB

• type - the type of the column

• unsigned - 1 if the column is unsigned

• zerofill - 1 if the column is zero-filled

Examples

Example 6.22 mysql_fetch_field example

<?php
$conn = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$conn) {
 die('Could not connect: ' . mysql_error());
}
mysql_select_db('database');
$result = mysql_query('select * from table');
if (!$result) {
 die('Query failed: ' . mysql_error());
}
/* get column metadata */
$i = 0;
while ($i < mysql_num_fields($result)) {
 echo "Information for column $i:
\n";
 $meta = mysql_fetch_field($result, $i);
 if (!$meta) {
 echo "No information available
\n";
 }
 echo "<pre>
blob: $meta->blob
max_length: $meta->max_length
multiple_key: $meta->multiple_key
name: $meta->name
not_null: $meta->not_null
numeric: $meta->numeric
primary_key: $meta->primary_key
table: $meta->table
type: $meta->type
unique_key: $meta->unique_key
unsigned: $meta->unsigned
zerofill: $meta->zerofill
</pre>";
 $i++;
}
mysql_free_result($result);
?>

Notes

mysql_fetch_lengths

485

Note

Field names returned by this function are case-sensitive.

Note

If field or tablenames are aliased in the SQL query the aliased name will
be returned. The original name can be retrieved for instance by using
mysqli_result::fetch_field.

See Also

mysql_field_seek

6.5.16 mysql_fetch_lengths

Copyright 1997-2019 the PHP Documentation Group.

• mysql_fetch_lengths

Get the length of each output in a result

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_fetch_lengths
PDOStatement::getColumnMeta

Description

 array mysql_fetch_lengths(
 resource result);

Returns an array that corresponds to the lengths of each field in the last row fetched by MySQL.

mysql_fetch_lengths stores the lengths of each result column in the last row returned by
mysql_fetch_row, mysql_fetch_assoc, mysql_fetch_array, and mysql_fetch_object in an
array, starting at offset 0.

Parameters

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

Return Values

An array of lengths on success or FALSE on failure.

Examples

Example 6.23 A mysql_fetch_lengths example

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::getColumnMeta

mysql_fetch_object

486

<?php
$result = mysql_query("SELECT id,email FROM people WHERE id = '42'");
if (!$result) {
 echo 'Could not run query: ' . mysql_error();
 exit;
}
$row = mysql_fetch_assoc($result);
$lengths = mysql_fetch_lengths($result);

print_r($row);
print_r($lengths);
?>

The above example will output something similar to:

Array
(
 [id] => 42
 [email] => user@example.com
)
Array
(
 [0] => 2
 [1] => 16
)

See Also

mysql_field_len
mysql_fetch_row
strlen

6.5.17 mysql_fetch_object

Copyright 1997-2019 the PHP Documentation Group.

• mysql_fetch_object

Fetch a result row as an object

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_fetch_object
PDOStatement::fetch(PDO::FETCH_OBJ)

Description

 object mysql_fetch_object(
 resource result,
 string class_name,
 array params);

http://www.php.net/strlen
http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::fetch(PDO::FETCH_OBJ)

mysql_fetch_object

487

Returns an object with properties that correspond to the fetched row and moves the internal data pointer
ahead.

Parameters

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

class_name The name of the class to instantiate, set the properties of and return. If
not specified, a stdClass object is returned.

params An optional array of parameters to pass to the constructor for
class_name objects.

Return Values

Returns an object with string properties that correspond to the fetched row, or FALSE if there are no more
rows.

Examples

Example 6.24 mysql_fetch_object example

<?php
mysql_connect("hostname", "user", "password");
mysql_select_db("mydb");
$result = mysql_query("select * from mytable");
while ($row = mysql_fetch_object($result)) {
 echo $row->user_id;
 echo $row->fullname;
}
mysql_free_result($result);
?>

Example 6.25 mysql_fetch_object example

<?php
class foo {
 public $name;
}

mysql_connect("hostname", "user", "password");
mysql_select_db("mydb");

$result = mysql_query("select name from mytable limit 1");
$obj = mysql_fetch_object($result, 'foo');
var_dump($obj);
?>

Notes

Performance

Speed-wise, the function is identical to mysql_fetch_array, and almost as quick
as mysql_fetch_row (the difference is insignificant).

mysql_fetch_row

488

Note

mysql_fetch_object is similar to mysql_fetch_array, with one difference -
an object is returned, instead of an array. Indirectly, that means that you can only
access the data by the field names, and not by their offsets (numbers are illegal
property names).

Note

Field names returned by this function are case-sensitive.

Note

This function sets NULL fields to the PHP NULL value.

See Also

mysql_fetch_array
mysql_fetch_assoc
mysql_fetch_row
mysql_data_seek
mysql_query

6.5.18 mysql_fetch_row

Copyright 1997-2019 the PHP Documentation Group.

• mysql_fetch_row

Get a result row as an enumerated array

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_fetch_row
PDOStatement::fetch(PDO::FETCH_NUM)

Description

 array mysql_fetch_row(
 resource result);

Returns a numerical array that corresponds to the fetched row and moves the internal data pointer ahead.

Parameters

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

Return Values

Returns an numerical array of strings that corresponds to the fetched row, or FALSE if there are no more
rows.

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::fetch(PDO::FETCH_NUM)

mysql_field_flags

489

mysql_fetch_row fetches one row of data from the result associated with the specified result identifier.
The row is returned as an array. Each result column is stored in an array offset, starting at offset 0.

Examples

Example 6.26 Fetching one row with mysql_fetch_row

<?php
$result = mysql_query("SELECT id,email FROM people WHERE id = '42'");
if (!$result) {
 echo 'Could not run query: ' . mysql_error();
 exit;
}
$row = mysql_fetch_row($result);

echo $row[0]; // 42
echo $row[1]; // the email value
?>

Notes

Note

This function sets NULL fields to the PHP NULL value.

See Also

mysql_fetch_array
mysql_fetch_assoc
mysql_fetch_object
mysql_data_seek
mysql_fetch_lengths
mysql_result

6.5.19 mysql_field_flags

Copyright 1997-2019 the PHP Documentation Group.

• mysql_field_flags

Get the flags associated with the specified field in a result

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_fetch_field_direct [flags]
PDOStatement::getColumnMeta [flags]

Description

 string mysql_field_flags(
 resource result,
 int field_offset);

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::getColumnMeta

mysql_field_flags

490

mysql_field_flags returns the field flags of the specified field. The flags are reported as a single word
per flag separated by a single space, so that you can split the returned value using explode.

Parameters

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

field_offset The numerical field offset. The field_offset starts at 0. If
field_offset does not exist, an error of level E_WARNING is also
issued.

Return Values

Returns a string of flags associated with the result or FALSE on failure.

The following flags are reported, if your version of MySQL is current enough to support them:
"not_null", "primary_key", "unique_key", "multiple_key", "blob", "unsigned",
"zerofill", "binary", "enum", "auto_increment" and "timestamp".

Examples

Example 6.27 A mysql_field_flags example

<?php
$result = mysql_query("SELECT id,email FROM people WHERE id = '42'");
if (!$result) {
 echo 'Could not run query: ' . mysql_error();
 exit;
}
$flags = mysql_field_flags($result, 0);

echo $flags;
print_r(explode(' ', $flags));
?>

The above example will output something similar to:

not_null primary_key auto_increment
Array
(
 [0] => not_null
 [1] => primary_key
 [2] => auto_increment
)

Notes

Note

For backward compatibility, the following deprecated alias may be used:
mysql_fieldflags

See Also

http://www.php.net/explode

mysql_field_len

491

mysql_field_type
mysql_field_len

6.5.20 mysql_field_len

Copyright 1997-2019 the PHP Documentation Group.

• mysql_field_len

Returns the length of the specified field

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_fetch_field_direct [length]
PDOStatement::getColumnMeta [len]

Description

 int mysql_field_len(
 resource result,
 int field_offset);

mysql_field_len returns the length of the specified field.

Parameters

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

field_offset The numerical field offset. The field_offset starts at 0. If
field_offset does not exist, an error of level E_WARNING is also
issued.

Return Values

The length of the specified field index on success or FALSE on failure.

Examples

Example 6.28 mysql_field_len example

<?php
$result = mysql_query("SELECT id,email FROM people WHERE id = '42'");
if (!$result) {
 echo 'Could not run query: ' . mysql_error();
 exit;
}

// Will get the length of the id field as specified in the database
// schema.
$length = mysql_field_len($result, 0);
echo $length;
?>

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::getColumnMeta

mysql_field_name

492

Notes

Note

For backward compatibility, the following deprecated alias may be used:
mysql_fieldlen

See Also

mysql_fetch_lengths
strlen

6.5.21 mysql_field_name

Copyright 1997-2019 the PHP Documentation Group.

• mysql_field_name

Get the name of the specified field in a result

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_fetch_field_direct [name] or [orgname]
PDOStatement::getColumnMeta [name]

Description

 string mysql_field_name(
 resource result,
 int field_offset);

mysql_field_name returns the name of the specified field index.

Parameters

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

field_offset The numerical field offset. The field_offset starts at 0. If
field_offset does not exist, an error of level E_WARNING is also
issued.

Return Values

The name of the specified field index on success or FALSE on failure.

Examples

Example 6.29 mysql_field_name example

http://www.php.net/strlen
http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::getColumnMeta

mysql_field_seek

493

<?php
/* The users table consists of three fields:
 * user_id
 * username
 * password.
 */
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect to MySQL server: ' . mysql_error());
}
$dbname = 'mydb';
$db_selected = mysql_select_db($dbname, $link);
if (!$db_selected) {
 die("Could not set $dbname: " . mysql_error());
}
$res = mysql_query('select * from users', $link);

echo mysql_field_name($res, 0) . "\n";
echo mysql_field_name($res, 2);
?>

The above example will output:

user_id
password

Notes

Note

Field names returned by this function are case-sensitive.

Note

For backward compatibility, the following deprecated alias may be used:
mysql_fieldname

See Also

mysql_field_type
mysql_field_len

6.5.22 mysql_field_seek

Copyright 1997-2019 the PHP Documentation Group.

• mysql_field_seek

Set result pointer to a specified field offset

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

http://www.php.net/faq.databases.mysql.deprecated

mysql_field_table

494

mysqli_field_seek
PDOStatement::fetch using the cursor_orientation and offset
parameters

Description

 bool mysql_field_seek(
 resource result,
 int field_offset);

Seeks to the specified field offset. If the next call to mysql_fetch_field doesn't include a field offset,
the field offset specified in mysql_field_seek will be returned.

Parameters

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

field_offset The numerical field offset. The field_offset starts at 0. If
field_offset does not exist, an error of level E_WARNING is also
issued.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

mysql_fetch_field

6.5.23 mysql_field_table

Copyright 1997-2019 the PHP Documentation Group.

• mysql_field_table

Get name of the table the specified field is in

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_fetch_field_direct [table] or [orgtable]
PDOStatement::getColumnMeta [table]

Description

 string mysql_field_table(
 resource result,
 int field_offset);

Returns the name of the table that the specified field is in.

Parameters

http://www.php.net/PDOStatement::fetch
http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::getColumnMeta

mysql_field_type

495

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

field_offset The numerical field offset. The field_offset starts at 0. If
field_offset does not exist, an error of level E_WARNING is also
issued.

Return Values

The name of the table on success.

Examples

Example 6.30 A mysql_field_table example

<?php

$query = "SELECT account.*, country.* FROM account, country WHERE country.name = 'Portugal' AND account.country_id = country.id";

// get the result from the DB
$result = mysql_query($query);

// Lists the table name and then the field name
for ($i = 0; $i < mysql_num_fields($result); ++$i) {
 $table = mysql_field_table($result, $i);
 $field = mysql_field_name($result, $i);

 echo "$table: $field\n";
}

?>

Notes

Note

For backward compatibility, the following deprecated alias may be used:
mysql_fieldtable

See Also

mysql_list_tables

6.5.24 mysql_field_type

Copyright 1997-2019 the PHP Documentation Group.

• mysql_field_type

Get the type of the specified field in a result

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

http://www.php.net/faq.databases.mysql.deprecated

mysql_field_type

496

mysqli_fetch_field_direct [type]
PDOStatement::getColumnMeta [driver:decl_type] or [pdo_type]

Description

 string mysql_field_type(
 resource result,
 int field_offset);

mysql_field_type is similar to the mysql_field_name function. The arguments are identical, but the
field type is returned instead.

Parameters

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

field_offset The numerical field offset. The field_offset starts at 0. If
field_offset does not exist, an error of level E_WARNING is also
issued.

Return Values

The returned field type will be one of "int", "real", "string", "blob", and others as detailed in the
MySQL documentation.

Examples

Example 6.31 mysql_field_type example

<?php
mysql_connect("localhost", "mysql_username", "mysql_password");
mysql_select_db("mysql");
$result = mysql_query("SELECT * FROM func");
$fields = mysql_num_fields($result);
$rows = mysql_num_rows($result);
$table = mysql_field_table($result, 0);
echo "Your '" . $table . "' table has " . $fields . " fields and " . $rows . " record(s)\n";
echo "The table has the following fields:\n";
for ($i=0; $i < $fields; $i++) {
 $type = mysql_field_type($result, $i);
 $name = mysql_field_name($result, $i);
 $len = mysql_field_len($result, $i);
 $flags = mysql_field_flags($result, $i);
 echo $type . " " . $name . " " . $len . " " . $flags . "\n";
}
mysql_free_result($result);
mysql_close();
?>

The above example will output something similar to:

Your 'func' table has 4 fields and 1 record(s)
The table has the following fields:
string name 64 not_null primary_key binary
int ret 1 not_null

http://www.php.net/PDOStatement::getColumnMeta
http://dev.mysql.com/doc/

mysql_free_result

497

string dl 128 not_null
string type 9 not_null enum

Notes

Note

For backward compatibility, the following deprecated alias may be used:
mysql_fieldtype

See Also

mysql_field_name
mysql_field_len

6.5.25 mysql_free_result

Copyright 1997-2019 the PHP Documentation Group.

• mysql_free_result

Free result memory

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_free_result
Assign the value of NULL to the PDO object, or PDOStatement::closeCursor

Description

 bool mysql_free_result(
 resource result);

mysql_free_result will free all memory associated with the result identifier result.

mysql_free_result only needs to be called if you are concerned about how much memory is being
used for queries that return large result sets. All associated result memory is automatically freed at the end
of the script's execution.

Parameters

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

Return Values

Returns TRUE on success or FALSE on failure.

If a non-resource is used for the result, an error of level E_WARNING will be emitted. It's worth noting
that mysql_query only returns a resource for SELECT, SHOW, EXPLAIN, and DESCRIBE queries.

Examples

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::closeCursor

mysql_get_client_info

498

Example 6.32 A mysql_free_result example

<?php
$result = mysql_query("SELECT id,email FROM people WHERE id = '42'");
if (!$result) {
 echo 'Could not run query: ' . mysql_error();
 exit;
}
/* Use the result, assuming we're done with it afterwards */
$row = mysql_fetch_assoc($result);

/* Now we free up the result and continue on with our script */
mysql_free_result($result);

echo $row['id'];
echo $row['email'];
?>

Notes

Note

For backward compatibility, the following deprecated alias may be used:
mysql_freeresult

See Also

mysql_query
is_resource

6.5.26 mysql_get_client_info

Copyright 1997-2019 the PHP Documentation Group.

• mysql_get_client_info

Get MySQL client info

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_get_client_info
PDO::getAttribute(PDO::ATTR_CLIENT_VERSION)

Description

 string mysql_get_client_info();

mysql_get_client_info returns a string that represents the client library version.

Return Values

The MySQL client version.

http://www.php.net/is_resource
http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::getAttribute(PDO::ATTR_CLIENT_VERSION)

mysql_get_host_info

499

Examples

Example 6.33 mysql_get_client_info example

<?php
printf("MySQL client info: %s\n", mysql_get_client_info());
?>

The above example will output something similar to:

MySQL client info: 3.23.39

See Also

mysql_get_host_info
mysql_get_proto_info
mysql_get_server_info

6.5.27 mysql_get_host_info

Copyright 1997-2019 the PHP Documentation Group.

• mysql_get_host_info

Get MySQL host info

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_get_host_info
PDO::getAttribute(PDO::ATTR_CONNECTION_STATUS)

Description

 string mysql_get_host_info(
 resource link_identifier
 = =NULL);

Describes the type of connection in use for the connection, including the server host name.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::getAttribute(PDO::ATTR_CONNECTION_STATUS)

mysql_get_proto_info

500

Return Values

Returns a string describing the type of MySQL connection in use for the connection or FALSE on failure.

Examples

Example 6.34 mysql_get_host_info example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect: ' . mysql_error());
}
printf("MySQL host info: %s\n", mysql_get_host_info());
?>

The above example will output something similar to:

MySQL host info: Localhost via UNIX socket

See Also

mysql_get_client_info
mysql_get_proto_info
mysql_get_server_info

6.5.28 mysql_get_proto_info

Copyright 1997-2019 the PHP Documentation Group.

• mysql_get_proto_info

Get MySQL protocol info

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_get_proto_info

Description

 int mysql_get_proto_info(
 resource link_identifier
 = =NULL);

Retrieves the MySQL protocol.

Parameters

http://www.php.net/faq.databases.mysql.deprecated

mysql_get_server_info

501

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

Returns the MySQL protocol on success or FALSE on failure.

Examples

Example 6.35 mysql_get_proto_info example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect: ' . mysql_error());
}
printf("MySQL protocol version: %s\n", mysql_get_proto_info());
?>

The above example will output something similar to:

MySQL protocol version: 10

See Also

mysql_get_client_info
mysql_get_host_info
mysql_get_server_info

6.5.29 mysql_get_server_info

Copyright 1997-2019 the PHP Documentation Group.

• mysql_get_server_info

Get MySQL server info

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_get_server_info
PDO::getAttribute(PDO::ATTR_SERVER_VERSION)

Description

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::getAttribute(PDO::ATTR_SERVER_VERSION)

mysql_info

502

 string mysql_get_server_info(
 resource link_identifier
 = =NULL);

Retrieves the MySQL server version.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

Returns the MySQL server version on success or FALSE on failure.

Examples

Example 6.36 mysql_get_server_info example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect: ' . mysql_error());
}
printf("MySQL server version: %s\n", mysql_get_server_info());
?>

The above example will output something similar to:

MySQL server version: 4.0.1-alpha

See Also

mysql_get_client_info
mysql_get_host_info
mysql_get_proto_info
phpversion

6.5.30 mysql_info

Copyright 1997-2019 the PHP Documentation Group.

• mysql_info

Get information about the most recent query

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:

http://www.php.net/phpversion

mysql_info

503

choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_info

Description

 string mysql_info(
 resource link_identifier
 = =NULL);

Returns detailed information about the last query.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

Returns information about the statement on success, or FALSE on failure. See the example below for
which statements provide information, and what the returned value may look like. Statements that are not
listed will return FALSE.

Examples

Example 6.37 Relevant MySQL Statements

Statements that return string values. The numbers are only for illustrating purpose; their values will
correspond to the query.

INSERT INTO ... SELECT ...
String format: Records: 23 Duplicates: 0 Warnings: 0
INSERT INTO ... VALUES (...),(...),(...)...
String format: Records: 37 Duplicates: 0 Warnings: 0
LOAD DATA INFILE ...
String format: Records: 42 Deleted: 0 Skipped: 0 Warnings: 0
ALTER TABLE
String format: Records: 60 Duplicates: 0 Warnings: 0
UPDATE
String format: Rows matched: 65 Changed: 65 Warnings: 0

Notes

Note

mysql_info returns a non-FALSE value for the INSERT ... VALUES statement
only if multiple value lists are specified in the statement.

See Also

mysql_affected_rows
mysql_insert_id

http://www.php.net/faq.databases.mysql.deprecated

mysql_insert_id

504

mysql_stat

6.5.31 mysql_insert_id

Copyright 1997-2019 the PHP Documentation Group.

• mysql_insert_id

Get the ID generated in the last query

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_insert_id
PDO::lastInsertId

Description

 int mysql_insert_id(
 resource link_identifier
 = =NULL);

Retrieves the ID generated for an AUTO_INCREMENT column by the previous query (usually INSERT).

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

The ID generated for an AUTO_INCREMENT column by the previous query on success, 0 if the
previous query does not generate an AUTO_INCREMENT value, or FALSE if no MySQL connection was
established.

Examples

Example 6.38 mysql_insert_id example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect: ' . mysql_error());
}
mysql_select_db('mydb');

mysql_query("INSERT INTO mytable (product) values ('kossu')");
printf("Last inserted record has id %d\n", mysql_insert_id());
?>

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::lastInsertId

mysql_list_dbs

505

Notes

Caution

mysql_insert_id will convert the return type of the native MySQL C API
function mysql_insert_id() to a type of long (named int in PHP). If your
AUTO_INCREMENT column has a column type of BIGINT (64 bits) the conversion
may result in an incorrect value. Instead, use the internal MySQL SQL function
LAST_INSERT_ID() in an SQL query. For more information about PHP's maximum
integer values, please see the integer documentation.

Note

Because mysql_insert_id acts on the last performed query, be sure to call
mysql_insert_id immediately after the query that generates the value.

Note

The value of the MySQL SQL function LAST_INSERT_ID() always contains the
most recently generated AUTO_INCREMENT value, and is not reset between
queries.

See Also

mysql_query
mysql_info

6.5.32 mysql_list_dbs

Copyright 1997-2019 the PHP Documentation Group.

• mysql_list_dbs

List databases available on a MySQL server

Warning

This function was deprecated in PHP 5.4.0, and it and the entire original MySQL
extension was removed in PHP 7.0.0. Instead, use either the actively developed
MySQLi or PDO_MySQL extensions. See also the MySQL: choosing an API guide
and its related FAQ entry for additional information. Alternatives to this function
include:

SQL Query: SHOW DATABASES

Description

 resource mysql_list_dbs(
 resource link_identifier
 = =NULL);

Returns a result pointer containing the databases available from the current mysql daemon.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,

http://www.php.net/manual/en/language.types.integer
http://www.php.net/faq.databases.mysql.deprecated

mysql_list_fields

506

it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

Returns a result pointer resource on success, or FALSE on failure. Use the mysql_tablename function to
traverse this result pointer, or any function for result tables, such as mysql_fetch_array.

Examples

Example 6.39 mysql_list_dbs example

<?php
// Usage without mysql_list_dbs()
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
$res = mysql_query("SHOW DATABASES");

while ($row = mysql_fetch_assoc($res)) {
 echo $row['Database'] . "\n";
}

// Deprecated as of PHP 5.4.0
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
$db_list = mysql_list_dbs($link);

while ($row = mysql_fetch_object($db_list)) {
 echo $row->Database . "\n";
}
?>

The above example will output something similar to:

database1
database2
database3

Notes

Note

For backward compatibility, the following deprecated alias may be used:
mysql_listdbs

See Also

mysql_db_name
mysql_select_db

6.5.33 mysql_list_fields

Copyright 1997-2019 the PHP Documentation Group.

• mysql_list_fields

mysql_list_fields

507

List MySQL table fields

Warning

This function was deprecated in PHP 5.4.0, and it and the entire original MySQL
extension was removed in PHP 7.0.0. Instead, use either the actively developed
MySQLi or PDO_MySQL extensions. See also the MySQL: choosing an API guide
and its related FAQ entry for additional information. Alternatives to this function
include:

SQL Query: SHOW COLUMNS FROM sometable

Description

 resource mysql_list_fields(
 string database_name,
 string table_name,
 resource link_identifier
 = =NULL);

Retrieves information about the given table name.

This function is deprecated. It is preferable to use mysql_query to issue an SQL SHOW COLUMNS FROM
table [LIKE 'name'] statement instead.

Parameters

database_name The name of the database that's being queried.

table_name The name of the table that's being queried.

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

A result pointer resource on success, or FALSE on failure.

The returned result can be used with mysql_field_flags, mysql_field_len, mysql_field_name
and mysql_field_type.

Examples

Example 6.40 Alternate to deprecated mysql_list_fields

<?php
$result = mysql_query("SHOW COLUMNS FROM sometable");
if (!$result) {
 echo 'Could not run query: ' . mysql_error();
 exit;
}
if (mysql_num_rows($result) > 0) {
 while ($row = mysql_fetch_assoc($result)) {
 print_r($row);
 }

http://www.php.net/faq.databases.mysql.deprecated

mysql_list_processes

508

}
?>

The above example will output something similar to:

Array
(
 [Field] => id
 [Type] => int(7)
 [Null] =>
 [Key] => PRI
 [Default] =>
 [Extra] => auto_increment
)
Array
(
 [Field] => email
 [Type] => varchar(100)
 [Null] =>
 [Key] =>
 [Default] =>
 [Extra] =>
)

Notes

Note

For backward compatibility, the following deprecated alias may be used:
mysql_listfields

See Also

mysql_field_flags
mysql_info

6.5.34 mysql_list_processes

Copyright 1997-2019 the PHP Documentation Group.

• mysql_list_processes

List MySQL processes

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_thread_id

Description

 resource mysql_list_processes(

http://www.php.net/faq.databases.mysql.deprecated

mysql_list_tables

509

 resource link_identifier
 = =NULL);

Retrieves the current MySQL server threads.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

A result pointer resource on success or FALSE on failure.

Examples

Example 6.41 mysql_list_processes example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');

$result = mysql_list_processes($link);
while ($row = mysql_fetch_assoc($result)){
 printf("%s %s %s %s %s\n", $row["Id"], $row["Host"], $row["db"],
 $row["Command"], $row["Time"]);
}
mysql_free_result($result);
?>

The above example will output something similar to:

1 localhost test Processlist 0
4 localhost mysql sleep 5

See Also

mysql_thread_id
mysql_stat

6.5.35 mysql_list_tables

Copyright 1997-2019 the PHP Documentation Group.

• mysql_list_tables

List tables in a MySQL database

Warning

This function was deprecated in PHP 4.3.0, and it and the entire original MySQL
extension was removed in PHP 7.0.0. Instead, use either the actively developed

mysql_list_tables

510

MySQLi or PDO_MySQL extensions. See also the MySQL: choosing an API guide
and its related FAQ entry for additional information. Alternatives to this function
include:

SQL Query: SHOW TABLES FROM dbname

Description

 resource mysql_list_tables(
 string database,
 resource link_identifier
 = =NULL);

Retrieves a list of table names from a MySQL database.

This function is deprecated. It is preferable to use mysql_query to issue an SQL SHOW TABLES [FROM
db_name] [LIKE 'pattern'] statement instead.

Parameters

database The name of the database

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

A result pointer resource on success or FALSE on failure.

Use the mysql_tablename function to traverse this result pointer, or any function for result tables, such
as mysql_fetch_array.

Changelog

Version Description

4.3.7 This function became deprecated.

Examples

Example 6.42 mysql_list_tables alternative example

<?php
$dbname = 'mysql_dbname';

if (!mysql_connect('mysql_host', 'mysql_user', 'mysql_password')) {
 echo 'Could not connect to mysql';
 exit;
}

$sql = "SHOW TABLES FROM $dbname";
$result = mysql_query($sql);

if (!$result) {
 echo "DB Error, could not list tables\n";
 echo 'MySQL Error: ' . mysql_error();

http://www.php.net/faq.databases.mysql.deprecated

mysql_num_fields

511

 exit;
}

while ($row = mysql_fetch_row($result)) {
 echo "Table: {$row[0]}\n";
}

mysql_free_result($result);
?>

Notes

Note

For backward compatibility, the following deprecated alias may be used:
mysql_listtables

See Also

mysql_list_dbs
mysql_tablename

6.5.36 mysql_num_fields

Copyright 1997-2019 the PHP Documentation Group.

• mysql_num_fields

Get number of fields in result

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_num_fields
PDOStatement::columnCount

Description

 int mysql_num_fields(
 resource result);

Retrieves the number of fields from a query.

Parameters

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

Return Values

Returns the number of fields in the result set resource on success or FALSE on failure.

Examples

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::columnCount

mysql_num_rows

512

Example 6.43 A mysql_num_fields example

<?php
$result = mysql_query("SELECT id,email FROM people WHERE id = '42'");
if (!$result) {
 echo 'Could not run query: ' . mysql_error();
 exit;
}

/* returns 2 because id,email === two fields */
echo mysql_num_fields($result);
?>

Notes

Note

For backward compatibility, the following deprecated alias may be used:
mysql_numfields

See Also

mysql_select_db
mysql_query
mysql_fetch_field
mysql_num_rows

6.5.37 mysql_num_rows

Copyright 1997-2019 the PHP Documentation Group.

• mysql_num_rows

Get number of rows in result

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_num_rows
mysqli_stmt_num_rows
PDOStatement::rowCount

Description

 int mysql_num_rows(
 resource result);

Retrieves the number of rows from a result set. This command is only valid for statements like SELECT or
SHOW that return an actual result set. To retrieve the number of rows affected by a INSERT, UPDATE,
REPLACE or DELETE query, use mysql_affected_rows.

Parameters

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::rowCount

mysql_pconnect

513

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

Return Values

The number of rows in a result set on success or FALSE on failure.

Examples

Example 6.44 mysql_num_rows example

<?php

$link = mysql_connect("localhost", "mysql_user", "mysql_password");
mysql_select_db("database", $link);

$result = mysql_query("SELECT * FROM table1", $link);
$num_rows = mysql_num_rows($result);

echo "$num_rows Rows\n";

?>

Notes

Note

If you use mysql_unbuffered_query, mysql_num_rows will not return the
correct value until all the rows in the result set have been retrieved.

Note

For backward compatibility, the following deprecated alias may be used:
mysql_numrows

See Also

mysql_affected_rows
mysql_connect
mysql_data_seek
mysql_select_db
mysql_query

6.5.38 mysql_pconnect

Copyright 1997-2019 the PHP Documentation Group.

• mysql_pconnect

Open a persistent connection to a MySQL server

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:

mysql_pconnect

514

choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_connect with p: host prefix
PDO::__construct with PDO::ATTR_PERSISTENT as a driver option

Description

 resource mysql_pconnect(
 string server
 = =ini_get("mysql.default_host"),
 string username
 = =ini_get("mysql.default_user"),
 string password
 = =ini_get("mysql.default_password"),
 int client_flags
 = =0);

Establishes a persistent connection to a MySQL server.

mysql_pconnect acts very much like mysql_connect with two major differences.

First, when connecting, the function would first try to find a (persistent) link that's already open with the
same host, username and password. If one is found, an identifier for it will be returned instead of opening a
new connection.

Second, the connection to the SQL server will not be closed when the execution of the script ends.
Instead, the link will remain open for future use (mysql_close will not close links established by
mysql_pconnect).

This type of link is therefore called 'persistent'.

Parameters

server The MySQL server. It can also include a port number. e.g.
"hostname:port" or a path to a local socket e.g. ":/path/to/socket" for the
localhost.

If the PHP directive mysql.default_host is undefined (default), then the
default value is 'localhost:3306'

username The username. Default value is the name of the user that owns the
server process.

password The password. Default value is an empty password.

client_flags The client_flags parameter can be a combination of
the following constants: 128 (enable LOAD DATA LOCAL
handling), MYSQL_CLIENT_SSL, MYSQL_CLIENT_COMPRESS,
MYSQL_CLIENT_IGNORE_SPACE or MYSQL_CLIENT_INTERACTIVE.

Return Values

Returns a MySQL persistent link identifier on success, or FALSE on failure.

Changelog

Version Description

5.5.0 This function will generate an E_DEPRECATED error.

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::__construct

mysql_ping

515

Notes

Note

Note, that these kind of links only work if you are using a module version of PHP.
See the Persistent Database Connections section for more information.

Warning

Using persistent connections can require a bit of tuning of your Apache and MySQL
configurations to ensure that you do not exceed the number of connections allowed
by MySQL.

Note

You can suppress the error message on failure by prepending a @ to the function
name.

See Also

mysql_connect
Persistent Database Connections

6.5.39 mysql_ping

Copyright 1997-2019 the PHP Documentation Group.

• mysql_ping

Ping a server connection or reconnect if there is no connection

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_ping

Description

 bool mysql_ping(
 resource link_identifier
 = =NULL);

Checks whether or not the connection to the server is working. If it has gone down, an automatic
reconnection is attempted. This function can be used by scripts that remain idle for a long while, to check
whether or not the server has closed the connection and reconnect if necessary.

Note

Automatic reconnection is disabled by default in versions of MySQL >= 5.0.3.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,

http://www.php.net/manual/en/features.persistent-connections
http://www.php.net/manual/en/language.operators.errorcontrol
http://www.php.net/manual/en/features.persistent-connections
http://www.php.net/faq.databases.mysql.deprecated

mysql_query

516

it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

Returns TRUE if the connection to the server MySQL server is working, otherwise FALSE.

Examples

Example 6.45 A mysql_ping example

<?php
set_time_limit(0);

$conn = mysql_connect('localhost', 'mysqluser', 'mypass');
$db = mysql_select_db('mydb');

/* Assuming this query will take a long time */
$result = mysql_query($sql);
if (!$result) {
 echo 'Query #1 failed, exiting.';
 exit;
}

/* Make sure the connection is still alive, if not, try to reconnect */
if (!mysql_ping($conn)) {
 echo 'Lost connection, exiting after query #1';
 exit;
}
mysql_free_result($result);

/* So the connection is still alive, let's run another query */
$result2 = mysql_query($sql2);
?>

See Also

mysql_thread_id
mysql_list_processes

6.5.40 mysql_query

Copyright 1997-2019 the PHP Documentation Group.

• mysql_query

Send a MySQL query

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_query

http://www.php.net/faq.databases.mysql.deprecated

mysql_query

517

PDO::query

Description

 mixed mysql_query(
 string query,
 resource link_identifier
 = =NULL);

mysql_query sends a unique query (multiple queries are not supported) to the currently active database
on the server that's associated with the specified link_identifier.

Parameters

query An SQL query

The query string should not end with a semicolon. Data inside the query
should be properly escaped.

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

For SELECT, SHOW, DESCRIBE, EXPLAIN and other statements returning resultset, mysql_query
returns a resource on success, or FALSE on error.

For other type of SQL statements, INSERT, UPDATE, DELETE, DROP, etc, mysql_query returns TRUE
on success or FALSE on error.

The returned result resource should be passed to mysql_fetch_array, and other functions for dealing
with result tables, to access the returned data.

Use mysql_num_rows to find out how many rows were returned for a SELECT statement or
mysql_affected_rows to find out how many rows were affected by a DELETE, INSERT, REPLACE, or
UPDATE statement.

mysql_query will also fail and return FALSE if the user does not have permission to access the table(s)
referenced by the query.

Examples

Example 6.46 Invalid Query

The following query is syntactically invalid, so mysql_query fails and returns FALSE.

<?php
$result = mysql_query('SELECT * WHERE 1=1');
if (!$result) {
 die('Invalid query: ' . mysql_error());
}

?>

http://www.php.net/PDO::query

mysql_real_escape_string

518

Example 6.47 Valid Query

The following query is valid, so mysql_query returns a resource.

<?php
// This could be supplied by a user, for example
$firstname = 'fred';
$lastname = 'fox';

// Formulate Query
// This is the best way to perform an SQL query
// For more examples, see mysql_real_escape_string()
$query = sprintf("SELECT firstname, lastname, address, age FROM friends
 WHERE firstname='%s' AND lastname='%s'",
 mysql_real_escape_string($firstname),
 mysql_real_escape_string($lastname));

// Perform Query
$result = mysql_query($query);

// Check result
// This shows the actual query sent to MySQL, and the error. Useful for debugging.
if (!$result) {
 $message = 'Invalid query: ' . mysql_error() . "\n";
 $message .= 'Whole query: ' . $query;
 die($message);
}

// Use result
// Attempting to print $result won't allow access to information in the resource
// One of the mysql result functions must be used
// See also mysql_result(), mysql_fetch_array(), mysql_fetch_row(), etc.
while ($row = mysql_fetch_assoc($result)) {
 echo $row['firstname'];
 echo $row['lastname'];
 echo $row['address'];
 echo $row['age'];
}

// Free the resources associated with the result set
// This is done automatically at the end of the script
mysql_free_result($result);
?>

See Also

mysql_connect
mysql_error
mysql_real_escape_string
mysql_result
mysql_fetch_assoc
mysql_unbuffered_query

6.5.41 mysql_real_escape_string

Copyright 1997-2019 the PHP Documentation Group.

• mysql_real_escape_string

mysql_real_escape_string

519

Escapes special characters in a string for use in an SQL statement

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_real_escape_string
PDO::quote

Description

 string mysql_real_escape_string(
 string unescaped_string,
 resource link_identifier
 = =NULL);

Escapes special characters in the unescaped_string, taking into account the current character set of
the connection so that it is safe to place it in a mysql_query. If binary data is to be inserted, this function
must be used.

mysql_real_escape_string calls MySQL's library function mysql_real_escape_string, which prepends
backslashes to the following characters: \x00, \n, \r, \, ', " and \x1a.

This function must always (with few exceptions) be used to make data safe before sending a query to
MySQL.

Security: the default character set

The character set must be set either at the server level, or with the API function
mysql_set_charset for it to affect mysql_real_escape_string. See the
concepts section on character sets for more information.

Parameters

unescaped_string The string that is to be escaped.

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

Returns the escaped string, or FALSE on error.

Errors/Exceptions

Executing this function without a MySQL connection present will also emit E_WARNING level PHP errors.
Only execute this function with a valid MySQL connection present.

Examples

Example 6.48 Simple mysql_real_escape_string example

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::quote

mysql_real_escape_string

520

<?php
// Connect
$link = mysql_connect('mysql_host', 'mysql_user', 'mysql_password')
 OR die(mysql_error());

// Query
$query = sprintf("SELECT * FROM users WHERE user='%s' AND password='%s'",
 mysql_real_escape_string($user),
 mysql_real_escape_string($password));
?>

Example 6.49 mysql_real_escape_string requires a connection example

This example demonstrates what happens if a MySQL connection is not present when calling this function.

<?php
// We have not connected to MySQL

$lastname = "O'Reilly";
$_lastname = mysql_real_escape_string($lastname);

$query = "SELECT * FROM actors WHERE last_name = '$_lastname'";

var_dump($_lastname);
var_dump($query);
?>

The above example will output something similar to:

Warning: mysql_real_escape_string(): No such file or directory in /this/test/script.php on line 5
Warning: mysql_real_escape_string(): A link to the server could not be established in /this/test/script.php on line 5

bool(false)
string(41) "SELECT * FROM actors WHERE last_name = ''"

Example 6.50 An example SQL Injection Attack

<?php
// We didn't check $_POST['password'], it could be anything the user wanted! For example:
$_POST['username'] = 'aidan';
$_POST['password'] = "' OR ''='";

// Query database to check if there are any matching users
$query = "SELECT * FROM users WHERE user='{$_POST['username']}' AND password='{$_POST['password']}'";
mysql_query($query);

// This means the query sent to MySQL would be:
echo $query;
?>

The query sent to MySQL:

mysql_result

521

SELECT * FROM users WHERE user='aidan' AND password='' OR ''=''

This would allow anyone to log in without a valid password.

Notes

Note

A MySQL connection is required before using mysql_real_escape_string
otherwise an error of level E_WARNING is generated, and FALSE is returned. If
link_identifier isn't defined, the last MySQL connection is used.

Note

If magic_quotes_gpc is enabled, first apply stripslashes to the data. Using this
function on data which has already been escaped will escape the data twice.

Note

If this function is not used to escape data, the query is vulnerable to SQL Injection
Attacks.

Note

mysql_real_escape_string does not escape % and _. These are wildcards in
MySQL if combined with LIKE, GRANT, or REVOKE.

See Also

mysql_set_charset
mysql_client_encoding
addslashes
stripslashes
The magic_quotes_gpc directive
The magic_quotes_runtime directive

6.5.42 mysql_result

Copyright 1997-2019 the PHP Documentation Group.

• mysql_result

Get result data

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_data_seek in conjunction with mysqli_field_seek and
mysqli_fetch_field

http://www.php.net/manual/en/ini.core.php#ini.magic-quotes-gpc
http://www.php.net/stripslashes
http://www.php.net/manual/en/security.database.sql-injection
http://www.php.net/manual/en/security.database.sql-injection
http://www.php.net/addslashes
http://www.php.net/stripslashes
http://www.php.net/manual/en/ini.core.php#ini.magic-quotes-gpc
http://www.php.net/manual/en/ini.core.php#ini.magic-quotes-runtime
http://www.php.net/faq.databases.mysql.deprecated

mysql_result

522

PDOStatement::fetchColumn

Description

 string mysql_result(
 resource result,
 int row,
 mixed field
 = =0);

Retrieves the contents of one cell from a MySQL result set.

When working on large result sets, you should consider using one of the functions that fetch an entire row
(specified below). As these functions return the contents of multiple cells in one function call, they're MUCH
quicker than mysql_result. Also, note that specifying a numeric offset for the field argument is much
quicker than specifying a fieldname or tablename.fieldname argument.

Parameters

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

row The row number from the result that's being retrieved. Row numbers
start at 0.

field The name or offset of the field being retrieved.

It can be the field's offset, the field's name, or the field's table dot field
name (tablename.fieldname). If the column name has been aliased
('select foo as bar from...'), use the alias instead of the column name. If
undefined, the first field is retrieved.

Return Values

The contents of one cell from a MySQL result set on success, or FALSE on failure.

Examples

Example 6.51 mysql_result example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect: ' . mysql_error());
}
if (!mysql_select_db('database_name')) {
 die('Could not select database: ' . mysql_error());
}
$result = mysql_query('SELECT name FROM work.employee');
if (!$result) {
 die('Could not query:' . mysql_error());
}
echo mysql_result($result, 2); // outputs third employee's name

mysql_close($link);
?>

Notes

http://www.php.net/PDOStatement::fetchColumn

mysql_select_db

523

Note

Calls to mysql_result should not be mixed with calls to other functions that deal
with the result set.

See Also

mysql_fetch_row
mysql_fetch_array
mysql_fetch_assoc
mysql_fetch_object

6.5.43 mysql_select_db

Copyright 1997-2019 the PHP Documentation Group.

• mysql_select_db

Select a MySQL database

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_select_db
PDO::__construct (part of dsn)

Description

 bool mysql_select_db(
 string database_name,
 resource link_identifier
 = =NULL);

Sets the current active database on the server that's associated with the specified link identifier. Every
subsequent call to mysql_query will be made on the active database.

Parameters

database_name The name of the database that is to be selected.

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 6.52 mysql_select_db example

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::__construct

mysql_set_charset

524

<?php

$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Not connected : ' . mysql_error());
}

// make foo the current db
$db_selected = mysql_select_db('foo', $link);
if (!$db_selected) {
 die ('Can\'t use foo : ' . mysql_error());
}
?>

Notes

Note

For backward compatibility, the following deprecated alias may be used:
mysql_selectdb

See Also

mysql_connect
mysql_pconnect
mysql_query

6.5.44 mysql_set_charset

Copyright 1997-2019 the PHP Documentation Group.

• mysql_set_charset

Sets the client character set

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_set_charset
PDO: Add charset to the connection string, such as charset=utf8

Description

 bool mysql_set_charset(
 string charset,
 resource link_identifier
 = =NULL);

Sets the default character set for the current connection.

Parameters

charset A valid character set name.

http://www.php.net/faq.databases.mysql.deprecated

mysql_stat

525

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function requires MySQL 5.0.7 or later.

Note

This is the preferred way to change the charset. Using mysql_query to set it
(such as SET NAMES utf8) is not recommended. See the MySQL character set
concepts section for more information.

See Also

Setting character sets in MySQL
List of character sets that MySQL supports
mysql_client_encoding

6.5.45 mysql_stat

Copyright 1997-2019 the PHP Documentation Group.

• mysql_stat

Get current system status

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_stat
PDO::getAttribute(PDO::ATTR_SERVER_INFO)

Description

 string mysql_stat(
 resource link_identifier
 = =NULL);

mysql_stat returns the current server status.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,

http://dev.mysql.com/doc/mysql/en/charset-charsets.html
http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::getAttribute(PDO::ATTR_SERVER_INFO)

mysql_stat

526

it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

Returns a string with the status for uptime, threads, queries, open tables, flush tables and queries per
second. For a complete list of other status variables, you have to use the SHOW STATUS SQL command. If
link_identifier is invalid, NULL is returned.

Examples

Example 6.53 mysql_stat example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
$status = explode(' ', mysql_stat($link));
print_r($status);
?>

The above example will output something similar to:

Array
(
 [0] => Uptime: 5380
 [1] => Threads: 2
 [2] => Questions: 1321299
 [3] => Slow queries: 0
 [4] => Opens: 26
 [5] => Flush tables: 1
 [6] => Open tables: 17
 [7] => Queries per second avg: 245.595
)

Example 6.54 Alternative mysql_stat example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
$result = mysql_query('SHOW STATUS', $link);
while ($row = mysql_fetch_assoc($result)) {
 echo $row['Variable_name'] . ' = ' . $row['Value'] . "\n";
}
?>

The above example will output something similar to:

back_log = 50
basedir = /usr/local/
bdb_cache_size = 8388600
bdb_log_buffer_size = 32768
bdb_home = /var/db/mysql/

mysql_tablename

527

bdb_max_lock = 10000
bdb_logdir =
bdb_shared_data = OFF
bdb_tmpdir = /var/tmp/
...

See Also

mysql_get_server_info
mysql_list_processes

6.5.46 mysql_tablename

Copyright 1997-2019 the PHP Documentation Group.

• mysql_tablename

Get table name of field

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

SQL Query: SHOW TABLES

Description

 string mysql_tablename(
 resource result,
 int i);

Retrieves the table name from a result.

This function is deprecated. It is preferable to use mysql_query to issue an SQL SHOW TABLES [FROM
db_name] [LIKE 'pattern'] statement instead.

Parameters

result A result pointer resource that's returned from mysql_list_tables.

i The integer index (row/table number)

Return Values

The name of the table on success or FALSE on failure.

Use the mysql_tablename function to traverse this result pointer, or any function for result tables, such
as mysql_fetch_array.

Changelog

Version Description

5.5.0 The mysql_tablename function is deprecated,
and emits an E_DEPRECATED level error.

http://www.php.net/faq.databases.mysql.deprecated

mysql_thread_id

528

Examples

Example 6.55 mysql_tablename example

<?php
mysql_connect("localhost", "mysql_user", "mysql_password");
$result = mysql_list_tables("mydb");
$num_rows = mysql_num_rows($result);
for ($i = 0; $i < $num_rows; $i++) {
 echo "Table: ", mysql_tablename($result, $i), "\n";
}

mysql_free_result($result);
?>

Notes

Note

The mysql_num_rows function may be used to determine the number of tables in
the result pointer.

See Also

mysql_list_tables
mysql_field_table
mysql_db_name

6.5.47 mysql_thread_id

Copyright 1997-2019 the PHP Documentation Group.

• mysql_thread_id

Return the current thread ID

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_thread_id

Description

 int mysql_thread_id(
 resource link_identifier
 = =NULL);

Retrieves the current thread ID. If the connection is lost, and a reconnect with mysql_ping is executed,
the thread ID will change. This means only retrieve the thread ID when needed.

Parameters

http://www.php.net/faq.databases.mysql.deprecated

mysql_unbuffered_query

529

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

The thread ID on success or FALSE on failure.

Examples

Example 6.56 mysql_thread_id example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
$thread_id = mysql_thread_id($link);
if ($thread_id){
 printf("current thread id is %d\n", $thread_id);
}
?>

The above example will output something similar to:

current thread id is 73

See Also

mysql_ping
mysql_list_processes

6.5.48 mysql_unbuffered_query

Copyright 1997-2019 the PHP Documentation Group.

• mysql_unbuffered_query

Send an SQL query to MySQL without fetching and buffering the result rows

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

See: Buffered and Unbuffered queries

Description

 resource mysql_unbuffered_query(
 string query,

http://www.php.net/faq.databases.mysql.deprecated

mysql_unbuffered_query

530

 resource link_identifier
 = =NULL);

mysql_unbuffered_query sends the SQL query query to MySQL without automatically fetching and
buffering the result rows as mysql_query does. This saves a considerable amount of memory with SQL
queries that produce large result sets, and you can start working on the result set immediately after the
first row has been retrieved as you don't have to wait until the complete SQL query has been performed.
To use mysql_unbuffered_query while multiple database connections are open, you must specify the
optional parameter link_identifier to identify which connection you want to use.

Parameters

query The SQL query to execute.

Data inside the query should be properly escaped.

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

For SELECT, SHOW, DESCRIBE or EXPLAIN statements, mysql_unbuffered_query returns a
resource on success, or FALSE on error.

For other type of SQL statements, UPDATE, DELETE, DROP, etc, mysql_unbuffered_query returns
TRUE on success or FALSE on error.

Notes

Note

The benefits of mysql_unbuffered_query come at a cost: you cannot use
mysql_num_rows and mysql_data_seek on a result set returned from
mysql_unbuffered_query, until all rows are fetched. You also have to fetch all
result rows from an unbuffered SQL query before you can send a new SQL query to
MySQL, using the same link_identifier.

See Also

mysql_query

531

Chapter 7 MySQL Native Driver

Table of Contents
7.1 Overview .. 531
7.2 Installation .. 532
7.3 Runtime Configuration ... 533
7.4 Incompatibilities .. 538
7.5 Persistent Connections ... 538
7.6 Statistics ... 539
7.7 Notes ... 552
7.8 Memory management ... 553
7.9 MySQL Native Driver Plugin API ... 554

7.9.1 A comparison of mysqlnd plugins with MySQL Proxy ... 556
7.9.2 Obtaining the mysqlnd plugin API ... 557
7.9.3 MySQL Native Driver Plugin Architecture .. 557
7.9.4 The mysqlnd plugin API ... 562
7.9.5 Getting started building a mysqlnd plugin .. 564

Copyright 1997-2019 the PHP Documentation Group.

MySQL Native Driver is a replacement for the MySQL Client Library (libmysqlclient). MySQL Native Driver
is part of the official PHP sources as of PHP 5.3.0.

The MySQL database extensions MySQL extension, mysqli and PDO MYSQL all communicate with the
MySQL server. In the past, this was done by the extension using the services provided by the MySQL
Client Library. The extensions were compiled against the MySQL Client Library in order to use its client-
server protocol.

With MySQL Native Driver there is now an alternative, as the MySQL database extensions can be
compiled to use MySQL Native Driver instead of the MySQL Client Library.

MySQL Native Driver is written in C as a PHP extension.

7.1 Overview
Copyright 1997-2019 the PHP Documentation Group.

What it is not

Although MySQL Native Driver is written as a PHP extension, it is important to note that it does not provide
a new API to the PHP programmer. The programmer APIs for MySQL database connectivity are provided
by the MySQL extension, mysqli and PDO MYSQL. These extensions can now use the services of
MySQL Native Driver to communicate with the MySQL Server. Therefore, you should not think of MySQL
Native Driver as an API.

Why use it?

Using the MySQL Native Driver offers a number of advantages over using the MySQL Client Library.

The older MySQL Client Library was written by MySQL AB (now Oracle Corporation) and so was released
under the MySQL license. This ultimately led to MySQL support being disabled by default in PHP.
However, the MySQL Native Driver has been developed as part of the PHP project, and is therefore
released under the PHP license. This removes licensing issues that have been problematic in the past.

Installation

532

Also, in the past, you needed to build the MySQL database extensions against a copy of the MySQL Client
Library. This typically meant you needed to have MySQL installed on a machine where you were building
the PHP source code. Also, when your PHP application was running, the MySQL database extensions
would call down to the MySQL Client library file at run time, so the file needed to be installed on your
system. With MySQL Native Driver that is no longer the case as it is included as part of the standard
distribution. So you do not need MySQL installed in order to build PHP or run PHP database applications.

Because MySQL Native Driver is written as a PHP extension, it is tightly coupled to the workings of PHP.
This leads to gains in efficiency, especially when it comes to memory usage, as the driver uses the PHP
memory management system. It also supports the PHP memory limit. Using MySQL Native Driver leads
to comparable or better performance than using MySQL Client Library, it always ensures the most efficient
use of memory. One example of the memory efficiency is the fact that when using the MySQL Client
Library, each row is stored in memory twice, whereas with the MySQL Native Driver each row is only
stored once in memory.

Reporting memory usage

Because MySQL Native Driver uses the PHP memory management system, its
memory usage can be tracked with memory_get_usage. This is not possible with
libmysqlclient because it uses the C function malloc() instead.

Special features

MySQL Native Driver also provides some special features not available when the MySQL database
extensions use MySQL Client Library. These special features are listed below:

• Improved persistent connections

• The special function mysqli_fetch_all

• Performance statistics calls: mysqli_get_cache_stats, mysqli_get_client_stats,
mysqli_get_connection_stats

The performance statistics facility can prove to be very useful in identifying performance bottlenecks.

MySQL Native Driver also allows for persistent connections when used with the mysqli extension.

SSL Support

MySQL Native Driver has supported SSL since PHP version 5.3.3

Compressed Protocol Support

As of PHP 5.3.2 MySQL Native Driver supports the compressed client server protocol. MySQL Native
Driver did not support this in 5.3.0 and 5.3.1. Extensions such as ext/mysql, ext/mysqli, that are
configured to use MySQL Native Driver, can also take advantage of this feature. Note that PDO_MYSQL
does NOT support compression when used together with mysqlnd.

Named Pipes Support

Named pipes support for Windows was added in PHP version 5.4.0.

7.2 Installation
Copyright 1997-2019 the PHP Documentation Group.

Changelog

http://www.php.net/memory_get_usage

Runtime Configuration

533

Table 7.1 Changelog

Version Description

5.3.0 The MySQL Native Driver was added, with support
for all MySQL extensions (i.e., mysql, mysqli
and PDO_MYSQL). Passing in mysqlnd to the
appropriate configure switch enables this support.

5.4.0 The MySQL Native Driver is now the default for
all MySQL extensions (i.e., mysql, mysqli and
PDO_MYSQL). Passing in mysqlnd to configure is
now optional.

5.5.0 SHA-256 Authentication Plugin support was added

Installation on Unix

The MySQL database extensions must be configured to use the MySQL Client Library. In order to use the
MySQL Native Driver, PHP needs to be built specifying that the MySQL database extensions are compiled
with MySQL Native Driver support. This is done through configuration options prior to building the PHP
source code.

For example, to build the MySQL extension, mysqli and PDO MYSQL using the MySQL Native Driver,
the following command would be given:

 ./configure --with-mysql=mysqlnd \
--with-mysqli=mysqlnd \
--with-pdo-mysql=mysqlnd \
[other options]

Installation on Windows

In the official PHP Windows distributions from 5.3 onwards, MySQL Native Driver is enabled by default,
so no additional configuration is required to use it. All MySQL database extensions will use MySQL Native
Driver in this case.

SHA-256 Authentication Plugin support

The MySQL Native Driver requires the OpenSSL functionality of PHP to be loaded and enabled to connect
to MySQL through accounts that use the MySQL SHA-256 Authentication Plugin. For example, PHP could
be configured using:

./configure --with-mysql=mysqlnd \
--with-mysqli=mysqlnd \
--with-pdo-mysql=mysqlnd \
--with-openssl
[other options]

7.3 Runtime Configuration

Copyright 1997-2019 the PHP Documentation Group.

The behaviour of these functions is affected by settings in php.ini.

Runtime Configuration

534

Table 7.2 MySQL Native Driver Configuration Options

Name Default Changeable Changelog

mysqlnd.collect_statistics "1" PHP_INI_SYSTEM Available since PHP
5.3.0.

mysqlnd.collect_memory_statistics"0" PHP_INI_SYSTEM Available since PHP
5.3.0.

mysqlnd.debug "" PHP_INI_SYSTEM Available since PHP
5.3.0.

mysqlnd.log_mask 0 PHP_INI_ALL Available since PHP
5.3.0

mysqlnd.mempool_default_size16000 PHP_INI_ALL Available since PHP
5.3.3

mysqlnd.net_read_timeout"86400" PHP_INI_ALL Available since PHP
5.3.0. Before PHP
7.2.0 the default value
was "31536000" and
the changeability was
PHP_INI_SYSTEM

mysqlnd.net_cmd_buffer_size5.3.0 - "2048", 5.3.1 -
"4096"

PHP_INI_SYSTEM Available since PHP
5.3.0.

mysqlnd.net_read_buffer_size"32768" PHP_INI_SYSTEM Available since PHP
5.3.0.

mysqlnd.sha256_server_public_key"" PHP_INI_PERDIR Available since PHP
5.5.0.

mysqlnd.trace_alloc "" PHP_INI_SYSTEM Available since PHP
5.5.0.

mysqlnd.fetch_data_copy 0 PHP_INI_ALL Available since PHP
5.6.0.

For further details and definitions of the PHP_INI_* modes, see the http://www.php.net/manual/en/
configuration.changes.modes.

Here's a short explanation of the configuration directives.

mysqlnd.collect_statistics
boolean

Enables the collection of various client statistics which
can be accessed through mysqli_get_client_stats,
mysqli_get_connection_stats, mysqli_get_cache_stats and
are shown in mysqlnd section of the output of the phpinfo function as
well.

This configuration setting enables all MySQL Native Driver statistics
except those relating to memory management.

mysqlnd.collect_memory_statistics
boolean

Enable the collection of various memory statistics which
can be accessed through mysqli_get_client_stats,
mysqli_get_connection_stats, mysqli_get_cache_stats and
are shown in mysqlnd section of the output of the phpinfo function as
well.

This configuration setting enables the memory management statistics
within the overall set of MySQL Native Driver statistics.

http://www.php.net/manual/en/configuration.changes.modes
http://www.php.net/manual/en/configuration.changes.modes
http://www.php.net/phpinfo
http://www.php.net/phpinfo

Runtime Configuration

535

mysqlnd.debug string Records communication from all extensions using mysqlnd to the
specified log file.

The format of the directive is mysqlnd.debug
= "option1[,parameter_option1]
[:option2[,parameter_option2]]".

The options for the format string are as follows:

• A[,file] - Appends trace output to specified file. Also ensures that data
is written after each write. This is done by closing and reopening the
trace file (this is slow). It helps ensure a complete log file should the
application crash.

• a[,file] - Appends trace output to the specified file.

• d - Enables output from DBUG_<N> macros for the current state. May
be followed by a list of keywords which selects output only for the
DBUG macros with that keyword. An empty list of keywords implies
output for all macros.

• f[,functions] - Limits debugger actions to the specified list of functions.
An empty list of functions implies that all functions are selected.

• F - Marks each debugger output line with the name of the source file
containing the macro causing the output.

• i - Marks each debugger output line with the PID of the current
process.

• L - Marks each debugger output line with the name of the source file
line number of the macro causing the output.

• n - Marks each debugger output line with the current function nesting
depth

• o[,file] - Similar to a[,file] but overwrites old file, and does not append.

• O[,file] - Similar to A[,file] but overwrites old file, and does not append.

• t[,N] - Enables function control flow tracing. The maximum nesting
depth is specified by N, and defaults to 200.

• x - This option activates profiling.

• m - Trace memory allocation and deallocation related calls.

Example:

d:t:x:O,/tmp/mysqlnd.trace

Runtime Configuration

536

Note

This feature is only available with a debug build
of PHP. Works on Microsoft Windows if using
a debug build of PHP and PHP was built using
Microsoft Visual C version 9 and above.

mysqlnd.log_mask integer Defines which queries will be logged. The default 0, which disables
logging. Define using an integer, and not with PHP constants. For
example, a value of 48 (16 + 32) will log slow queries which either use
'no good index' (SERVER_QUERY_NO_GOOD_INDEX_USED = 16) or
no index at all (SERVER_QUERY_NO_INDEX_USED = 32). A value of
2043 (1 + 2 + 8 + ... + 1024) will log all slow query types.

The types are as follows: SERVER_STATUS_IN_TRANS=1,
SERVER_STATUS_AUTOCOMMIT=2,
SERVER_MORE_RESULTS_EXISTS=8,
SERVER_QUERY_NO_GOOD_INDEX_USED=16,
SERVER_QUERY_NO_INDEX_USED=32,
SERVER_STATUS_CURSOR_EXISTS=64,
SERVER_STATUS_LAST_ROW_SENT=128,
SERVER_STATUS_DB_DROPPED=256,
SERVER_STATUS_NO_BACKSLASH_ESCAPES=512, and
SERVER_QUERY_WAS_SLOW=1024.

mysqlnd.mempool_default_size
integer

Default size of the mysqlnd memory pool, which is used by result sets.

mysqlnd.net_read_timeout
integer

mysqlnd and the MySQL Client Library, libmysqlclient use
different networking APIs. mysqlnd uses PHP streams, whereas
libmysqlclient uses its own wrapper around the operating
level network calls. PHP, by default, sets a read timeout of 60s for
streams. This is set via php.ini, default_socket_timeout.
This default applies to all streams that set no other timeout
value. mysqlnd does not set any other value and therefore
connections of long running queries can be disconnected after
default_socket_timeout seconds resulting in an error message
“2006 - MySQL Server has gone away”. The MySQL Client Library
sets a default timeout of 24 * 3600 seconds (1 day) and waits
for other timeouts to occur, such as TCP/IP timeouts. mysqlnd
now uses the same very long timeout. The value is configurable
through a new php.ini setting: mysqlnd.net_read_timeout.
mysqlnd.net_read_timeout gets used by any extension (ext/
mysql, ext/mysqli, PDO_MySQL) that uses mysqlnd. mysqlnd tells
PHP Streams to use mysqlnd.net_read_timeout. Please note that
there may be subtle differences between MYSQL_OPT_READ_TIMEOUT
from the MySQL Client Library and PHP Streams, for example
MYSQL_OPT_READ_TIMEOUT is documented to work only for TCP/IP
connections and, prior to MySQL 5.1.2, only for Windows. PHP streams
may not have this limitation. Please check the streams documentation, if
in doubt.

mysqlnd.net_cmd_buffer_size
integer

mysqlnd allocates an internal command/network buffer of
mysqlnd.net_cmd_buffer_size (in php.ini) bytes for every

Runtime Configuration

537

connection. If a MySQL Client Server protocol command, for
example, COM_QUERY (“normal” query), does not fit into the buffer,
mysqlnd will grow the buffer to the size required for sending the
command. Whenever the buffer gets extended for one connection,
command_buffer_too_small will be incremented by one.

If mysqlnd has to grow the buffer beyond its initial size of
mysqlnd.net_cmd_buffer_size bytes for almost every connection,
you should consider increasing the default size to avoid re-allocations.

The default buffer size is 2048 bytes in PHP 5.3.0. In later versions the
default is 4096 bytes.

It is recommended that the buffer size be set to no less than 4096 bytes
because mysqlnd also uses it when reading certain communication
packet from MySQL. In PHP 5.3.0, mysqlnd will not grow the
buffer if MySQL sends a packet that is larger than the current size
of the buffer. As a consequence, mysqlnd is unable to decode the
packet and the client application will get an error. There are only two
situations when the packet can be larger than the 2048 bytes default of
mysqlnd.net_cmd_buffer_size in PHP 5.3.0: the packet transports
a very long error message, or the packet holds column meta data from
COM_LIST_FIELD (mysql_list_fields() and the meta data come
from a string column with a very long default value (>1900 bytes).

As of PHP 5.3.2 mysqlnd does not allow setting buffers smaller than
4096 bytes.

The value can also be set using mysqli_options(link,
MYSQLI_OPT_NET_CMD_BUFFER_SIZE, size).

mysqlnd.net_read_buffer_size
integer

Maximum read chunk size in bytes when reading the body of a MySQL
command packet. The MySQL client server protocol encapsulates all
its commands in packets. The packets consist of a small header and
a body with the actual payload. The size of the body is encoded in the
header. mysqlnd reads the body in chunks of MIN(header.size,
mysqlnd.net_read_buffer_size) bytes. If a packet body is larger
than mysqlnd.net_read_buffer_size bytes, mysqlnd has to call
read() multiple times.

The value can also be set using mysqli_options(link,
MYSQLI_OPT_NET_READ_BUFFER_SIZE, size).

mysqlnd.sha256_server_public_key
string

SHA-256 Authentication Plugin related. File with the MySQL server
public RSA key.

Clients can either omit setting a public RSA key, specify the key
through this PHP configuration setting or set the key at runtime using
mysqli_options. If not public RSA key file is given by the client,
then the key will be exchanged as part of the standard SHA-256
Authentication Plugin authentication procedure.

mysqlnd.trace_alloc string

mysqlnd.fetch_data_copy
integer

Enforce copying result sets from the internal result set buffers into PHP
variables instead of using the default reference and copy-on-write logic.

Incompatibilities

538

Please, see the memory management implementation notes for further
details.

Copying result sets instead of having PHP variables reference them
allows releasing the memory occupied for the PHP variables earlier.
Depending on the user API code, the actual database quries and
the size of their result sets this may reduce the memory footprint of
mysqlnd.

Do not set if using PDO_MySQL. PDO_MySQL has not yet been
updated to support the new fetch mode.

7.4 Incompatibilities
Copyright 1997-2019 the PHP Documentation Group.

MySQL Native Driver is in most cases compatible with MySQL Client Library (libmysql). This section
documents incompatibilities between these libraries.

• Values of bit data type are returned as binary strings (e.g. "\0" or "\x1F") with libmysql and as
decimal strings (e.g. "0" or "31") with mysqlnd. If you want the code to be compatible with both libraries
then always return bit fields as numbers from MySQL with a query like this: SELECT bit + 0 FROM
table.

7.5 Persistent Connections
Copyright 1997-2019 the PHP Documentation Group.

Using Persistent Connections

If mysqli is used with mysqlnd, when a persistent connection is created it generates a
COM_CHANGE_USER (mysql_change_user()) call on the server. This ensures that re-authentication of
the connection takes place.

As there is some overhead associated with the COM_CHANGE_USER call, it is possible to switch this off at
compile time. Reusing a persistent connection will then generate a COM_PING (mysql_ping) call to simply
test the connection is reusable.

Generation of COM_CHANGE_USER can be switched off with the compile flag
MYSQLI_NO_CHANGE_USER_ON_PCONNECT. For example:

shell# CFLAGS="-DMYSQLI_NO_CHANGE_USER_ON_PCONNECT" ./configure --with-mysql=/usr/local/mysql/ --with-mysqli=/usr/local/mysql/bin/mysql_config --with-pdo-mysql=/usr/local/mysql/bin/mysql_config --enable-debug && make clean && make -j6

Or alternatively:

shell# export CFLAGS="-DMYSQLI_NO_CHANGE_USER_ON_PCONNECT"
shell# configure --whatever-option
shell# make clean
shell# make

Note that only mysqli on mysqlnd uses COM_CHANGE_USER. Other extension-driver combinations use
COM_PING on initial use of a persistent connection.

Statistics

539

7.6 Statistics
Copyright 1997-2019 the PHP Documentation Group.

Using Statistical Data

MySQL Native Driver contains support for gathering statistics on the communication between the client and
the server. The statistics gathered are of two main types:

• Client statistics

• Connection statistics

If you are using the mysqli extension, these statistics can be obtained through two API calls:

• mysqli_get_client_stats

• mysqli_get_connection_stats

Note

Statistics are aggregated among all extensions that use MySQL Native Driver.
For example, when compiling both ext/mysql and ext/mysqli against MySQL
Native Driver, both function calls of ext/mysql and ext/mysqli will change the
statistics. There is no way to find out how much a certain API call of any extension
that has been compiled against MySQL Native Driver has impacted a certain
statistic. You can configure the PDO MySQL Driver, ext/mysql and ext/mysqli
to optionally use the MySQL Native Driver. When doing so, all three extensions will
change the statistics.

Accessing Client Statistics

To access client statistics, you need to call mysqli_get_client_stats. The function call does not
require any parameters.

The function returns an associative array that contains the name of the statistic as the key and the
statistical data as the value.

Client statistics can also be accessed by calling the phpinfo function.

Accessing Connection Statistics

To access connection statistics call mysqli_get_connection_stats. This takes the database
connection handle as the parameter.

The function returns an associative array that contains the name of the statistic as the key and the
statistical data as the value.

Buffered and Unbuffered Result Sets

Result sets can be buffered or unbuffered. Using default settings, ext/mysql and ext/mysqli work
with buffered result sets for normal (non prepared statement) queries. Buffered result sets are cached on
the client. After the query execution all results are fetched from the MySQL Server and stored in a cache
on the client. The big advantage of buffered result sets is that they allow the server to free all resources
allocated to a result set, once the results have been fetched by the client.

Unbuffered result sets on the other hand are kept much longer on the server. If you want to reduce
memory consumption on the client, but increase load on the server, use unbuffered results. If you
experience a high server load and the figures for unbuffered result sets are high, you should consider

http://www.php.net/phpinfo

Statistics

540

moving the load to the clients. Clients typically scale better than servers. “Load” does not only refer to
memory buffers - the server also needs to keep other resources open, for example file handles and
threads, before a result set can be freed.

Prepared Statements use unbuffered result sets by default. However, you can use
mysqli_stmt_store_result to enable buffered result sets.

Statistics returned by MySQL Native Driver

The following tables show a list of statistics returned by the mysqli_get_client_stats and
mysqli_get_connection_stats functions.

Table 7.3 Returned mysqlnd statistics: Network

Statistic Scope Description Notes

bytes_sentConnectionNumber of bytes sent from PHP to the
MySQL server

Can be used to check the efficiency of
the compression protocol

bytes_receivedConnectionNumber of bytes received from MySQL
server

Can be used to check the efficiency of
the compression protocol

packets_sentConnectionNumber of MySQL Client Server protocol
packets sent

Used for debugging Client Server
protocol implementation

packets_receivedConnectionNumber of MySQL Client Server protocol
packets received

Used for debugging Client Server
protocol implementation

protocol_overhead_inConnectionMySQL Client Server protocol
overhead in bytes for incoming
traffic. Currently only the Packet
Header (4 bytes) is considered as
overhead. protocol_overhead_in =
packets_received * 4

Used for debugging Client Server
protocol implementation

protocol_overhead_outConnectionMySQL Client Server protocol
overhead in bytes for outgoing traffic.
Currently only the Packet Header (4
bytes) is considered as overhead.
protocol_overhead_out = packets_sent *
4

Used for debugging Client Server
protocol implementation

bytes_received_ok_packetConnectionTotal size of bytes of MySQL Client
Server protocol OK packets received. OK
packets can contain a status message.
The length of the status message can
vary and thus the size of an OK packet is
not fixed.

Used for debugging CS protocol
implementation. Note that the total size
in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

packets_received_okConnectionNumber of MySQL Client Server protocol
OK packets received.

Used for debugging CS protocol
implementation. Note that the total size
in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

bytes_received_eof_packetConnectionTotal size in bytes of MySQL Client
Server protocol EOF packets received.
EOF can vary in size depending on the
server version. Also, EOF can transport
an error message.

Used for debugging CS protocol
implementation. Note that the total size
in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

packets_received_eofConnectionNumber of MySQL Client Server protocol
EOF packets. Like with other packet

Used for debugging CS protocol
implementation. Note that the total size

Statistics

541

Statistic Scope Description Notes
statistics the number of packets will be
increased even if PHP does not receive
the expected packet but, for example, an
error message.

in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

bytes_received_rset_header_packetConnectionTotal size in bytes of MySQL Client
Server protocol result set header packets.
The size of the packets varies depending
on the payload (LOAD LOCAL INFILE,
INSERT, UPDATE, SELECT, error
message).

Used for debugging CS protocol
implementation. Note that the total size
in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

packets_received_rset_headerConnectionNumber of MySQL Client Server protocol
result set header packets.

Used for debugging CS protocol
implementation. Note that the total size
in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

bytes_received_rset_field_meta_packetConnectionTotal size in bytes of MySQL Client
Server protocol result set meta data
(field information) packets. Of course
the size varies with the fields in the
result set. The packet may also transport
an error or an EOF packet in case of
COM_LIST_FIELDS.

Only useful for debugging CS protocol
implementation. Note that the total size
in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

packets_received_rset_field_metaConnectionNumber of MySQL Client Server protocol
result set meta data (field information)
packets.

Only useful for debugging CS protocol
implementation. Note that the total size
in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

bytes_received_rset_row_packetConnectionTotal size in bytes of MySQL Client
Server protocol result set row data
packets. The packet may also transport
an error or an EOF packet. You can
reverse engineer the number of error
and EOF packets by subtracting
rows_fetched_from_server_normal
and rows_fetched_from_server_ps
from
bytes_received_rset_row_packet.

Only useful for debugging CS protocol
implementation. Note that the total size
in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

packets_received_rset_rowConnectionNumber of MySQL Client Server protocol
result set row data packets and their total
size in bytes.

Only useful for debugging CS protocol
implementation. Note that the total size
in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

bytes_received_prepare_response_packetConnectionTotal size in bytes of MySQL Client
Server protocol OK for Prepared
Statement Initialization packets (prepared
statement init packets). The packet
may also transport an error. The packet
size depends on the MySQL version:
9 bytes with MySQL 4.1 and 12 bytes
from MySQL 5.0 on. There is no safe
way to know how many errors happened.
You may be able to guess that an error

Only useful for debugging CS protocol
implementation. Note that the total size
in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

Statistics

542

Statistic Scope Description Notes
has occurred if, for example, you always
connect to MySQL 5.0 or newer and,
bytes_received_prepare_response_packet
!=
packets_received_prepare_response
* 12. See also
ps_prepared_never_executed,
ps_prepared_once_executed.

packets_received_prepare_responseConnectionNumber of MySQL Client Server
protocol OK for Prepared Statement
Initialization packets (prepared statement
init packets).

Only useful for debugging CS protocol
implementation. Note that the total size
in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

bytes_received_change_user_packetConnectionTotal size in bytes of MySQL Client
Server protocol COM_CHANGE_USER
packets. The packet may also transport
an error or EOF.

Only useful for debugging CS protocol
implementation. Note that the total size
in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

packets_received_change_userConnectionNumber of MySQL Client Server protocol
COM_CHANGE_USER packets

Only useful for debugging CS protocol
implementation. Note that the total size
in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

packets_sent_commandConnectionNumber of MySQL Client Server protocol
commands sent from PHP to MySQL.
There is no way to know which specific
commands and how many of them have
been sent. At its best you can use it to
check if PHP has sent any commands
to MySQL to know if you can consider
to disable MySQL support in your PHP
binary. There is also no way to reverse
engineer the number of errors that may
have occurred while sending data to
MySQL. The only error that is recorded is
command_buffer_too_small (see below).

Only useful for debugging CS protocol
implementation.

bytes_received_real_data_normalConnectionNumber of bytes of payload fetched by
the PHP client from mysqlnd using the
text protocol.

This is the size of the actual data
contained in result sets that do not
originate from prepared statements and
which have been fetched by the PHP
client. Note that although a full result set
may have been pulled from MySQL by
mysqlnd, this statistic only counts actual
data pulled from mysqlnd by the PHP
client. An example of a code sequence
that will increase the value is as follows:

$mysqli = new mysqli();
$res = $mysqli->query("SELECT 'abc'");
$res->fetch_assoc();
$res->close();

Statistics

543

Statistic Scope Description Notes
Every fetch operation will increase the
value.

The statistic will not be increased if the
result set is only buffered on the client,
but not fetched, such as in the following
example:

$mysqli = new mysqli();
$res = $mysqli->query("SELECT 'abc'");
$res->close();

This statistic is available as of PHP
version 5.3.4.

bytes_received_real_data_psConnectionNumber of bytes of the payload fetched
by the PHP client from mysqlnd using
the prepared statement protocol.

This is the size of the actual data
contained in result sets that originate
from prepared statements and which
has been fetched by the PHP client.
The value will not be increased if the
result set is not subsequently read by
the PHP client. Note that although a
full result set may have been pulled
from MySQL by mysqlnd, this statistic
only counts actual data pulled from
mysqlnd by the PHP client. See also
bytes_received_real_data_normal.
This statistic is available as of PHP
version 5.3.4.

Result Set

Table 7.4 Returned mysqlnd statistics: Result Set

Statistic Scope Description Notes

result_set_queriesConnectionNumber of queries that have generated
a result set. Examples of queries that
generate a result set: SELECT, SHOW. The
statistic will not be incremented if there
is an error reading the result set header
packet from the line.

You may use it as an indirect measure for
the number of queries PHP has sent to
MySQL, for example, to identify a client
that causes a high database load.

non_result_set_queriesConnectionNumber of queries that did not generate
a result set. Examples of queries that
do not generate a result set: INSERT,
UPDATE, LOAD DATA. The statistic will
not be incremented if there is an error
reading the result set header packet from
the line.

You may use it as an indirect measure for
the number of queries PHP has sent to
MySQL, for example, to identify a client
that causes a high database load.

no_index_usedConnectionNumber of queries that have generated
a result set but did not use an index (see
also mysqld start option –log-queries-
not-using-indexes). If you want these

Statistics

544

Statistic Scope Description Notes
queries to be reported you can use
mysqli_report(MYSQLI_REPORT_INDEX)
to make ext/mysqli throw an
exception. If you prefer a warning
instead of an exception use
mysqli_report(MYSQLI_REPORT_INDEX
^ MYSQLI_REPORT_STRICT).

bad_index_usedConnectionNumber of queries that have generated
a result set and did not use a good index
(see also mysqld start option –log-slow-
queries).

If you want these queries
to be reported you can use
mysqli_report(MYSQLI_REPORT_INDEX)
to make ext/mysqli throw an
exception. If you prefer a warning
instead of an exception use
mysqli_report(MYSQLI_REPORT_INDEX
^ MYSQLI_REPORT_STRICT)

slow_queriesConnectionSQL statements that took more
than long_query_time seconds
to execute and required at least
min_examined_row_limit rows to be
examined.

Not reported through mysqli_report

buffered_setsConnectionNumber of buffered result sets returned
by “normal” queries. “Normal” means
“not prepared statement” in the following
notes.

Examples of API calls that will
buffer result sets on the client:
mysql_query, mysqli_query,
mysqli_store_result,
mysqli_stmt_get_result. Buffering
result sets on the client ensures that
server resources are freed as soon as
possible and it makes result set scrolling
easier. The downside is the additional
memory consumption on the client for
buffering data. Note that mysqlnd (unlike
the MySQL Client Library) respects the
PHP memory limit because it uses PHP
internal memory management functions
to allocate memory. This is also the
reason why memory_get_usage reports
a higher memory consumption when
using mysqlnd instead of the MySQL
Client Library. memory_get_usage does
not measure the memory consumption of
the MySQL Client Library at all because
the MySQL Client Library does not use
PHP internal memory management
functions monitored by the function!

unbuffered_setsConnectionNumber of unbuffered result sets
returned by normal (non prepared
statement) queries.

Examples of API calls that will not
buffer result sets on the client:
mysqli_use_result

ps_buffered_setsConnectionNumber of buffered result sets returned
by prepared statements. By default
prepared statements are unbuffered.

Examples of API calls that will
buffer result sets on the client:
mysqli_stmt_store_result

http://www.php.net/memory_get_usage
http://www.php.net/memory_get_usage

Statistics

545

Statistic Scope Description Notes

ps_unbuffered_setsConnectionNumber of unbuffered result sets
returned by prepared statements.

By default prepared statements are
unbuffered.

flushed_normal_setsConnectionNumber of result sets from normal (non
prepared statement) queries with unread
data which have been flushed silently
for you. Flushing happens only with
unbuffered result sets.

Unbuffered result sets must be fetched
completely before a new query can be
run on the connection otherwise MySQL
will throw an error. If the application does
not fetch all rows from an unbuffered
result set, mysqlnd does implicitly
fetch the result set to clear the line.
See also rows_skipped_normal,
rows_skipped_ps. Some possible
causes for an implicit flush:

• Faulty client application

• Client stopped reading after it found
what it was looking for but has made
MySQL calculate more records than
needed

• Client application has stopped
unexpectedly

flushed_ps_setsConnectionNumber of result sets from prepared
statements with unread data which have
been flushed silently for you. Flushing
happens only with unbuffered result sets.

Unbuffered result sets must be fetched
completely before a new query can be
run on the connection otherwise MySQL
will throw an error. If the application does
not fetch all rows from an unbuffered
result set, mysqlnd does implicitly
fetch the result set to clear the line.
See also rows_skipped_normal,
rows_skipped_ps. Some possible
causes for an implicit flush:

• Faulty client application

• Client stopped reading after it found
what it was looking for but has made
MySQL calculate more records than
needed

• Client application has stopped
unexpectedly

ps_prepared_never_executedConnectionNumber of statements prepared but
never executed.

Prepared statements occupy server
resources. You should not prepare a
statement if you do not plan to execute it.

ps_prepared_once_executedConnectionNumber of prepared statements executed
only one.

One of the ideas behind prepared
statements is that the same query gets
executed over and over again (with
different parameters) and some parsing
and other preparation work can be
saved, if statement execution is split

Statistics

546

Statistic Scope Description Notes
up in separate prepare and execute
stages. The idea is to prepare once
and “cache” results, for example, the
parse tree to be reused during multiple
statement executions. If you execute
a prepared statement only once the
two stage processing can be inefficient
compared to “normal” queries because
all the caching means extra work and it
takes (limited) server resources to hold
the cached information. Consequently,
prepared statements that are executed
only once may cause performance hurts.

rows_fetched_from_server_normal,
rows_fetched_from_server_ps

ConnectionTotal number of result set rows
successfully fetched from MySQL
regardless if the client application has
consumed them or not. Some of the
rows may not have been fetched by the
client application but have been flushed
implicitly.

See also
packets_received_rset_row

rows_buffered_from_client_normal,
rows_buffered_from_client_ps

ConnectionTotal number of successfully buffered
rows originating from a "normal" query
or a prepared statement. This is the
number of rows that have been fetched
from MySQL and buffered on client. Note
that there are two distinct statistics on
rows that have been buffered (MySQL
to mysqlnd internal buffer) and buffered
rows that have been fetched by the
client application (mysqlnd internal buffer
to client application). If the number of
buffered rows is higher than the number
of fetched buffered rows it can mean
that the client application runs queries
that cause larger result sets than needed
resulting in rows not read by the client.

Examples of queries that will
buffer results: mysqli_query,
mysqli_store_result

rows_fetched_from_client_normal_buffered,
rows_fetched_from_client_ps_buffered

ConnectionTotal number of rows fetched by the
client from a buffered result set created
by a normal query or a prepared
statement.

rows_fetched_from_client_normal_unbuffered,
rows_fetched_from_client_ps_unbuffered

ConnectionTotal number of rows fetched by the
client from a unbuffered result set created
by a "normal" query or a prepared
statement.

rows_fetched_from_client_ps_cursorConnectionTotal number of rows fetch by the client
from a cursor created by a prepared
statement.

rows_skipped_normal,
rows_skipped_ps

ConnectionReserved for future use (currently not
supported)

Statistics

547

Statistic Scope Description Notes

copy_on_write_saved,
copy_on_write_performed

Process With mysqlnd, variables returned by the
extensions point into mysqlnd internal
network result buffers. If you do not
change the variables, fetched data will
be kept only once in memory. If you
change the variables, mysqlnd has to
perform a copy-on-write to protect the
internal network result buffers from being
changed. With the MySQL Client Library
you always hold fetched data twice in
memory. Once in the internal MySQL
Client Library buffers and once in the
variables returned by the extensions.
In theory mysqlnd can save up to 40%
memory. However, note that the memory
saving cannot be measured using
memory_get_usage.

explicit_free_result,
implicit_free_result

Connection,
Process
(only
during
prepared
statement
cleanup)

Total number of freed result sets. The free is always considered
explicit but for result sets created
by an init command, for example,
mysqli_options(MYSQLI_INIT_COMMAND , ...)

proto_text_fetched_null,
proto_text_fetched_bit,
proto_text_fetched_tinyint
proto_text_fetched_short,
proto_text_fetched_int24,
proto_text_fetched_int
proto_text_fetched_bigint,
proto_text_fetched_decimal,
proto_text_fetched_float
proto_text_fetched_double,
proto_text_fetched_date,
proto_text_fetched_year
proto_text_fetched_time,
proto_text_fetched_datetime,
proto_text_fetched_timestamp
proto_text_fetched_string,
proto_text_fetched_blob,
proto_text_fetched_enum
proto_text_fetched_set,
proto_text_fetched_geometry,
proto_text_fetched_other

ConnectionTotal number of columns of a certain type
fetched from a normal query (MySQL text
protocol).

Mapping from C API / MySQL meta data
type to statistics name:

• MYSQL_TYPE_NULL -
proto_text_fetched_null

• MYSQL_TYPE_BIT -
proto_text_fetched_bit

• MYSQL_TYPE_TINY -
proto_text_fetched_tinyint

• MYSQL_TYPE_SHORT -
proto_text_fetched_short

• MYSQL_TYPE_INT24 -
proto_text_fetched_int24

• MYSQL_TYPE_LONG -
proto_text_fetched_int

• MYSQL_TYPE_LONGLONG -
proto_text_fetched_bigint

• MYSQL_TYPE_DECIMAL,
MYSQL_TYPE_NEWDECIMAL -
proto_text_fetched_decimal

http://www.php.net/memory_get_usage

Statistics

548

Statistic Scope Description Notes
• MYSQL_TYPE_FLOAT -

proto_text_fetched_float

• MYSQL_TYPE_DOUBLE -
proto_text_fetched_double

• MYSQL_TYPE_DATE,
MYSQL_TYPE_NEWDATE -
proto_text_fetched_date

• MYSQL_TYPE_YEAR -
proto_text_fetched_year

• MYSQL_TYPE_TIME -
proto_text_fetched_time

• MYSQL_TYPE_DATETIME -
proto_text_fetched_datetime

• MYSQL_TYPE_TIMESTAMP -
proto_text_fetched_timestamp

• MYSQL_TYPE_STRING,
MYSQL_TYPE_VARSTRING,
MYSQL_TYPE_VARCHAR -
proto_text_fetched_string

• MYSQL_TYPE_TINY_BLOB,
MYSQL_TYPE_MEDIUM_BLOB,
MYSQL_TYPE_LONG_BLOB,
MYSQL_TYPE_BLOB -
proto_text_fetched_blob

• MYSQL_TYPE_ENUM -
proto_text_fetched_enum

• MYSQL_TYPE_SET -
proto_text_fetched_set

• MYSQL_TYPE_GEOMETRY -
proto_text_fetched_geometry

• Any MYSQL_TYPE_* not listed
before (there should be none) -
proto_text_fetched_other

Note that the MYSQL_*-type constants
may not be associated with the very
same SQL column types in every version
of MySQL.

proto_binary_fetched_null,
proto_binary_fetched_bit,
proto_binary_fetched_tinyint
proto_binary_fetched_short,

ConnectionTotal number of columns of a certain
type fetched from a prepared statement
(MySQL binary protocol).

For type mapping see proto_text_*
described in the preceding text.

Statistics

549

Statistic Scope Description Notes
proto_binary_fetched_int24,
proto_binary_fetched_int,
proto_binary_fetched_bigint,
proto_binary_fetched_decimal,
proto_binary_fetched_float,
proto_binary_fetched_double,
proto_binary_fetched_date,
proto_binary_fetched_year,
proto_binary_fetched_time,
proto_binary_fetched_datetime,
proto_binary_fetched_timestamp,
proto_binary_fetched_string,
proto_binary_fetched_blob,
proto_binary_fetched_enum,
proto_binary_fetched_set,
proto_binary_fetched_geometry,
proto_binary_fetched_other

Table 7.5 Returned mysqlnd statistics: Connection

Statistic Scope Description Notes

connect_success,
connect_failure

ConnectionTotal number of successful / failed
connection attempt.

Reused connections and all other kinds
of connections are included.

reconnectProcess Total number of (real_)connect attempts
made on an already opened connection
handle.

The code sequence $link =
new mysqli(...); $link-
>real_connect(...) will
cause a reconnect. But $link =
new mysqli(...); $link-
>connect(...) will not because
$link->connect(...) will explicitly
close the existing connection before a
new connection is established.

pconnect_successConnectionTotal number of successful persistent
connection attempts.

Note that connect_success
holds the sum of successful
persistent and non-persistent
connection attempts. The number of
successful non-persistent connection
attempts is connect_success -
pconnect_success.

active_connectionsConnectionTotal number of active persistent and
non-persistent connections.

active_persistent_connectionsConnectionTotal number of active persistent
connections.

The total number of active non-persistent
connections is active_connections -
active_persistent_connections.

explicit_closeConnectionTotal number of explicitly closed
connections (ext/mysqli only).

Examples of code snippets that cause an
explicit close :

$link = new mysqli(...); $link->close(...)
$link = new mysqli(...); $link->connect(...)

Statistics

550

Statistic Scope Description Notes

implicit_closeConnectionTotal number of implicitly closed
connections (ext/mysqli only).

Examples of code snippets that cause an
implicit close :

• $link = new mysqli(...);
$link->real_connect(...)

• unset($link)

• Persistent connection: pooled
connection has been created with
real_connect and there may be
unknown options set - close implicitly
to avoid returning a connection with
unknown options

• Persistent connection: ping/
change_user fails and ext/mysqli
closes the connection

• end of script execution: close
connections that have not been closed
by the user

disconnect_closeConnectionConnection failures indicated by the C
API call mysql_real_connect during
an attempt to establish a connection.

It is called disconnect_close because
the connection handle passed to the C
API call will be closed.

in_middle_of_command_closeProcess A connection has been closed in
the middle of a command execution
(outstanding result sets not fetched, after
sending a query and before retrieving
an answer, while fetching data, while
transferring data with LOAD DATA).

Unless you use asynchronous queries
this should only happen if your script
stops unexpectedly and PHP shuts down
the connections for you.

init_command_executed_countConnectionTotal number of init command
executions, for example,
mysqli_options(MYSQLI_INIT_COMMAND , ...).

The number of successful executions is
init_command_executed_count -
init_command_failed_count.

init_command_failed_countConnectionTotal number of failed init commands.

Table 7.6 Returned mysqlnd statistics: COM_* Command

Statistic Scope Description Notes

com_quit,
com_init_db,
com_query,
com_field_list,
com_create_db,
com_drop_db,
com_refresh,
com_shutdown,
com_statistics,
com_process_info,

ConnectionTotal number of attempts to send a
certain COM_* command from PHP to
MySQL.

The statistics are incremented after
checking the line and immediately before
sending the corresponding MySQL client
server protocol packet. If mysqlnd fails
to send the packet over the wire the
statistics will not be decremented. In case
of a failure mysqlnd emits a PHP warning
“Error while sending %s packet. PID=
%d.”

Usage examples:

http://www.php.net/mysql_real_connect

Statistics

551

Statistic Scope Description Notes
com_connect,
com_process_kill,
com_debug,
com_ping,
com_time,
com_delayed_insert,
com_change_user,
com_binlog_dump,
com_table_dump,
com_connect_out,
com_register_slave,
com_stmt_prepare,
com_stmt_execute,
com_stmt_send_long_data,
com_stmt_close,
com_stmt_reset,
com_stmt_set_option,
com_stmt_fetch,
com_daemon

• Check if PHP sends certain commands
to MySQL, for example, check if a
client sends COM_PROCESS_KILL

• Calculate the average number of
prepared statement executions
by comparing COM_EXECUTE with
COM_PREPARE

• Check if PHP has run any non-
prepared SQL statements by checking
if COM_QUERY is zero

• Identify PHP scripts that run an
excessive number of SQL statements
by checking COM_QUERY and
COM_EXECUTE

Miscellaneous

Table 7.7 Returned mysqlnd statistics: Miscellaneous

Statistic Scope Description Notes

explicit_stmt_close,
implicit_stmt_close

Process Total number of close prepared
statements.

A close is always considered explicit but
for a failed prepare.

mem_emalloc_count,
mem_emalloc_ammount,
mem_ecalloc_count,
mem_ecalloc_ammount,
mem_erealloc_count,
mem_erealloc_ammount,
mem_efree_count,
mem_malloc_count,
mem_malloc_ammount,
mem_calloc_count,
mem_calloc_ammount,
mem_realloc_count,
mem_realloc_ammount,
mem_free_count

Process Memory management calls. Development only.

command_buffer_too_smallConnectionNumber of network command buffer
extensions while sending commands
from PHP to MySQL.

mysqlnd allocates an internal
command/network buffer of
mysqlnd.net_cmd_buffer_size
(php.ini) bytes for every connection.
If a MySQL Client Server protocol
command, for example, COM_QUERY
(normal query), does not fit into the
buffer, mysqlnd will grow the buffer
to what is needed for sending the
command. Whenever the buffer
gets extended for one connection

Notes

552

Statistic Scope Description Notes
command_buffer_too_small will be
incremented by one.

If mysqlnd has to grow the
buffer beyond its initial size of
mysqlnd.net_cmd_buffer_size
(php.ini) bytes for almost every
connection, you should consider to
increase the default size to avoid re-
allocations.

The default buffer size is 2048 bytes
in PHP 5.3.0. In future versions
the default will be 4kB or larger.
The default can changed either
through the php.ini setting
mysqlnd.net_cmd_buffer_size
or using
mysqli_options(MYSQLI_OPT_NET_CMD_BUFFER_SIZE,
int size).

It is recommended to set the buffer size
to no less than 4096 bytes because
mysqlnd also uses it when reading
certain communication packet from
MySQL. In PHP 5.3.0, mysqlnd will not
grow the buffer if MySQL sends a packet
that is larger than the current size of the
buffer. As a consequence mysqlnd is
unable to decode the packet and the
client application will get an error. There
are only two situations when the packet
can be larger than the 2048 bytes default
of mysqlnd.net_cmd_buffer_size
in PHP 5.3.0: the packet transports
a very long error message or
the packet holds column meta
data from COM_LIST_FIELD
(mysql_list_fields) and the meta
data comes from a string column with a
very long default value (>1900 bytes).
No bug report on this exists - it should
happen rarely.

As of PHP 5.3.2 mysqlnd does not allow
setting buffers smaller than 4096 bytes.

connection_reused

7.7 Notes
Copyright 1997-2019 the PHP Documentation Group.

This section provides a collection of miscellaneous notes on MySQL Native Driver usage.

Memory management

553

• Using mysqlnd means using PHP streams for underlying connectivity. For mysqlnd, the PHP streams
documentation (http://www.php.net/manual/en/book.stream) should be consulted on such details as
timeout settings, not the documentation for the MySQL Client Library.

7.8 Memory management

Copyright 1997-2019 the PHP Documentation Group.

Introduction

The MySQL Native Driver manages memory different than the MySQL Client Library. The libraries differ in
the way memory is allocated and released, how memory is allocated in chunks while reading results from
MySQL, which debug and development options exist, and how results read from MySQL are linked to PHP
user variables.

The following notes are intended as an introduction and summary to users interested at understanding the
MySQL Native Driver at the C code level.

Memory management functions used

All memory allocation and deallocation is done using the PHP memory management functions. Therefore,
the memory consumption of mysqlnd can be tracked using PHP API calls, such as memory_get_usage.
Because memory is allocated and released using the PHP memory management, the changes may not
immediately become visible at the operating system level. The PHP memory management acts as a proxy
which may delay releasing memory towards the system. Due to this, comparing the memory usage of
the MySQL Native Driver and the MySQL Client Library is difficult. The MySQL Client Library is using the
operating system memory management calls directly, hence the effects can be observed immediately at
the operating system level.

Any memory limit enforced by PHP also affects the MySQL Native Driver. This may cause out of memory
errors when fetching large result sets that exceed the size of the remaining memory made available by
PHP. Because the MySQL Client Library is not using PHP memory management functions, it does not
comply to any PHP memory limit set. If using the MySQL Client Library, depending on the deployment
model, the memory footprint of the PHP process may grow beyond the PHP memory limit. But also PHP
scripts may be able to process larger result sets as parts of the memory allocated to hold the result sets
are beyond the control of the PHP engine.

PHP memory management functions are invoked by the MySQL Native Driver through a lightweight
wrapper. Among others, the wrapper makes debugging easier.

Handling of result sets

The various MySQL Server and the various client APIs differentiate between buffered and unbuffered
result sets. Unbuffered result sets are transferred row-by-row from MySQL to the client as the client
iterates over the results. Buffered results are fetched in their entirety by the client library before passing
them on to the client.

The MySQL Native Driver is using PHP Streams for the network communication with the MySQL Server.
Results sent by MySQL are fetched from the PHP Streams network buffers into the result buffer of
mysqlnd. The result buffer is made of zvals. In a second step the results are made available to the PHP
script. This final transfer from the result buffer into PHP variables impacts the memory consumption and is
mostly noticible when using buffered result sets.

By default the MySQL Native Driver tries to avoid holding buffered results twice in memory. Results are
kept only once in the internal result buffers and their zvals. When results are fetched into PHP variables

http://www.php.net/manual/en/book.stream
http://www.php.net/memory_get_usage

MySQL Native Driver Plugin API

554

by the PHP script, the variables will reference the internal result buffers. Database query results are not
copied and kept in memory only once. Should the user modify the contents of a variable holding the
database results a copy-on-write must be performed to avoid changing the referenced internal result buffer.
The contents of the buffer must not be modified because the user may decide to read the result set a
second time. The copy-on-write mechanism is implemented using an additional reference management
list and the use of standard zval reference counters. Copy-on-write must also be done if the user reads a
result set into PHP variables and frees a result set before the variables are unset.

Generally speaking, this pattern works well for scripts that read a result set once and do not modify
variables holding results. Its major drawback is the memory overhead caused by the additional reference
management which comes primarily from the fact that user variables holding results cannot be entirely
released until the mysqlnd reference management stops referencing them. The MySQL Native driver
removes the reference to the user variables when the result set is freed or a copy-on-write is performed.
An observer will see the total memory consumption grow until the result set is released. Use the statistics
to check whether a script does release result sets explicitly or the driver is does implicit releases and thus
memory is used for a time longer than necessary. Statistics also help to see how many copy-on-write
operations happened.

A PHP script reading many small rows of a buffered result set using a code snippet equal or equivalent
to while ($row = $res->fetch_assoc()) { ... } may optimize memory consumption by
requesting copies instead of references. Albeit requesting copies means keeping results twice in memory,
it allows PHP to free the copy contained in $row as the result set is being iterated and prior to releasing
the result set itself. On a loaded server optimizing peak memory usage may help improving the overall
system performance although for an individual script the copy approach may be slower due to additional
allocations and memory copy operations.

The copy mode can be enforced by setting mysqlnd.fetch_data_copy=1.

Monitoring and debugging

There are multiple ways of tracking the memory usage of the MySQL Native Driver. If the goal is to get
a quick high level overview or to verify the memory efficiency of PHP scripts, then check the statistics
collected by the library. The statistics allow you, for example, to catch SQL statements which generate
more results than are processed by a PHP script.

The debug trace log can be configured to record memory management calls. This helps to see when
memory is allocated or free'd. However, the size of the requested memory chunks may not be listed.

Some, recent versions of the MySQL Native Driver feature the emulation of random out of memory
situations. This feature is meant to be used by the C developers of the library or mysqlnd plugin authors
only. Please, search the source code for corresponding PHP configuration settings and further details. The
feature is considered private and may be modified at any time without prior notice.

7.9 MySQL Native Driver Plugin API

Copyright 1997-2019 the PHP Documentation Group.

The MySQL Native Driver Plugin API is a feature of MySQL Native Driver, or mysqlnd. Mysqlnd plugins
operate in the layer between PHP applications and the MySQL server. This is comparable to MySQL
Proxy. MySQL Proxy operates on a layer between any MySQL client application, for example, a PHP
application and, the MySQL server. Mysqlnd plugins can undertake typical MySQL Proxy tasks such as
load balancing, monitoring and performance optimizations. Due to the different architecture and location,
mysqlnd plugins do not have some of MySQL Proxy's disadvantages. For example, with plugins, there is
no single point of failure, no dedicated proxy server to deploy, and no new programming language to learn
(Lua).

MySQL Native Driver Plugin API

555

A mysqlnd plugin can be thought of as an extension to mysqlnd. Plugins can intercept the majority of
mysqlnd functions. The mysqlnd functions are called by the PHP MySQL extensions such as ext/
mysql, ext/mysqli, and PDO_MYSQL. As a result, it is possible for a mysqlnd plugin to intercept all calls
made to these extensions from the client application.

Internal mysqlnd function calls can also be intercepted, or replaced. There are no restrictions on
manipulating mysqlnd internal function tables. It is possible to set things up so that when certain mysqlnd
functions are called by the extensions that use mysqlnd, the call is directed to the appropriate function
in the mysqlnd plugin. The ability to manipulate mysqlnd internal function tables in this way allows
maximum flexibility for plugins.

Mysqlnd plugins are in fact PHP Extensions, written in C, that use the mysqlnd plugin API (which is built
into MySQL Native Driver, mysqlnd). Plugins can be made 100% transparent to PHP applications. No
application changes are needed because plugins operate on a different layer. The mysqlnd plugin can be
thought of as operating in a layer below mysqlnd.

The following list represents some possible applications of mysqlnd plugins.

• Load Balancing

• Read/Write Splitting. An example of this is the PECL/mysqlnd_ms (Master Slave) extension. This
extension splits read/write queries for a replication setup.

• Failover

• Round-Robin, least loaded

• Monitoring

• Query Logging

• Query Analysis

• Query Auditing. An example of this is the PECL/mysqlnd_sip (SQL Injection Protection) extension.
This extension inspects queries and executes only those that are allowed according to a ruleset.

• Performance

• Caching. An example of this is the PECL/mysqlnd_qc (Query Cache) extension.

• Throttling

• Sharding. An example of this is the PECL/mysqlnd_mc (Multi Connect) extension. This extension will
attempt to split a SELECT statement into n-parts, using SELECT ... LIMIT part_1, SELECT LIMIT
part_n. It sends the queries to distinct MySQL servers and merges the result at the client.

MySQL Native Driver Plugins Available

There are a number of mysqlnd plugins already available. These include:

• PECL/mysqlnd_mc - Multi Connect plugin.

• PECL/mysqlnd_ms - Master Slave plugin.

• PECL/mysqlnd_qc - Query Cache plugin.

• PECL/mysqlnd_pscache - Prepared Statement Handle Cache plugin.

• PECL/mysqlnd_sip - SQL Injection Protection plugin.

A comparison of mysqlnd plugins with MySQL Proxy

556

• PECL/mysqlnd_uh - User Handler plugin.

7.9.1 A comparison of mysqlnd plugins with MySQL Proxy

Copyright 1997-2019 the PHP Documentation Group.

Mysqlnd plugins and MySQL Proxy are different technologies using different approaches. Both are
valid tools for solving a variety of common tasks such as load balancing, monitoring, and performance
enhancements. An important difference is that MySQL Proxy works with all MySQL clients, whereas
mysqlnd plugins are specific to PHP applications.

As a PHP Extension, a mysqlnd plugin gets installed on the PHP application server, along with the rest
of PHP. MySQL Proxy can either be run on the PHP application server or can be installed on a dedicated
machine to handle multiple PHP application servers.

Deploying MySQL Proxy on the application server has two advantages:

1. No single point of failure

2. Easy to scale out (horizontal scale out, scale by client)

MySQL Proxy (and mysqlnd plugins) can solve problems easily which otherwise would have required
changes to existing applications.

However, MySQL Proxy does have some disadvantages:

• MySQL Proxy is a new component and technology to master and deploy.

• MySQL Proxy requires knowledge of the Lua scripting language.

MySQL Proxy can be customized with C and Lua programming. Lua is the preferred scripting language of
MySQL Proxy. For most PHP experts Lua is a new language to learn. A mysqlnd plugin can be written in
C. It is also possible to write plugins in PHP using PECL/mysqlnd_uh.

MySQL Proxy runs as a daemon - a background process. MySQL Proxy can recall earlier decisions, as all
state can be retained. However, a mysqlnd plugin is bound to the request-based lifecycle of PHP. MySQL
Proxy can also share one-time computed results among multiple application servers. A mysqlnd plugin
would need to store data in a persistent medium to be able to do this. Another daemon would need to be
used for this purpose, such as Memcache. This gives MySQL Proxy an advantage in this case.

MySQL Proxy works on top of the wire protocol. With MySQL Proxy you have to parse and reverse
engineer the MySQL Client Server Protocol. Actions are limited to those that can be achieved by
manipulating the communication protocol. If the wire protocol changes (which happens very rarely) MySQL
Proxy scripts would need to be changed as well.

Mysqlnd plugins work on top of the C API, which mirrors the libmysqlclient client and Connector/C
APIs. This C API is basically a wrapper around the MySQL Client Server protocol, or wire protocol, as it is
sometimes called. You can intercept all C API calls. PHP makes use of the C API, therefore you can hook
all PHP calls, without the need to program at the level of the wire protocol.

Mysqlnd implements the wire protocol. Plugins can therefore parse, reverse engineer, manipulate and
even replace the communication protocol. However, this is usually not required.

As plugins allow you to create implementations that use two levels (C API and wire protocol), they have
greater flexibility than MySQL Proxy. If a mysqlnd plugin is implemented using the C API, any subsequent
changes to the wire protocol do not require changes to the plugin itself.

http://pecl.php.net/package/mysqlnd_uh

Obtaining the mysqlnd plugin API

557

7.9.2 Obtaining the mysqlnd plugin API

Copyright 1997-2019 the PHP Documentation Group.

The mysqlnd plugin API is simply part of the MySQL Native Driver PHP extension, ext/mysqlnd.
Development started on the mysqlnd plugin API in December 2009. It is developed as part of the
PHP source repository, and as such is available to the public either via Git, or through source snapshot
downloads.

The following table shows PHP versions and the corresponding mysqlnd version contained within.

Table 7.8 The bundled mysqlnd version per PHP release

PHP Version MySQL Native Driver version

5.3.0 5.0.5

5.3.1 5.0.5

5.3.2 5.0.7

5.3.3 5.0.7

5.3.4 5.0.7

Plugin developers can determine the mysqlnd version through accessing MYSQLND_VERSION, which is a
string of the format “mysqlnd 5.0.7-dev - 091210 - $Revision: 300535”, or through MYSQLND_VERSION_ID,
which is an integer such as 50007. Developers can calculate the version number as follows:

Table 7.9 MYSQLND_VERSION_ID calculation table

Version (part) Example

Major*10000 5*10000 = 50000

Minor*100 0*100 = 0

Patch 7 = 7

MYSQLND_VERSION_ID 50007

During development, developers should refer to the mysqlnd version number for compatibility and version
tests, as several iterations of mysqlnd could occur during the lifetime of a PHP development branch with a
single PHP version number.

7.9.3 MySQL Native Driver Plugin Architecture

Copyright 1997-2019 the PHP Documentation Group.

This section provides an overview of the mysqlnd plugin architecture.

MySQL Native Driver Overview

Before developing mysqlnd plugins, it is useful to know a little of how mysqlnd itself is organized.
Mysqlnd consists of the following modules:

Table 7.10 The mysqlnd organization chart, per module

Modules Statistics mysqlnd_statistics.c

Connection mysqlnd.c

Resultset mysqlnd_result.c

MySQL Native Driver Plugin Architecture

558

Modules Statistics mysqlnd_statistics.c

Resultset Metadata mysqlnd_result_meta.c

Statement mysqlnd_ps.c

Network mysqlnd_net.c

Wire protocol mysqlnd_wireprotocol.c

C Object Oriented Paradigm

At the code level, mysqlnd uses a C pattern for implementing object orientation.

In C you use a struct to represent an object. Members of the struct represent object properties. Struct
members pointing to functions represent methods.

Unlike with other languages such as C++ or Java, there are no fixed rules on inheritance in the C object
oriented paradigm. However, there are some conventions that need to be followed that will be discussed
later.

The PHP Life Cycle

When considering the PHP life cycle there are two basic cycles:

• PHP engine startup and shutdown cycle

• Request cycle

When the PHP engine starts up it will call the module initialization (MINIT) function of each registered
extension. This allows each module to setup variables and allocate resources that will exist for the
lifetime of the PHP engine process. When the PHP engine shuts down it will call the module shutdown
(MSHUTDOWN) function of each extension.

During the lifetime of the PHP engine it will receive a number of requests. Each request constitutes another
life cycle. On each request the PHP engine will call the request initialization function of each extension.
The extension can perform any variable setup and resource allocation required for request processing. As
the request cycle ends the engine calls the request shutdown (RSHUTDOWN) function of each extension
so the extension can perform any cleanup required.

How a plugin works

A mysqlnd plugin works by intercepting calls made to mysqlnd by extensions that use mysqlnd. This
is achieved by obtaining the mysqlnd function table, backing it up, and replacing it by a custom function
table, which calls the functions of the plugin as required.

The following code shows how the mysqlnd function table is replaced:

/* a place to store original function table */
struct st_mysqlnd_conn_methods org_methods;

void minit_register_hooks(TSRMLS_D) {
 /* active function table */
 struct st_mysqlnd_conn_methods * current_methods
 = mysqlnd_conn_get_methods();

 /* backup original function table */
 memcpy(&org_methods, current_methods,
 sizeof(struct st_mysqlnd_conn_methods);

MySQL Native Driver Plugin Architecture

559

 /* install new methods */
 current_methods->query = MYSQLND_METHOD(my_conn_class, query);
}

Connection function table manipulations must be done during Module Initialization (MINIT). The function
table is a global shared resource. In an multi-threaded environment, with a TSRM build, the manipulation of
a global shared resource during the request processing will almost certainly result in conflicts.

Note

Do not use any fixed-size logic when manipulating the mysqlnd function table: new
methods may be added at the end of the function table. The function table may
change at any time in the future.

Calling parent methods

If the original function table entries are backed up, it is still possible to call the original function table entries
- the parent methods.

In some cases, such as for Connection::stmt_init(), it is vital to call the parent method prior to any
other activity in the derived method.

MYSQLND_METHOD(my_conn_class, query)(MYSQLND *conn,
 const char *query, unsigned int query_len TSRMLS_DC) {

 php_printf("my_conn_class::query(query = %s)\n", query);

 query = "SELECT 'query rewritten' FROM DUAL";
 query_len = strlen(query);

 return org_methods.query(conn, query, query_len); /* return with call to parent */
}

Extending properties

A mysqlnd object is represented by a C struct. It is not possible to add a member to a C struct at run time.
Users of mysqlnd objects cannot simply add properties to the objects.

Arbitrary data (properties) can be added to a mysqlnd objects using an appropriate function of the
mysqlnd_plugin_get_plugin_<object>_data() family. When allocating an object mysqlnd
reserves space at the end of the object to hold a void * pointer to arbitrary data. mysqlnd reserves
space for one void * pointer per plugin.

The following table shows how to calculate the position of the pointer for a specific plugin:

Table 7.11 Pointer calculations for mysqlnd

Memory address Contents

0 Beginning of the mysqlnd object C struct

n End of the mysqlnd object C struct

n + (m x sizeof(void*)) void* to object data of the m-th plugin

If you plan to subclass any of the mysqlnd object constructors, which is allowed, you must keep this in
mind!

MySQL Native Driver Plugin Architecture

560

The following code shows extending properties:

/* any data we want to associate */
typedef struct my_conn_properties {
 unsigned long query_counter;
} MY_CONN_PROPERTIES;

/* plugin id */
unsigned int my_plugin_id;

void minit_register_hooks(TSRMLS_D) {
 /* obtain unique plugin ID */
 my_plugin_id = mysqlnd_plugin_register();
 /* snip - see Extending Connection: methods */
}

static MY_CONN_PROPERTIES** get_conn_properties(const MYSQLND *conn TSRMLS_DC) {
 MY_CONN_PROPERTIES** props;
 props = (MY_CONN_PROPERTIES**)mysqlnd_plugin_get_plugin_connection_data(
 conn, my_plugin_id);
 if (!props || !(*props)) {
 *props = mnd_pecalloc(1, sizeof(MY_CONN_PROPERTIES), conn->persistent);
 (*props)->query_counter = 0;
 }
 return props;
}

The plugin developer is responsible for the management of plugin data memory.

Use of the mysqlnd memory allocator is recommended for plugin data. These functions are named using
the convention: mnd_*loc(). The mysqlnd allocator has some useful features, such as the ability to use
a debug allocator in a non-debug build.

Table 7.12 When and how to subclass

 When to subclass? Each instance has its
own private function
table?

How to subclass?

Connection (MYSQLND) MINIT No mysqlnd_conn_get_methods()

Resultset
(MYSQLND_RES)

MINIT or later Yes mysqlnd_result_get_methods()
or object method function
table manipulation

Resultset Meta
(MYSQLND_RES_METADATA)

MINIT No mysqlnd_result_metadata_get_methods()

Statement
(MYSQLND_STMT)

MINIT No mysqlnd_stmt_get_methods()

Network
(MYSQLND_NET)

MINIT or later Yes mysqlnd_net_get_methods()
or object method function
table manipulation

Wire protocol
(MYSQLND_PROTOCOL)

MINIT or later Yes mysqlnd_protocol_get_methods()
or object method function
table manipulation

You must not manipulate function tables at any time later than MINIT if it is not allowed according to the
above table.

MySQL Native Driver Plugin Architecture

561

Some classes contain a pointer to the method function table. All instances of such a class will share the
same function table. To avoid chaos, in particular in threaded environments, such function tables must only
be manipulated during MINIT.

Other classes use copies of a globally shared function table. The class function table copy is created
together with the object. Each object uses its own function table. This gives you two options: you can
manipulate the default function table of an object at MINIT, and you can additionally refine methods of an
object without impacting other instances of the same class.

The advantage of the shared function table approach is performance. There is no need to copy a function
table for each and every object.

Table 7.13 Constructor status

Type Allocation,
construction, reset

Can be modified? Caller

Connection (MYSQLND) mysqlnd_init() No mysqlnd_connect()

Resultset(MYSQLND_RES)Allocation:

• Connection::result_init()

Reset and re-initialized
during:

• Result::use_result()

• Result::store_result

Yes, but call parent! • Connection::list_fields()

• Statement::get_result()

• Statement::prepare()
(Metadata only)

• Statement::resultMetaData()

Resultset Meta
(MYSQLND_RES_METADATA)

Connection::result_meta_init()Yes, but call parent! Result::read_result_metadata()

Statement
(MYSQLND_STMT)

Connection::stmt_init() Yes, but call parent! Connection::stmt_init()

Network
(MYSQLND_NET)

mysqlnd_net_init() No Connection::init()

Wire protocol
(MYSQLND_PROTOCOL)

mysqlnd_protocol_init() No Connection::init()

It is strongly recommended that you do not entirely replace a constructor. The constructors perform
memory allocations. The memory allocations are vital for the mysqlnd plugin API and the object logic of
mysqlnd. If you do not care about warnings and insist on hooking the constructors, you should at least call
the parent constructor before doing anything in your constructor.

Regardless of all warnings, it can be useful to subclass constructors. Constructors are the perfect place for
modifying the function tables of objects with non-shared object tables, such as Resultset, Network, Wire
Protocol.

Table 7.14 Destruction status

Type Derived method must call
parent?

Destructor

Connection yes, after method execution free_contents(), end_psession()

Resultset yes, after method execution free_result()

Resultset Meta yes, after method execution free()

The mysqlnd plugin API

562

Type Derived method must call
parent?

Destructor

Statement yes, after method execution dtor(), free_stmt_content()

Network yes, after method execution free()

Wire protocol yes, after method execution free()

The destructors are the appropriate place to free properties,
mysqlnd_plugin_get_plugin_<object>_data().

The listed destructors may not be equivalent to the actual mysqlnd method freeing the object itself.
However, they are the best possible place for you to hook in and free your plugin data. As with constructors
you may replace the methods entirely but this is not recommended. If multiple methods are listed in the
above table you will need to hook all of the listed methods and free your plugin data in whichever method is
called first by mysqlnd.

The recommended method for plugins is to simply hook the methods, free your memory and call the parent
implementation immediately following this.

Caution

Due to a bug in PHP versions 5.3.0 to 5.3.3, plugins do not associate plugin data
with a persistent connection. This is because ext/mysql and ext/mysqli do not
trigger all the necessary mysqlnd end_psession() method calls and the plugin
may therefore leak memory. This has been fixed in PHP 5.3.4.

7.9.4 The mysqlnd plugin API

Copyright 1997-2019 the PHP Documentation Group.

The following is a list of functions provided in the mysqlnd plugin API:

• mysqlnd_plugin_register()

• mysqlnd_plugin_count()

• mysqlnd_plugin_get_plugin_connection_data()

• mysqlnd_plugin_get_plugin_result_data()

• mysqlnd_plugin_get_plugin_stmt_data()

• mysqlnd_plugin_get_plugin_net_data()

• mysqlnd_plugin_get_plugin_protocol_data()

• mysqlnd_conn_get_methods()

• mysqlnd_result_get_methods()

• mysqlnd_result_meta_get_methods()

• mysqlnd_stmt_get_methods()

• mysqlnd_net_get_methods()

• mysqlnd_protocol_get_methods()

The mysqlnd plugin API

563

There is no formal definition of what a plugin is and how a plugin mechanism works.

Components often found in plugins mechanisms are:

• A plugin manager

• A plugin API

• Application services (or modules)

• Application service APIs (or module APIs)

The mysqlnd plugin concept employs these features, and additionally enjoys an open architecture.

No Restrictions

A plugin has full access to the inner workings of mysqlnd. There are no security limits or restrictions.
Everything can be overwritten to implement friendly or hostile algorithms. It is recommended you only
deploy plugins from a trusted source.

As discussed previously, plugins can use pointers freely. These pointers are not restricted in any way, and
can point into another plugin's data. Simple offset arithmetic can be used to read another plugin's data.

It is recommended that you write cooperative plugins, and that you always call the parent method. The
plugins should always cooperate with mysqlnd itself.

Table 7.15 Issues: an example of chaining and cooperation

Extension mysqlnd.query() pointer call stack if calling parent

ext/mysqlnd mysqlnd.query() mysqlnd.query

ext/mysqlnd_cache mysqlnd_cache.query() 1. mysqlnd_cache.query()

2. mysqlnd.query

ext/mysqlnd_monitor mysqlnd_monitor.query() 1. mysqlnd_monitor.query()

2. mysqlnd_cache.query()

3. mysqlnd.query

In this scenario, a cache (ext/mysqlnd_cache) and a monitor (ext/mysqlnd_monitor) plugin are
loaded. Both subclass Connection::query(). Plugin registration happens at MINIT using the logic
shown previously. PHP calls extensions in alphabetical order by default. Plugins are not aware of each
other and do not set extension dependencies.

By default the plugins call the parent implementation of the query method in their derived version of the
method.

PHP Extension Recap

This is a recap of what happens when using an example plugin, ext/mysqlnd_plugin, which exposes
the mysqlnd C plugin API to PHP:

• Any PHP MySQL application tries to establish a connection to 192.168.2.29

• The PHP application will either use ext/mysql, ext/mysqli or PDO_MYSQL. All three PHP MySQL
extensions use mysqlnd to establish the connection to 192.168.2.29.

Getting started building a mysqlnd plugin

564

• Mysqlnd calls its connect method, which has been subclassed by ext/mysqlnd_plugin.

• ext/mysqlnd_plugin calls the userspace hook proxy::connect() registered by the user.

• The userspace hook changes the connection host IP from 192.168.2.29 to 127.0.0.1 and returns the
connection established by parent::connect().

• ext/mysqlnd_plugin performs the equivalent of parent::connect(127.0.0.1) by calling the
original mysqlnd method for establishing a connection.

• ext/mysqlnd establishes a connection and returns to ext/mysqlnd_plugin. ext/
mysqlnd_plugin returns as well.

• Whatever PHP MySQL extension had been used by the application, it receives a connection to
127.0.0.1. The PHP MySQL extension itself returns to the PHP application. The circle is closed.

7.9.5 Getting started building a mysqlnd plugin

Copyright 1997-2019 the PHP Documentation Group.

It is important to remember that a mysqlnd plugin is itself a PHP extension.

The following code shows the basic structure of the MINIT function that will be used in the typical mysqlnd
plugin:

/* my_php_mysqlnd_plugin.c */

 static PHP_MINIT_FUNCTION(mysqlnd_plugin) {
 /* globals, ini entries, resources, classes */

 /* register mysqlnd plugin */
 mysqlnd_plugin_id = mysqlnd_plugin_register();

 conn_m = mysqlnd_get_conn_methods();
 memcpy(org_conn_m, conn_m,
 sizeof(struct st_mysqlnd_conn_methods));

 conn_m->query = MYSQLND_METHOD(mysqlnd_plugin_conn, query);
 conn_m->connect = MYSQLND_METHOD(mysqlnd_plugin_conn, connect);
}

/* my_mysqlnd_plugin.c */

 enum_func_status MYSQLND_METHOD(mysqlnd_plugin_conn, query)(/* ... */) {
 /* ... */
}
enum_func_status MYSQLND_METHOD(mysqlnd_plugin_conn, connect)(/* ... */) {
 /* ... */
}

Task analysis: from C to userspace

 class proxy extends mysqlnd_plugin_connection {
 public function connect($host, ...) { .. }

Getting started building a mysqlnd plugin

565

}
mysqlnd_plugin_set_conn_proxy(new proxy());

Process:

1. PHP: user registers plugin callback

2. PHP: user calls any PHP MySQL API to connect to MySQL

3. C: ext/*mysql* calls mysqlnd method

4. C: mysqlnd ends up in ext/mysqlnd_plugin

5. C: ext/mysqlnd_plugin

a. Calls userspace callback

b. Or original mysqlnd method, if userspace callback not set

You need to carry out the following:

1. Write a class "mysqlnd_plugin_connection" in C

2. Accept and register proxy object through "mysqlnd_plugin_set_conn_proxy()"

3. Call userspace proxy methods from C (optimization - zend_interfaces.h)

Userspace object methods can either be called using call_user_function() or you can operate at a
level closer to the Zend Engine and use zend_call_method().

Optimization: calling methods from C using zend_call_method

The following code snippet shows the prototype for the zend_call_method function, taken from
zend_interfaces.h.

 ZEND_API zval* zend_call_method(
 zval **object_pp, zend_class_entry *obj_ce,
 zend_function **fn_proxy, char *function_name,
 int function_name_len, zval **retval_ptr_ptr,
 int param_count, zval* arg1, zval* arg2 TSRMLS_DC
);

Zend API supports only two arguments. You may need more, for example:

 enum_func_status (*func_mysqlnd_conn__connect)(
 MYSQLND *conn, const char *host,
 const char * user, const char * passwd,
 unsigned int passwd_len, const char * db,
 unsigned int db_len, unsigned int port,
 const char * socket, unsigned int mysql_flags TSRMLS_DC
);

To get around this problem you will need to make a copy of zend_call_method() and add a facility for
additional parameters. You can do this by creating a set of MY_ZEND_CALL_METHOD_WRAPPER macros.

Getting started building a mysqlnd plugin

566

Calling PHP userspace

This code snippet shows the optimized method for calling a userspace function from C:

/* my_mysqlnd_plugin.c */

MYSQLND_METHOD(my_conn_class,connect)(
 MYSQLND *conn, const char *host /* ... */ TSRMLS_DC) {
 enum_func_status ret = FAIL;
 zval * global_user_conn_proxy = fetch_userspace_proxy();
 if (global_user_conn_proxy) {
 /* call userspace proxy */
 ret = MY_ZEND_CALL_METHOD_WRAPPER(global_user_conn_proxy, host, /*...*/);
 } else {
 /* or original mysqlnd method = do nothing, be transparent */
 ret = org_methods.connect(conn, host, user, passwd,
 passwd_len, db, db_len, port,
 socket, mysql_flags TSRMLS_CC);
 }
 return ret;
}

Calling userspace: simple arguments

/* my_mysqlnd_plugin.c */

 MYSQLND_METHOD(my_conn_class,connect)(
 /* ... */, const char *host, /* ...*/) {
 /* ... */
 if (global_user_conn_proxy) {
 /* ... */
 zval* zv_host;
 MAKE_STD_ZVAL(zv_host);
 ZVAL_STRING(zv_host, host, 1);
 MY_ZEND_CALL_METHOD_WRAPPER(global_user_conn_proxy, zv_retval, zv_host /*, ...*/);
 zval_ptr_dtor(&zv_host);
 /* ... */
 }
 /* ... */
}

Calling userspace: structs as arguments

/* my_mysqlnd_plugin.c */

MYSQLND_METHOD(my_conn_class, connect)(
 MYSQLND *conn, /* ...*/) {
 /* ... */
 if (global_user_conn_proxy) {
 /* ... */
 zval* zv_conn;
 ZEND_REGISTER_RESOURCE(zv_conn, (void *)conn, le_mysqlnd_plugin_conn);
 MY_ZEND_CALL_METHOD_WRAPPER(global_user_conn_proxy, zv_retval, zv_conn, zv_host /*, ...*/);
 zval_ptr_dtor(&zv_conn);
 /* ... */
 }
 /* ... */
}

Getting started building a mysqlnd plugin

567

The first argument of many mysqlnd methods is a C "object". For example, the first argument of the
connect() method is a pointer to MYSQLND. The struct MYSQLND represents a mysqlnd connection
object.

The mysqlnd connection object pointer can be compared to a standard I/O file handle. Like a standard I/O
file handle a mysqlnd connection object shall be linked to the userspace using the PHP resource variable
type.

From C to userspace and back

 class proxy extends mysqlnd_plugin_connection {
 public function connect($conn, $host, ...) {
 /* "pre" hook */
 printf("Connecting to host = '%s'\n", $host);
 debug_print_backtrace();
 return parent::connect($conn);
 }

 public function query($conn, $query) {
 /* "post" hook */
 $ret = parent::query($conn, $query);
 printf("Query = '%s'\n", $query);
 return $ret;
 }
}
mysqlnd_plugin_set_conn_proxy(new proxy());

PHP users must be able to call the parent implementation of an overwritten method.

As a result of subclassing it is possible to refine only selected methods and you can choose to have "pre"
or "post" hooks.

Buildin class: mysqlnd_plugin_connection::connect()

/* my_mysqlnd_plugin_classes.c */

 PHP_METHOD("mysqlnd_plugin_connection", connect) {
 /* ... simplified! ... */
 zval* mysqlnd_rsrc;
 MYSQLND* conn;
 char* host; int host_len;
 if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "rs",
 &mysqlnd_rsrc, &host, &host_len) == FAILURE) {
 RETURN_NULL();
 }
 ZEND_FETCH_RESOURCE(conn, MYSQLND* conn, &mysqlnd_rsrc, -1,
 "Mysqlnd Connection", le_mysqlnd_plugin_conn);
 if (PASS == org_methods.connect(conn, host, /* simplified! */ TSRMLS_CC))
 RETVAL_TRUE;
 else
 RETVAL_FALSE;
}

568

569

Chapter 8 Common Problems with MySQL and PHP
• Error: Maximum Execution Time Exceeded: This is a PHP limit; go into the php.ini file and set

the maximum execution time up from 30 seconds to something higher, as needed. It is also not a bad
idea to double the RAM allowed per script to 16MB instead of 8MB.

• Fatal error: Call to unsupported or undefined function mysql_connect()
in ...: This means that your PHP version isn't compiled with MySQL support. You can either compile
a dynamic MySQL module and load it into PHP or recompile PHP with built-in MySQL support. This
process is described in detail in the PHP manual.

• Error: Undefined reference to 'uncompress': This means that the client library is compiled
with support for a compressed client/server protocol. The fix is to add -lz last when linking with -
lmysqlclient.

570

	MySQL and PHP
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Introduction to the MySQL PHP API
	Chapter 2 Overview of the MySQL PHP drivers
	2.1 Introduction
	2.2 Terminology overview
	2.3 Choosing an API
	2.4 Choosing a library
	2.5 Concepts
	2.5.1 Buffered and Unbuffered queries
	2.5.2 Character sets

	Chapter 3 MySQL Improved Extension
	3.1 Overview
	3.2 Quick start guide
	3.2.1 Dual procedural and object-oriented interface
	3.2.2 Connections
	3.2.3 Executing statements
	3.2.4 Prepared Statements
	3.2.5 Stored Procedures
	3.2.6 Multiple Statements
	3.2.7 API support for transactions
	3.2.8 Metadata

	3.3 Installing/Configuring
	3.3.1 Requirements
	3.3.2 Installation
	3.3.2.1 Installation on Linux
	3.3.2.2 Installation on Windows Systems
	PHP 5.3.0 and newer
	PHP 5.0, 5.1, 5.2

	3.3.3 Runtime Configuration
	3.3.4 Resource Types

	3.4 The mysqli Extension and Persistent Connections
	3.5 Predefined Constants
	3.6 Notes
	3.7 The MySQLi Extension Function Summary
	3.8 Examples
	3.8.1 MySQLi extension basic examples

	3.9 The mysqli class
	3.9.1 mysqli::$affected_rows, mysqli_affected_rows
	3.9.2 mysqli::autocommit, mysqli_autocommit
	3.9.3 mysqli::begin_transaction, mysqli_begin_transaction
	3.9.4 mysqli::change_user, mysqli_change_user
	3.9.5 mysqli::character_set_name, mysqli_character_set_name
	3.9.6 mysqli::close, mysqli_close
	3.9.7 mysqli::commit, mysqli_commit
	3.9.8 mysqli::$connect_errno, mysqli_connect_errno
	3.9.9 mysqli::$connect_error, mysqli_connect_error
	3.9.10 mysqli::__construct, mysqli::connect, mysqli_connect
	3.9.11 mysqli::debug, mysqli_debug
	3.9.12 mysqli::dump_debug_info, mysqli_dump_debug_info
	3.9.13 mysqli::$errno, mysqli_errno
	3.9.14 mysqli::$error_list, mysqli_error_list
	3.9.15 mysqli::$error, mysqli_error
	3.9.16 mysqli::$field_count, mysqli_field_count
	3.9.17 mysqli::get_charset, mysqli_get_charset
	3.9.18 mysqli::$client_info, mysqli::get_client_info, mysqli_get_client_info
	3.9.19 mysqli::$client_version, mysqli_get_client_version
	3.9.20 mysqli::get_connection_stats, mysqli_get_connection_stats
	3.9.21 mysqli::$host_info, mysqli_get_host_info
	3.9.22 mysqli::$protocol_version, mysqli_get_proto_info
	3.9.23 mysqli::$server_info, mysqli::get_server_info, mysqli_get_server_info
	3.9.24 mysqli::$server_version, mysqli_get_server_version
	3.9.25 mysqli::get_warnings, mysqli_get_warnings
	3.9.26 mysqli::$info, mysqli_info
	3.9.27 mysqli::init, mysqli_init
	3.9.28 mysqli::$insert_id, mysqli_insert_id
	3.9.29 mysqli::kill, mysqli_kill
	3.9.30 mysqli::more_results, mysqli_more_results
	3.9.31 mysqli::multi_query, mysqli_multi_query
	3.9.32 mysqli::next_result, mysqli_next_result
	3.9.33 mysqli::options, mysqli_options
	3.9.34 mysqli::ping, mysqli_ping
	3.9.35 mysqli::poll, mysqli_poll
	3.9.36 mysqli::prepare, mysqli_prepare
	3.9.37 mysqli::query, mysqli_query
	3.9.38 mysqli::real_connect, mysqli_real_connect
	3.9.39 mysqli::real_escape_string, mysqli::escape_string, mysqli_real_escape_string
	3.9.40 mysqli::real_query, mysqli_real_query
	3.9.41 mysqli::reap_async_query, mysqli_reap_async_query
	3.9.42 mysqli::refresh, mysqli_refresh
	3.9.43 mysqli::release_savepoint, mysqli_release_savepoint
	3.9.44 mysqli::rollback, mysqli_rollback
	3.9.45 mysqli::rpl_query_type, mysqli_rpl_query_type
	3.9.46 mysqli::savepoint, mysqli_savepoint
	3.9.47 mysqli::select_db, mysqli_select_db
	3.9.48 mysqli::send_query, mysqli_send_query
	3.9.49 mysqli::set_charset, mysqli_set_charset
	3.9.50 mysqli::set_local_infile_default, mysqli_set_local_infile_default
	3.9.51 mysqli::set_local_infile_handler, mysqli_set_local_infile_handler
	3.9.52 mysqli::$sqlstate, mysqli_sqlstate
	3.9.53 mysqli::ssl_set, mysqli_ssl_set
	3.9.54 mysqli::stat, mysqli_stat
	3.9.55 mysqli::stmt_init, mysqli_stmt_init
	3.9.56 mysqli::store_result, mysqli_store_result
	3.9.57 mysqli::$thread_id, mysqli_thread_id
	3.9.58 mysqli::thread_safe, mysqli_thread_safe
	3.9.59 mysqli::use_result, mysqli_use_result
	3.9.60 mysqli::$warning_count, mysqli_warning_count

	3.10 The mysqli_stmt class
	3.10.1 mysqli_stmt::$affected_rows, mysqli_stmt_affected_rows
	3.10.2 mysqli_stmt::attr_get, mysqli_stmt_attr_get
	3.10.3 mysqli_stmt::attr_set, mysqli_stmt_attr_set
	3.10.4 mysqli_stmt::bind_param, mysqli_stmt_bind_param
	3.10.5 mysqli_stmt::bind_result, mysqli_stmt_bind_result
	3.10.6 mysqli_stmt::close, mysqli_stmt_close
	3.10.7 mysqli_stmt::__construct
	3.10.8 mysqli_stmt::data_seek, mysqli_stmt_data_seek
	3.10.9 mysqli_stmt::$errno, mysqli_stmt_errno
	3.10.10 mysqli_stmt::$error_list, mysqli_stmt_error_list
	3.10.11 mysqli_stmt::$error, mysqli_stmt_error
	3.10.12 mysqli_stmt::execute, mysqli_stmt_execute
	3.10.13 mysqli_stmt::fetch, mysqli_stmt_fetch
	3.10.14 mysqli_stmt::$field_count, mysqli_stmt_field_count
	3.10.15 mysqli_stmt::free_result, mysqli_stmt_free_result
	3.10.16 mysqli_stmt::get_result, mysqli_stmt_get_result
	3.10.17 mysqli_stmt::get_warnings, mysqli_stmt_get_warnings
	3.10.18 mysqli_stmt::$insert_id, mysqli_stmt_insert_id
	3.10.19 mysqli_stmt::more_results, mysqli_stmt_more_results
	3.10.20 mysqli_stmt::next_result, mysqli_stmt_next_result
	3.10.21 mysqli_stmt::$num_rows, mysqli_stmt::num_rows, mysqli_stmt_num_rows
	3.10.22 mysqli_stmt::$param_count, mysqli_stmt_param_count
	3.10.23 mysqli_stmt::prepare, mysqli_stmt_prepare
	3.10.24 mysqli_stmt::reset, mysqli_stmt_reset
	3.10.25 mysqli_stmt::result_metadata, mysqli_stmt_result_metadata
	3.10.26 mysqli_stmt::send_long_data, mysqli_stmt_send_long_data
	3.10.27 mysqli_stmt::$sqlstate, mysqli_stmt_sqlstate
	3.10.28 mysqli_stmt::store_result, mysqli_stmt_store_result

	3.11 The mysqli_result class
	3.11.1 mysqli_result::$current_field, mysqli_field_tell
	3.11.2 mysqli_result::data_seek, mysqli_data_seek
	3.11.3 mysqli_result::fetch_all, mysqli_fetch_all
	3.11.4 mysqli_result::fetch_array, mysqli_fetch_array
	3.11.5 mysqli_result::fetch_assoc, mysqli_fetch_assoc
	3.11.6 mysqli_result::fetch_field_direct, mysqli_fetch_field_direct
	3.11.7 mysqli_result::fetch_field, mysqli_fetch_field
	3.11.8 mysqli_result::fetch_fields, mysqli_fetch_fields
	3.11.9 mysqli_result::fetch_object, mysqli_fetch_object
	3.11.10 mysqli_result::fetch_row, mysqli_fetch_row
	3.11.11 mysqli_result::$field_count, mysqli_num_fields
	3.11.12 mysqli_result::field_seek, mysqli_field_seek
	3.11.13 mysqli_result::free, mysqli_result::close, mysqli_result::free_result, mysqli_free_result
	3.11.14 mysqli_result::$lengths, mysqli_fetch_lengths
	3.11.15 mysqli_result::$num_rows, mysqli_num_rows

	3.12 The mysqli_driver class
	3.12.1 mysqli_driver::embedded_server_end, mysqli_embedded_server_end
	3.12.2 mysqli_driver::embedded_server_start, mysqli_embedded_server_start
	3.12.3 mysqli_driver::$report_mode, mysqli_report

	3.13 The mysqli_warning class
	3.13.1 mysqli_warning::__construct
	3.13.2 mysqli_warning::next

	3.14 The mysqli_sql_exception class
	3.15 Aliases and deprecated Mysqli Functions
	3.15.1 mysqli_bind_param
	3.15.2 mysqli_bind_result
	3.15.3 mysqli_client_encoding
	3.15.4 mysqli_connect
	3.15.5 mysqli::disable_reads_from_master, mysqli_disable_reads_from_master
	3.15.6 mysqli_disable_rpl_parse
	3.15.7 mysqli_enable_reads_from_master
	3.15.8 mysqli_enable_rpl_parse
	3.15.9 mysqli_escape_string
	3.15.10 mysqli_execute
	3.15.11 mysqli_fetch
	3.15.12 mysqli_get_cache_stats
	3.15.13 mysqli_get_client_stats
	3.15.14 mysqli_get_links_stats
	3.15.15 mysqli_get_metadata
	3.15.16 mysqli_master_query
	3.15.17 mysqli_param_count
	3.15.18 mysqli_report
	3.15.19 mysqli_rpl_parse_enabled
	3.15.20 mysqli_rpl_probe
	3.15.21 mysqli_send_long_data
	3.15.22 mysqli::set_opt, mysqli_set_opt
	3.15.23 mysqli_slave_query

	3.16 Changelog

	Chapter 4 MySQL Functions (PDO_MYSQL)
	4.1 PDO_MYSQL DSN

	Chapter 5 Mysql_xdevapi
	5.1 Installing/Configuring
	5.1.1 Requirements
	5.1.2 Installation
	5.1.3 Runtime Configuration
	5.1.4 Building / Compiling From Source

	5.2 Predefined Constants
	5.3 Examples
	5.4 Mysql_xdevapi Functions
	5.4.1 expression
	5.4.2 getSession

	5.5 BaseResult interface
	5.5.1 BaseResult::getWarnings
	5.5.2 BaseResult::getWarningsCount

	5.6 Collection class
	5.6.1 Collection::add
	5.6.2 Collection::addOrReplaceOne
	5.6.3 Collection::__construct
	5.6.4 Collection::count
	5.6.5 Collection::createIndex
	5.6.6 Collection::dropIndex
	5.6.7 Collection::existsInDatabase
	5.6.8 Collection::find
	5.6.9 Collection::getName
	5.6.10 Collection::getOne
	5.6.11 Collection::getSchema
	5.6.12 Collection::getSession
	5.6.13 Collection::modify
	5.6.14 Collection::remove
	5.6.15 Collection::removeOne
	5.6.16 Collection::replaceOne

	5.7 CollectionAdd class
	5.7.1 CollectionAdd::__construct
	5.7.2 CollectionAdd::execute

	5.8 CollectionFind class
	5.8.1 CollectionFind::bind
	5.8.2 CollectionFind::__construct
	5.8.3 CollectionFind::execute
	5.8.4 CollectionFind::fields
	5.8.5 CollectionFind::groupBy
	5.8.6 CollectionFind::having
	5.8.7 CollectionFind::limit
	5.8.8 CollectionFind::lockExclusive
	5.8.9 CollectionFind::lockShared
	5.8.10 CollectionFind::offset
	5.8.11 CollectionFind::sort

	5.9 CollectionModify class
	5.9.1 CollectionModify::arrayAppend
	5.9.2 CollectionModify::arrayInsert
	5.9.3 CollectionModify::bind
	5.9.4 CollectionModify::__construct
	5.9.5 CollectionModify::execute
	5.9.6 CollectionModify::limit
	5.9.7 CollectionModify::patch
	5.9.8 CollectionModify::replace
	5.9.9 CollectionModify::set
	5.9.10 CollectionModify::skip
	5.9.11 CollectionModify::sort
	5.9.12 CollectionModify::unset

	5.10 CollectionRemove class
	5.10.1 CollectionRemove::bind
	5.10.2 CollectionRemove::__construct
	5.10.3 CollectionRemove::execute
	5.10.4 CollectionRemove::limit
	5.10.5 CollectionRemove::sort

	5.11 ColumnResult class
	5.11.1 ColumnResult::__construct
	5.11.2 ColumnResult::getCharacterSetName
	5.11.3 ColumnResult::getCollationName
	5.11.4 ColumnResult::getColumnLabel
	5.11.5 ColumnResult::getColumnName
	5.11.6 ColumnResult::getFractionalDigits
	5.11.7 ColumnResult::getLength
	5.11.8 ColumnResult::getSchemaName
	5.11.9 ColumnResult::getTableLabel
	5.11.10 ColumnResult::getTableName
	5.11.11 ColumnResult::getType
	5.11.12 ColumnResult::isNumberSigned
	5.11.13 ColumnResult::isPadded

	5.12 CrudOperationBindable interface
	5.12.1 CrudOperationBindable::bind

	5.13 CrudOperationLimitable interface
	5.13.1 CrudOperationLimitable::limit

	5.14 CrudOperationSkippable interface
	5.14.1 CrudOperationSkippable::skip

	5.15 CrudOperationSortable interface
	5.15.1 CrudOperationSortable::sort

	5.16 DatabaseObject interface
	5.16.1 DatabaseObject::existsInDatabase
	5.16.2 DatabaseObject::getName
	5.16.3 DatabaseObject::getSession

	5.17 DocResult class
	5.17.1 DocResult::__construct
	5.17.2 DocResult::fetchAll
	5.17.3 DocResult::fetchOne
	5.17.4 DocResult::getWarnings
	5.17.5 DocResult::getWarningsCount

	5.18 Driver class
	5.18.1 Driver::__construct

	5.19 Exception class
	5.20 Executable interface
	5.20.1 Executable::execute

	5.21 ExecutionStatus class
	5.21.1 ExecutionStatus::__construct

	5.22 Expression class
	5.22.1 Expression::__construct

	5.23 FieldMetadata class
	5.23.1 FieldMetadata::__construct

	5.24 Result class
	5.24.1 Result::__construct
	5.24.2 Result::getAutoIncrementValue
	5.24.3 Result::getGeneratedIds
	5.24.4 Result::getWarnings
	5.24.5 Result::getWarningsCount

	5.25 RowResult class
	5.25.1 RowResult::__construct
	5.25.2 RowResult::fetchAll
	5.25.3 RowResult::fetchOne
	5.25.4 RowResult::getColumnCount
	5.25.5 RowResult::getColumnNames
	5.25.6 RowResult::getColumns
	5.25.7 RowResult::getWarnings
	5.25.8 RowResult::getWarningsCount

	5.26 Schema class
	5.26.1 Schema::__construct
	5.26.2 Schema::createCollection
	5.26.3 Schema::dropCollection
	5.26.4 Schema::existsInDatabase
	5.26.5 Schema::getCollection
	5.26.6 Schema::getCollectionAsTable
	5.26.7 Schema::getCollections
	5.26.8 Schema::getName
	5.26.9 Schema::getSession
	5.26.10 Schema::getTable
	5.26.11 Schema::getTables

	5.27 SchemaObject interface
	5.27.1 SchemaObject::getSchema

	5.28 Session class
	5.28.1 Session::close
	5.28.2 Session::commit
	5.28.3 Session::__construct
	5.28.4 Session::createSchema
	5.28.5 Session::dropSchema
	5.28.6 Session::executeSql
	5.28.7 Session::generateUUID
	5.28.8 Session::getClientId
	5.28.9 Session::getSchema
	5.28.10 Session::getSchemas
	5.28.11 Session::getServerVersion
	5.28.12 Session::killClient
	5.28.13 Session::listClients
	5.28.14 Session::quoteName
	5.28.15 Session::releaseSavepoint
	5.28.16 Session::rollback
	5.28.17 Session::rollbackTo
	5.28.18 Session::setSavepoint
	5.28.19 Session::sql
	5.28.20 Session::startTransaction

	5.29 SqlStatement class
	5.29.1 SqlStatement::bind
	5.29.2 SqlStatement::__construct
	5.29.3 SqlStatement::execute
	5.29.4 SqlStatement::getNextResult
	5.29.5 SqlStatement::getResult
	5.29.6 SqlStatement::hasMoreResults

	5.30 SqlStatementResult class
	5.30.1 SqlStatementResult::__construct
	5.30.2 SqlStatementResult::fetchAll
	5.30.3 SqlStatementResult::fetchOne
	5.30.4 SqlStatementResult::getAffectedItemsCount
	5.30.5 SqlStatementResult::getColumnCount
	5.30.6 SqlStatementResult::getColumnNames
	5.30.7 SqlStatementResult::getColumns
	5.30.8 SqlStatementResult::getGeneratedIds
	5.30.9 SqlStatementResult::getLastInsertId
	5.30.10 SqlStatementResult::getWarnings
	5.30.11 SqlStatementResult::getWarningsCount
	5.30.12 SqlStatementResult::hasData
	5.30.13 SqlStatementResult::nextResult

	5.31 Statement class
	5.31.1 Statement::__construct
	5.31.2 Statement::getNextResult
	5.31.3 Statement::getResult
	5.31.4 Statement::hasMoreResults

	5.32 Table class
	5.32.1 Table::__construct
	5.32.2 Table::count
	5.32.3 Table::delete
	5.32.4 Table::existsInDatabase
	5.32.5 Table::getName
	5.32.6 Table::getSchema
	5.32.7 Table::getSession
	5.32.8 Table::insert
	5.32.9 Table::isView
	5.32.10 Table::select
	5.32.11 Table::update

	5.33 TableDelete class
	5.33.1 TableDelete::bind
	5.33.2 TableDelete::__construct
	5.33.3 TableDelete::execute
	5.33.4 TableDelete::limit
	5.33.5 TableDelete::offset
	5.33.6 TableDelete::orderby
	5.33.7 TableDelete::where

	5.34 TableInsert class
	5.34.1 TableInsert::__construct
	5.34.2 TableInsert::execute
	5.34.3 TableInsert::values

	5.35 TableSelect class
	5.35.1 TableSelect::bind
	5.35.2 TableSelect::__construct
	5.35.3 TableSelect::execute
	5.35.4 TableSelect::groupBy
	5.35.5 TableSelect::having
	5.35.6 TableSelect::limit
	5.35.7 TableSelect::lockExclusive
	5.35.8 TableSelect::lockShared
	5.35.9 TableSelect::offset
	5.35.10 TableSelect::orderby
	5.35.11 TableSelect::where

	5.36 TableUpdate class
	5.36.1 TableUpdate::bind
	5.36.2 TableUpdate::__construct
	5.36.3 TableUpdate::execute
	5.36.4 TableUpdate::limit
	5.36.5 TableUpdate::orderby
	5.36.6 TableUpdate::set
	5.36.7 TableUpdate::where

	5.37 Warning class
	5.37.1 Warning::__construct

	5.38 XSession class
	5.38.1 XSession::__construct

	Chapter 6 Original MySQL API
	6.1 Installing/Configuring
	6.1.1 Requirements
	6.1.2 Installation
	6.1.2.1 Installation on Linux Systems
	6.1.2.2 Installation on Windows Systems
	PHP 5.0.x, 5.1.x, 5.2.x
	PHP 5.3.0+

	6.1.2.3 MySQL Installation Notes

	6.1.3 Runtime Configuration
	6.1.4 Resource Types

	6.2 Changelog
	6.3 Predefined Constants
	6.4 Examples
	6.4.1 MySQL extension overview example

	6.5 MySQL Functions
	6.5.1 mysql_affected_rows
	6.5.2 mysql_client_encoding
	6.5.3 mysql_close
	6.5.4 mysql_connect
	6.5.5 mysql_create_db
	6.5.6 mysql_data_seek
	6.5.7 mysql_db_name
	6.5.8 mysql_db_query
	6.5.9 mysql_drop_db
	6.5.10 mysql_errno
	6.5.11 mysql_error
	6.5.12 mysql_escape_string
	6.5.13 mysql_fetch_array
	6.5.14 mysql_fetch_assoc
	6.5.15 mysql_fetch_field
	6.5.16 mysql_fetch_lengths
	6.5.17 mysql_fetch_object
	6.5.18 mysql_fetch_row
	6.5.19 mysql_field_flags
	6.5.20 mysql_field_len
	6.5.21 mysql_field_name
	6.5.22 mysql_field_seek
	6.5.23 mysql_field_table
	6.5.24 mysql_field_type
	6.5.25 mysql_free_result
	6.5.26 mysql_get_client_info
	6.5.27 mysql_get_host_info
	6.5.28 mysql_get_proto_info
	6.5.29 mysql_get_server_info
	6.5.30 mysql_info
	6.5.31 mysql_insert_id
	6.5.32 mysql_list_dbs
	6.5.33 mysql_list_fields
	6.5.34 mysql_list_processes
	6.5.35 mysql_list_tables
	6.5.36 mysql_num_fields
	6.5.37 mysql_num_rows
	6.5.38 mysql_pconnect
	6.5.39 mysql_ping
	6.5.40 mysql_query
	6.5.41 mysql_real_escape_string
	6.5.42 mysql_result
	6.5.43 mysql_select_db
	6.5.44 mysql_set_charset
	6.5.45 mysql_stat
	6.5.46 mysql_tablename
	6.5.47 mysql_thread_id
	6.5.48 mysql_unbuffered_query

	Chapter 7 MySQL Native Driver
	7.1 Overview
	7.2 Installation
	7.3 Runtime Configuration
	7.4 Incompatibilities
	7.5 Persistent Connections
	7.6 Statistics
	7.7 Notes
	7.8 Memory management
	7.9 MySQL Native Driver Plugin API
	7.9.1 A comparison of mysqlnd plugins with MySQL Proxy
	7.9.2 Obtaining the mysqlnd plugin API
	7.9.3 MySQL Native Driver Plugin Architecture
	7.9.4 The mysqlnd plugin API
	7.9.5 Getting started building a mysqlnd plugin

	Chapter 8 Common Problems with MySQL and PHP

