MySQL and PHP

Abstract
This manual describes the PHP extensions and interfaces that can be used with MySQL.

For legal information, see the Legal Notices.

For help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists, where you can discuss
your issues with other MySQL users.

Document generated on: 2019-02-27 (revision: 61075)

http://forums.mysql.com
http://lists.mysql.com

Table of Contents

Preface and Legal NOTICESo.uuuiiiiii ettt ettt ettt e et e e e b e e ebe s Xiii
1 Introduction to the MYSQL PHP AP ...t 1
2 Overview of the MYSQL PHP GIIVEIS ...couuiiiiiii ettt et e e e e e eees 3
P2 R [011 (oo 18 o1 1 o] o I PSP SOP PP 3
2.2 TermMiNOIOQY OVEIVIEWeiiiiieeiiti ettt ettt e ettt e et e ettt e ettt e e e et e e e ena s 3
2.3 ChOOSING @N AP ..ottt 4
2.4 ChOOSING @ lIDFAIY ..ottt ettt ettt et e e e e e e 6
PR O o g To1 =T o] £ PP PTPPT 7
2.5.1 Buffered and Unbuffered QUETIEScoeiuiiiiiiiiii e 7
2.5.2 CRATACIET SESiiiiiiieeeit ettt ettt ettt e et et e e et et e e et et e eeeeba e eees 8

3 MYSQL IMProved EXIENSIONc.uuuiiiiiiiieiiii ettt ettt ettt e e e e e e et e eeenn e e e enaans 11
N O =T oY T PP UPPPPTRUPPPIN 14
3.2 QUICK STAIT QUIEuiieii ettt e e et e et e e e e e e ae s 18
3.2.1 Dual procedural and object-oriented iNterfacecooevveiiiiiiieiiiiine e 18
I 6] o] 1 [=Tot o] o L TSP UP PP UPPPPI 20
3.2.3 EXECULING STAIEIMENLS ..ottt ettt ettt e e et e e et e e e et reeeenaaeeeen 22
3.2.4 Prepared STAtEMENTSu ittt ettt e e et e e et e e et e e e e e 26
3.2.5 StOred PrOCEAUIESciiiiieeeiii ettt e et ettt e e e en e e e enbaeeees 33
3.2.6 MUILIPIE STALEIMENLS . .coetiiieiii et e e e e e e ennans 37
3.2.7 AP SuppOrt fOr tranSACTIONSuuiiiiiiieieii et 39
3.2.8 IMELTAGALA ...eevu ettt et 40

3.3 INStAlliNG/CONFIGUIING -.cevteeeeit ettt e et e e e e e ra e 42
3.3.1 REQUITEIMENTS ...ttt ettt et e e et e e et e e e et s 42
3.3 2 INSTANALION ...ttt et 42
3.3.3 RUNtIME CONfIGUIALION ...covtnieiii e et e e e e e e e eees 44
3.3.4 RESOUICE TYPES ..ttt ettt ettt et et e e e e e e e e eenns 46

3.4 The mysqli Extension and Persistent CONNECHIONSccoviuiiiiiiiiieeiii e 46
3.5 Predefined CONSLANTSiiiiiiiieieei ettt ettt ettt et et e e e e eaaans 47
3.8 NS .ottt e e 50
3.7 The MySQLi Extension FUNCLION SUMMAIYcciiiiiiiiiiieeieiiee et 51
B8 EXAMIPIES ot 57
3.8.1 MySQLi extension DasiC @XamPIESiciiuiiiiiiiiii e 57

3.9 THE MYSQLi CIASS ..ottt ettt ettt ettt e e e e eaaans 59
3.9.1nysqli::$affected_rows, nysqgli_affected_rowscccccceeeiieiiiiiininieenieeinnns 62
3.9.2nysqli::autocommit, nysqli _aut OCONTI T ..oouuiiiiiiiiieieii e 65
3.9.3nysqli::begin_transaction,nysqli_begin_transacti oncccoeeeerrinnnnnn. 67
3.9.4 nysqli::change_user, nysqli_change_usSer ... 68
3.95nysqgli::character_set _name, nysqli_character_set_nameccceeeeennn. 71
3.9.6 nysqli::close, NMYSli _ClOSE . 72
3.9.7 nysqli::commit, MySOli _COMII T .. e 73
3.9.8 nysqli::$connect _errno, nysqgli _CONNECt _BrrN0 ..c.cceeeeieeeiieeiiiiiineeeeeeeeeiines 75
3.9.9 nysqli::$connect _error, nysqgli _CONNECt _BrrOr ..eeeiieeeiieeiiiiiieeeeeeeeeaenes 77
3.9.10 nysqli::__construct, mysqli::connect,nysqli_connectcccooeeeeennnnenens 78
3.9.11 nysqli::debug, nysqli _debug ... 82
3.9.12 nysql i : : dunp_debug_i nfo, nysqgl i _dunp_debug_info ...ccccoovvviriiiiiiiiininnnnnnn. 83
3.9.13 nysqgli: :$errno, MYSAli _BIT N0 oo e 83
3.9.14 nysqgli::$error_list,mysqli_error_Iist e 85
3.9.15 nmysqli: i Berror, MYSOli _BI T Or .o 86
3.9.16 nysqli::$field_count, mysqli_field_countooooomiiiiiiiiiiiiiiiiiiiiiiieee, 88
3.9.17 nysqli::get_charset, nysqgli_get_charsetccoooooiiiiiiiiiiiiiiiiiiiiiieece, 90

MySQL and PHP

3.9.18 nysql i :

:$client _info,nysqgli::get_client_info,

MySQl i _get _Cli €Nt _ T NT O i e e e e 91

3.9.19 nysql i :
3.9.20 nysql i :
3.9.21 nysql i

3.9.22 nysql i :
3.9.23 nysql i :

:$client_version,nysqli_get_client_version ... 92
. get _connection_stats,nysqli _get_connection_stats 93
:$host _info,nysqli_get_host _info ..o 96
: $protocol _version, mysqgli_get_proto_info ... 97
:$server_info,nysqgli::get_server_info,

00 VAo | I e L= =1 Y4 = S N 01 o 99

3.9.24 nysql i :
3.9.25 nysql i
3.9.26 nysql i :
3.9.27 nysql i :
3.9.28 nysql i
3.9.29 nysql i :
3.9.30 nmysqli::
3.9.31 nysqli::
3.9.32 nysqli::
3.9.33 nysql i :
3.9.34 nysql i :
3.9.35 nysql i:
3.9.36 nysqli::
3.9.37 nysql i :
3.9.38 nysqli::
3.9.39 nysql i ::

mysqli _rea

3.9.40 mysql i ::
3.9.41 nysql i :
3.9.42 nysqli::
3.9.43 nysql i :
3.9.44 nysql i ::
3.9.45nysqli::
3.9.46 nmysql i :
3.9.47 nmysql i :
3.9.48 nysql i :
3.9.49 nysql i :
3.9.50 nysqli:
mysqli _set _

3.9.51 nysqli:
mysql i _set

:$server_version,nysqli_get_server_versi onccccceeereerennnnn. 100
cget _warni ngs, mysqli _get _WarnNi NQS ..coovvveiiiiiiiii e 102
2BINfo, MYSAli i N0 i 102

PN, MYSOlT TN T 104

c$insert_id,nysqgli_insert _id ., 105
Ki LT, mysgli _Ki T e 107
more_results, nmysqli_nore_results .o, 108
mul ti_query, mysgli_multi _qUErYy .oooooiiiiiiicieee e 109
next _result, mysgli_next_result ..., 111
coptions, NYSAl i _OPti ONS ceuiiiiii e 112
o o T o 1o O 4 V2= | N T oI Vo U 114
SPOL L, mysqli POl | o 116
prepare, MysSql i _PrepPar @ ..ouciie e 117
e [UT=T YA 44 VAT o | I e [V =T 120
real _connect, nysqli _real _connectcccoveeiviiiiiiiiniineineeeeen, 123
real escape_string,nysqli::escape_string,

LT o= Y o = A T o o 127
real _query, nmysqli _real _qUEery ..coccooiiiiiiiiiiii e, 130
reap_async_query, nysqli _reap_async_qUeryccocceevreerenerennnn. 130
refresh, mysgli_refresh .., 131
rel ease_savepoi nt, nysqli _rel ease_savepointccoeeevveennnnn. 132
rol |l back, mysqli _rollback ...cccooiiiiiiii e, 132
rpl _query_type,nysqli _rpl_query type .ccoooooviiiiiiiiiiieiinieieieeenn, 135

csavepoi nt, nysqgl i _Savepoi Nt ..o 136

:select _db, nysqgli_select _db .coooiiiiiiiiii 136

csend_query, mysqgli _Send_QUETNY ..ooiiiiieiiie i ee e 138

:set_charset, nysqgli _set_charsetcccooiiiiiiiiiiiii e, 139

:set _local _infile_default,

local _infile_default .. 141

:set _local _infile_handler,

_local _infile_handl @r . 141
3.9.52 mysql i :
3.9.53 nysql i :
3.9.54 nysql i

3.9.55 nmysql i :
3.9.56 nysql i

3.9.57 nysql i :
3.9.58 nysql i :

:$sq|state MYSOli SOl Stat @ .o 144
1SSl _set, nysqli _SSI _Setl i 146
sstat, MySOli _Stat i 147
sstmt_init,mysqgli _Stmt _init .o 148
cstore_result,mysqli_store_resultcoooiiiiiiiiiiiciici e, 149
:$thread_id, nysqgli_thread_id....cooooiiiiiiiiiiiiiii e, 150
cthread_safe,nysqgli _thread _safecccccooiiiiiiiiiiii e 152

3.959 nmysqli::use_result,mysqgli_uUse resultcooiiiiiiiiiiiii e 152
3.9.60 nysqgl i :: $war ni ng_count, mysql i _wWar nNi NQ_COUNTcveveviiieiiiiinieieiinieeenns 155
3.10 The MySqli_StMLE CIASSuuiiii i e e e e e e e e e e e e e e eaens 157
3.10.1 nmysqgli_stnt::$affected_rows,nysqli_stnt_affected_rowscceee.... 158
3.10.2nysqli _stnt::attr_get,mysqgli_stnt_attr_getccoiviiiiiiiiiiiii e, 160
3.10.3nysqli _stnt::attr_set,mysqgli_stnt _attr_Setccocceviiiiiiiiiiiiiiieeeeenn, 161
3.10.4 nysqli _stnt::bind_parammnmysqgli_stnt_bind_param........ccocevvniinnennnnen. 162
3.10.5nysqli _stm::bind_result,nysqgli_stm _bind resultccocceviiniinnnnnii. 165

MySQL and PHP

3.10.6 mysqli _stnt::close, mysqgli _Stnt _ClOSE .cooieiiiiiiiiii e 167
3.10.7 mysqgli _ St i CONSTTUCT it e e e e anas 168
3.10.8 nysqli _stnt::data_seek,nysqli_stnm _data_seekccoccoerviieniiiiieninnnn. 168
3.10.9 nysqli _stnt::$errno, nysqli _StNt_errno .o, 171
3.10.10 mysql i _stnt::$error _list,mysqgli_stm _error_list ..ccoooovviiiiiniiiinnnnnn. 173
3.10.11 nysqli_stmt::$error, mysgli _Stm _error .iiviiiieieineeei e 175
3.10.12 mysql i _stnt::execute, mysqli _Stnm_executeccoccovvviviiiiiiiei i, 177
3.10.13 mysqli _stnt::fetch, mysqgli_stnt _fetch ..o, 180
3.10.14 nysql i _stnt::$field_count,nysqgli_stnt _field_countcccceennnnrnnnnnn. 182
3.10.15nysqli _stnt::free_result,nysqgli_stm _free resultccccoeveiinnnnnnnis 182
3.10.16 nysqli _stnt::get _result,nysqgli_stnt _get _resultccocceviiiiiiiininnnns 183
3.10.17 nysql i _stnt::get_warnings, mysqli_stnt_get_warningscooeuuvenn. 185
3.10.18 mysql i _stnt::$insert_id,mysqli_stnt_insert_id ... 186
3.10.19 nysqli _stm::nore_results,mysqli_stnt_nore resultsccoooeveennnnn. 186
3.10.20 nysqli _stnt::next_result,nysqgli_stm _next_resultccccoeveiinnnnnnns 187
3.10.21 nysqli _stnt::$numrows, nysqli_stnt::numrows,
(00 VAo | I = 0 S 1 T 011 S 188
3.10.22 nysql i _stnt:: $param count, nmysqgli _stnt_paramcountcceeeeevrennnnn. 190
3.10.23 mysqli _stnt::prepare, nysqli _Stnmt_preparecoocceeeviieiiieiieiieiieeeeis 191
3.10.24 mysql i _stnt::reset, mysqli _Stnt _reset ..occociiiiiiiiiii i 194
3.10.25nysqgli _stmt::result_metadata, nysqli_stnt _result_netadata.......... 195
3.10.26 nysqgl i _stm ::send_| ong_data, mysqli _stnt_send | ong_data.............. 197
3.10.27 mysql i _stnt::$sqgl state, nysqli_stnt_sqglstate ...ccoooovvviiiiiiiiiiiininiiinnnnn. 198
3.10.28 nysqli _stnmt::store_result,mysqli_stnt_store resultcccooeeen. 200
3.11 The MYSli_FESUIL CIASS ...ccvueiii e e e e e 203
3.11.1nysqgli_result::$current _field, nysgli_field_tell ..ccooviiiiiiiiiiiinnnnn. 204
3.11.2nmysqli _result::data_seek,nmysqli_data_seekccoccoriiiiiiiiiiiiniincennennn, 206
3.11.3nysqli _result::fetch_all,mysqli _fetch_ allccoiiiiiiiiiin, 208
3.114nysqli _result::fetch_array,nysqli_fetch_arrayccoovviiiiiiiiniinnnnn. 209
3.11.5nysqli _result::fetch_assoc,nysqli_fetch_assocCcooevviiiniinnnnnnnnn. 211
3.11.6nysqgli _result::fetch_ field direct,nysqli_fetch field direct 214
3.11.7nysqli _result::fetch field,nysqli_fetch field.....ooooorriiiiiiiinnnn. 217
3.11.8nysqli _result::fetch fields,nmysqgli_fetch fieldscoocoorriiiiiinnnnni.n. 219
3.11.9nysqli _result::fetch_object,nmysqgli_fetch_object ...ccooevviiiiiiinnnnn.. 222
3.11.10 nysqli _result::fetch_row, mysqli _fetch row......cccoccoeiiiiiiiiiiiinnnnns 225
3.11.11 mysqli _result::$field_count,mysqgli_numfieldscoooooriiiiiiinnininnnnnn. 227
3.11.12 nysqli _result::field seek,nmysqli_field seekoooorriiiiiiiniiinennnnnnns 228
3.11.13nysqli _result::free,nysqgli_result::close,
mysqli _result::free_result,mysqgli_free_ resultocoooiiiiiiiiiiiiniciii e, 230
3.11.14 mysql i _result::$lengths, nysqli_fetch_lengths ...cccccciiiiiiiiiniiininnnnn. 231
3.11.15 nmysqli_result::$numrows, mysqgli _NUM I OWS .ooiviiiiiiineiiiiineeeei e 233
N I B 1= 1) Vo | Lo V7= o = U 235
3.12.1 nysqli _driver::enbedded_server _end, nysqli _enbedded_server_end .. 236
3.12.2nysql i _driver::enbedded_server_start,
Mysql i _embedded _SerVer ST Al ..o e e e 236
3.12.3 nysqli _driver::$report_node, mysqli _report ...cccoooveveiiiiiiiiinieneiiinnenennnn, 237
3.13 The mMysqli_ Warning Classc...iiiiiiiiii e e e e e e e e eaes 239
3.13.1 mysqgl i _Warni NQ: : _ CONSE I UCT iiuiiiiii e e e e e e e e 240
3.13.2 mySl i _WaK NI NG D NEXT cieiiiiie e e e e e e e e e e e anns 240
3.14 The mysqli_SOl_EXCEPLION CIASSciiviiiiii i e e e e e e e e eeen 240
3.15 Aliases and deprecated Mysqli FUNCLIONScoouuiiiiiiiii e 241
3.15.2 nysqgl i _Di NA_Par @M. .. 241
3.15.2 mysqgli _Di NA_resSUl t oo 241
3.15.3 nmysqgli _Client _enCOdi NG covuieeiiie e 242

MySQL and PHP

KT o0 A VA=Y o | B I o0 = o 242
3.15.5nysqli::di sable_reads_from naster,
mysqli _disabl e_reads_from MBSt €5 ..ooiiiiii i 243
3.15.6 nysqli _di sabl @ rpl _Par S .o 243
3.15.7 mysql i _enabl e_reads_from MBSt €5cocoiiiiiiiiiii e 244
3.15.8 nysql i _enabl € Pl _Par Se .o 244
3.15.9 MySl i _ESCAPE ST T MO tieniiiiii e e e e e 245
TNt T KO I VA=Y o | I = Q=T o = 245
315,11 MY SOl I T BT CN i 245
3.15.12 nysql i _get _CaChe ST Al S .iiiiiiiiii i e e 245
3.15.13 nmysqgli _get _Client St at S iiiiiiiiiiii e 246
3.15.14 nmysql i _get i NKS ST Al S ciiiiiiiiii e e e eans 249
3.15.15 nysql i _get _MBt @dat @ ...c.oveniieiii e 249
3.15.16 MYSOl i MBS BF _QUET Y oeiieiei ettt e e e e e e e e e et e et e eaneenns 249
3.15.17 nmysql i _Par @m COUNT ouuiieiei e e e e e e e e e e e e e et e e e aneeenes 250
G 70t o0 = B V=T o | I =Y o 1 1 S 250
3.15.19 nysqli _rpl _parse_enabl edccooiiiii i 250
3.15.20 Myl i _r Pl Pr OB o 251
3.15.21 nysqli _Ssend_| ONg_dat @ ..cc.oeeniiiiiii e 251
3.15.22 mysqli::set_opt, nysqli _Set _OPt .o 251
3.15.23 MYSOl i Sl AVE _QUEBT Y ieriieiei e e 252
G0 G @1 g = T g To =1 [Yo T PP 252
4 MySQL FUNCtioNS (PDO MY SQL) .ouuiiiiiiiii ettt e e e e e et e e e e e e e e e et e e aa e e aanas 253
N D O 45T I B S\ PP 256
Y YT | o (== 1 o 259
5.1 INStalling/CONfIQUIING ...ieiiii e e e e e e e e e e et e e et e eaaas 263
L0 I A =T [W1 (= 0 0 =T £ 263
N 2 1) =11 = 110 o PSPPI 263
5.1.3 RUntime ConfigUurationcociuuiiiiiiiiiie e e e e e e e e eenas 264
5.1.4 Building / Compiling From SOUICEcouuiiiiieiiii et e e e e e 265
5.2 Predefined CONSLANTSiiiiiiiiee et e et e e et e e e e et s e e eaaa e e eanen 265
IR T = 11 1]][O 267
5.4 Mysql_XdeVvapi FUNCHONSciiiiiiii e e e e e e e et e e e e e e eeens 269
Lo 0t =5 oY =37 10 o 269
Lo A o 1= AT E Y 10 o 270
5.5 BASERESUIL INTEITACE ...eeeviiiiiii et e e et e e et e e e e e e eeaans 272
5.5.1 BaseReSUl T gL VAT NI NOS .iviiiiiiie e e e e e aaeees 273
5.5.2 BaseResul t:: get VAr Ni NGSCOUNT ...uiiiiieii e e e 274
N G O] [=Tex 1T o o TP 275
5.6.1 Col I €CtT ON: T @A . iiiiiiiie ettt 276
5.6.2 Col I ection:: addOr Repl aCEONE ...ovuiiiiiin i 277
5.6.3 Coll @CtiON:: CONSTIUCT wiiiiiiiiiiiii e e e e e ees 278
5.6.4 Col | €CTT ONI I COUNT eiiit ittt e e et e e et e e e e eneaees 279
5.6.5 Col [€Cti0N: i Creat €1 NUEX ..o e e 280
5.6.6 Col I €Cti ON: i dr 0PI NAEX wuiuniiiieiie e e e e e 282
5.6.7 Col | ection::existsInNDat abasSec.coceuiiiiiiiii e 283
5.6.8 Col I @CTT 0N 1 I NA ceiiii e 284
5.6.9 Col | €Cti ON: i GEENAITE ..oiviiiti i e e e e e e e e e e ens 285
5.6.10 Col | €Ct 1 ON: 1 GEE DN ciuiiiii it e e e e e e e aas 286
5.6.11 Col | €Cti ON: 1 gEL SCNEIMA ..vvniiii e e e 287
5.6.12 Col | €Ct i ON: : B SESST ON tiruiiiiiii e e an s 288
5.6.13 Col | €Cti ON: i MDA T Y ciriieiiie e e e e e e eas 289
5.6.14 Col | CTT ON:I I I BIMDVE .ottt ettt ettt et e et e e e e eeans 290

5.6.15 Col | €CTIT ON: i T EIMDVEONE .oiniiiiie i e e ens 291

MySQL and PHP

5.6.16 Col | €Cti ON: i 1Pl @CEONE ovuiiiiiiii e 292
A O] | [=Tex 7o) o VAN (o I F=] PP 293
5.7.1 Col l ecti ONAdd: : CONST T UCT tiuiiiiiiiii i e e e e 293
5.7.2 Col | €CtT ONAAA: 1 EXECUL © ouuiiiiiiiie ettt et e e e e e e e e een e 295
S I O] | [=Ted To] o] T To o =TSO 296
581 Col lectionFi Nd: i DI N ..o 297
582 Coll ecti onFi Nd: i CONSEIUCT .iiiiiiiiiiiii e e e e 298
5.8.3 Col | €Cti ONFi NA: 1 EXECUL € weeiiiiiiiiieiie ettt e e e 299
5.8.4 Col I ecti onFi Nd: i fi el dS o e 300
5.85 Col I eCti ONFi NA: : gFr OUPBY uiiniiiiiii e e e ees 301
5.8.6 Col I eCti ONFIi NA: - NAVI NQ covniiiiiie e e e e aaeees 302
587 Col I ecti onFi Nd: i I 1M b oo 303
5.8.8 Col l ectionFi nd: : 1 0CKEXCI UST V& .icuiiiiiiiiiii e 304
5.8.9 Col I ectionFind: : 1 0CKShar €dcoouiiiiiiiii e 305
5.8.10 Col | ect i ONFi Nd: 1 OF T SEL irniiiiiiii e 306
5.8.11 Col | €CTT ONFI NA: 1 SO T cuuiiiiieii ettt e e eeens 307
oIS I O] 1 [=ToxTo] a11Y [0 o 1§V ol - T 309
5.9.1 Col I ectionModi fy::arrayAPPENd ...o.oceeiiiii e e e 310
5.9.2 Col l ectionModi fy::arrayl NSEr T .o e e 311
5.9.3 Col I ectionMddi fy::bi N oo e e 312
5.9.4 Col l ectionModi fy:: CONSEIUCT .oiiiiiiniiiii e e e 314
5.9.5 Col I eCti ONMOAI T Y. i EXECUL € .uiirniiiii i e e 315
5.9.6 Col l ectionMdi fy::lim b oo e e e 315
5.9.7 Col ecti onModi fy: i pat Ch wovuniiii e 317
5.9.8 Coll ecti onModi TY: i TPl @CE .iiriiiii i 317
5.9.9 Col | eCti ONMOAI T Y i I SBL iiiiiii e e e e eas 319
5.9.10 Col [ect i ONMOAI T Y 1 SKi P verniiiiiie e e 320
5.9.11 Col | eCti ONMOAI T Y 1 SOM T cirniiiiiii e e an s 321
5.9.12 Col [ect i ONMOAI T Y. I UNSEL oeiiiiiiiiii e 321
5.10 ColleCtONREMOVE CIASSceiuiiieieiiiiee et e et s e e et e e e eraaeaeees 322
5.10.1 Col | ect i ONREMDVE: 1 DI NA oeuiiiiiiei e e 323
5.10.2 Col | ecti ONRENMDVE: : CONSE I UCT .iiiviiiiiii i e e e e e e 323
5.10.3 Col | €Ct i ONREMDVE: I EXECUL € 1evuiiiiiiiii ittt ettt e e e et e ea e eees 324
5.10.4 Col | eCti ONREMDVE: 1 11 M T oeeiiiiiiiiee e e 325
5.10.5 Col | €CT T ONREIMDVE: 1 SOM T 1iiuiiiiiiiei ettt e et e e e e e eens 326
5.11 COIUMNRESUIL CIASS ... it et e e e 326
5.11.1 Col umrmResUl t:: CONST T UCT ..iiiiiiiiieie e e e e 327
5.11.2 Col utmResul t: : get Charact er SEt NAITEcccviiiiiii i 328
5.11.3 Col umResul t:: get Col | ati ONNANMEccuiiiii e 329
5.11.4 Col utmResul t:: get Col ummLabel ... 330
5.11.5 Col umResul t:: get Col UMNAITEoiiniiiiii e e 330
5.11.6 Col umResul t::get Fractional Di gi 1S .ooovviiieiiii e 331
5.11.7 Col umResul t:: get LeNGt N .o 332
5.11.8 Col utmResul t:: get SChemaNAITEccoiiii i e 332
5.11.9 Col umResul t:: get Tabl eLabel ... 333
5.11.10 Col umResul t:: get Tabl @NamBc.oveiiiiii e 333
5.11.11 Col UMMRESUI T @ GO TY PO it e e e e e e eans 334
5.11.12 Col utmResul t: ;1 SNUNMDEr Si gned ..o 335
5.11.13 Col ummResul t: 1 SPAOAEAiiiiiiie e 335
5.12 CrudOperationBindable iNtErfacCeoovuuiiiiiiiii e e 336
5.12.1 CrudOper ationBi ndabl €:: bi N ..cciiiiii i 336
5.13 CrudOperationLimitable iNterface ... 337
5.13.1 CrudOperationLimtabl € il imt e 337
5.14 CrudOperationSKippable INterfaCeociuiiiiiii e 338

Vii

MySQL and PHP

5.14.1 CrudOper at i onSKi ppabl €: : SKi P ciuiiiiiiiiii e 338
5.15 CrudOperationSortable iNterfacecocvuiiiiii i 339
5.15.1 CrudOperati onSortabl €:: SOt .o 339
5.16 DatabaseODbject INtEITACEuiiiiii e e 340
5.16.1 Dat abaseCbj ect: : exi stsl nDat abaseccooveeiiiiiiiiiici 340
5.16.2 Dat abaseOhj €Ct: i gL NAITE ...c.iiii i e 341
5.16.3 Dat abaseOh] eCt: : geT SESSI ON it e 341
5.17 DOCRESUIL CIASSu ittt ettt e e e e e e et e e e et e e eeannns 342
5.17.1 DOCRESUI t i 0 CONST T UCT tirniiiiiii e e e e e e an s 342
5.17.2 DOCResUl T 11 FeECRAI | oo e e 343
5.17.3 DOCReSUl T 11 FeECNONE oeii e 345
5.17.4 DOCRESUl i T VAN NI NS tirniiiiii et e e e e e an s 346
5.17.5 DocResul t:: get VAr Ni NGSCOUNT ..ooviiiniii e e e e 347
R T B 1T ol - T PSPPI 349
LT T R g B V=Y o o o =3 A Lo 349
N S (o7 =T o T N F= 1 350
5.20 EXECULADIE INTEITACEouniiiiii e e et e e e e eaees 350
5.20.1 EXeCUt @bl €I 1 EXECUL © ieuiiiiiiiii e 350
5.21 EXECULIONSTAIUS CIASS ...uuiiiiiiiiiiiiii ettt e et e e et e e e et e e eeenns 351
5.21.1 EXecut i onStat US: : CONSTTUCT ciuiiiuiiiiiii e e e e e e e e e e 352
I {0 (=TT (0] T = PN 352
5.22.1 EXPressSi ON: : CONST T UCT .uiiuiiiiiiiiiiee e e e e e e e e e e et e an e anes 353
5.23 FieldMetadata ClaSScoouuuiiiiiiiie e e e e e e e s 353
5.23.1 Fiel dMet adat @:: _ CONSTTUCT iuiiiiiiiii e e e e e e 355
B5.24 RESUIL CIASS ...ttt et e et e e e et e e et e s 356
L o R o oYY U1 A o o =3 A 1 Lo 356
5,242 Resul t::get Autol ncrement Val Uecooeiiiiii i 357
5243 Resul t::getGenerat @dl dS ..o 358
5.24.4 ReSUl T gEE VAT NI NOS wiiiiiiniei e e e e e e e aeanas 359
5.24.5 Resul t:: get VI Ni NGSCOUNT ouuiiiiiiiciie e e e e anas 360
5.25 ROWRESUIL CIASS ... ieiiiiiiiiii et e e et e e e et e e e et e e e et ees 361
5.25.1 ROWRESUI T i 0 CONST T UCT tiiniiiiii e e e e e e an s 362
5.25.2 ROWRESUI T 11 F L CRAI | oo e 362
5.25.3 ROWRESUI T 1 F L CNONE oot e 363
5.25.4 RowResul t:: get Col UMMCOUNT ...iueiiiiiii e e 364
5.25.5 RowResul t:: get Col UNMTINANMES ... e 365
5.25.6 ROWRESUI t:: gt COl UNTMIS .eiiiiiiiiii e e e e e 366
5.25.7 ROWRESUI 11 gET VA NI NS tovniiiiiie e e e e e e e e e an s 368
5.25.8 RowResul t:: get VAr Ni NGSCOUNT ..oiviiieiii e e e 369
5.26 SCREMA CIASS ... it e et e e ettt e e e e et n e e e et eeeaaa e aae 370
5.26.1 SChemMB: © CONSE I UCT .iiiiiiiiii e e e e e e e e e et e et e e aannas 370
5.26.2 Schema: i creat @Col | €CTT ON i 371
5.26.3 Schema: : dr opCol | €CT T ON ciuuiiiiii e e 372
5.26.4 Schema: : exi st sl nDat @abasecoooeiiiiiii 373
5.26.5 Schema: : get COl | @CTT ON ..o 374
5.26.6 Schema: : get Col | ecti ONASTabl € ...iiniiinii e 375
5.26.7 Schema: : get COl | €CTT ONS iuuiiiiii e 376
5.26.8 SChemB: © GETNAITE ..oivniiiiii e e e e e e e e et e et eaneaanns 377
5.26.9 SChemMB: : BT SESST 0N ciuiiiiiii it e e e e e e e e ens 378
5.26.10 SchemB: : get Tabl @ .o 379
5.26.11 SchemB: : get Tabl €S .o 380
5.27 SchemaObhjeCt INTEITACEciii i e e e e e 381
5.27.1 SchemaQbj eCt: : gt SCNEIMA ..ovvuiii e 381
B5.28 SESSION ClASS .uuiiiiiiiiieiii et 382

viii

MySQL and PHP

5.28.1 SESST ON: I Cl OS @ ittt 383
5.28.2 SESST 0N I COMITE T ettt ettt e e eeeas 384
5.28.3 SESSI 0N i CONST T UCT tiiiiiiiii et e e e e e e e e anes 384
5.28.4 SeSSi ON: I Creat @SCRNEMA oo 385
5.28.5 SeSSi ON: i Ar OPSCNEITA ..vviii e e e eas 386
5.28.6 SeSSi 0N: i @XECUL €SOl wuivviiee i 386
5.28.7 Session::generat @UUI Dcoouiiiiiiiii e 387
5.28.8 SesSi 0N: i get Cli €Nt d oo 388
5.28.9 SeSSi ON: i gt SCHEMA ..uuiiiiii i 388
5.28.10 SeSSi ON: : 0T SCHEMBS ..iiviiiiiii i e e anas 389
5.28.11 SesSSi 0N: : gt SEIrVEr VEI Si ON .uiiiiiiiii it e e e e eans 390
5.28.12 SesSi 0N D Ki LT Gl T @NT oot 391
5.28.13 SeSSi ON: i 11 ST Ol T BNE S cuiiiiiieii e e 391
I T I A oY S o o A o [Lo A= V= 1 ¢ 392
5.28.15 Sessi on: i rel easeSavepOi N ..o 393
5.28.16 SeSSi 0N i 1Ol I DACK eunii e 394
5.28.17 SeSSi 0N i T 0Ol 1 DACKTO ittt e 395
5.28.18 SeSSi 0N: : SEt SAVEPOI NI ..iiriiii it e e e 395
5.28.19 SESSI 0N & SOl ciiiiiiiii it e e 396
5.28.20 Sessi 0N: i St art TranSaACt I ON couueiuu it e e 397
5.29 SOISTAtEMENT CIASS ...uuiiiiiiiii i e e e e e 398
5.29.1 Sgl Stat ement : : DI NA ..o 398
5.29.2 Sgl Stat ement i : CONST T UCT .iiiiiiiiiieie e e e e e 399
5.29.3 SOl St at €MBNT ;1 EXECUL € .uiiiiiii i e e e e e e 400
5.29.4 Sgl Statenment : : get NeXt RESUI T oo 400
5.29.5 Sgl Stat ement : i et RESUI T ..o 401
5.29.6 Sgl Statenment : : hasMIr €RESUI 1S .o e 401
5.30 SqIStatemeNntRESUIL CIASScovuiiiiiiiei e e e e e 402
5.30.1 Sgl Statement Resul t:: CONSTIUCT .oiiiiiiiiiii e e e e e 403
5.30.2 Sgl Statenment Resul t:: fet ChAI | e 403
5.30.3 Sgl Statenment Resul t: : fet ChONe ..o 404
5.30.4 Sql St atenment Resul t: : get AffectedltensCountccocevviiiiiiiiiiiiiecneeeen, 405
5.30.5 Sql St at erent Resul t:: get Col umMmQCOUNTccviieiiiiii e 405
5.30.6 Sql St at erent Resul t:: get Col UMNAMES ...ooviiiiii e 406
5.30.7 Sgl Statement Resul t:: get Col UMIS ..o 406
5.30.8 Sql Statenment Resul t::getGenerat edl dS ...covveviiiiiii i 407
5.30.9 Sgl Statenment Resul t::getlLastlinsertld ..ccoooviiiiiiiiiiiii e 408
5.30.10 Sgl Statement Resul t:: get VAT NI NQS .ivviiiiii e 408
5.30.11 Sql St at emrent Resul t: : get VAr ni NgSCOUNT ...uviviiiiiiie e 409
5.30.12 Sgl Statement Resul t: : hasDat @coovvvviviiiiii e 410
5.30.13 Sgl Statenment Resul t::next ResUlt ..o 410
R N S =1 (=] 4=) ol = L PP 411
5.31.1 Stat emMBNt i i CONST T UCT ciiiiiiiii e e e e e e e e e anes 411
5.31.2 Statenment : : get NeXt ReSUI T oveiiiiii e 412
5,313 Statenment: i get ReSUlI T o 413
5.31.4 Statenment : : hasMOr @ERESUI 1S couniiiiiii e 413
LI A I o] L o = TP 414
L 720 R =Y o | I = o oY 1= A U [o 415
5.32.2 Tabl €5 1 COUNT o e et e aa s 415
5.32.3 Tabl €: 1 del B @ i e 416
5.32.4 Tabl e: : exi St SINDat @DASE ...coeuniieiie e 417
5.32.5 Tabl € i g NGB ..ouiiiiiic e 418
5.32.6 Tabl € gt SCHEMB covuiiiii e aans 418
5.32.7 Tabl €: i gt SESSI ON .uiiiiiiiiii i 419

MySQL and PHP

LR 72 T 1=V oL I = I 0= = 420
5.32.9 TabBl € 1 1 S VI W ettt 421
5.32.10 Tabl € 5 Sl BCT ittt 422
5.32.11 Tabl € i UPUAL € ..ieeiiiiii i et e e 423

5.33 TabBIEDEIELE ClASS .. cvuiiiiiiieii et 424
5.33.1 Tabl eDel et €:: DI NA ..oirniieii e 424
5.33.2 Tabl eDel et €:: CONSTTUCT iuiiiiiiiiii e e aaes 425
5.33.3 Tabl eDel €t €: 1 EXECUL € iuniiiiiie i e e 426
5.33. 4 Tabl €Del €t €1 11 Mt oot e e e e e e enas 427
5.33.5 Tabl eDel et €1 Of T SBL wiiriii i e 427
5.33.6 Tabl eDel et €: : Order DY oo 428
5.33.7 Tabl €Del €t €1 i WHET € oeniii i 429

Y =10 [TS o T 430
5.34.1 Tabl el nSert:: CONSTTUCT it anas 430
5.34.2 Tabl €1 NSErt i EXECUL € iruiiiiiiiii i e e e e e e 431
5.34.3 Tabl €l NSErt i Val UBS .o e e eas 431

IR T 1= o] ST L= ot o T 432
5.35.1 Tabl €Sel €Ct i DI NA ..oieiini e 433
5.35.2 Tabl @Sel €Ct i i CONSTTUCT i e 434
5.35.3 Tabl €Sel ECt i i EXECUL € iruiiiii i e e 435
5.35.4 Tabl €Sel €Ct i i gr OUPBY v 436
5.35.5 Tabl €Sel €Ct i i NAVI NQ wirriii e eas 437
5.35.6 Tabl €Sel €Ct i 11 Mt oo e e e e e e eas 438
5.35.7 Tabl eSel et : : | OCKEXCI UST V& ouuiiiiiiiiii e 439
5.35.8 Tabl eSel ect:: 1 0CKShar €dccviiiiiiii e 440
5.35.9 Tabl €Sel €Ct i Of T SO iiriii i 441
5.35.10 Tabl €Sel eCt i i Order DY oo 442
5.35.11 Tabl €Sel Ct i i WHET € ouniieii e 443

IR 1= 0] (=10 o T o (= o = L 444
5.36.1 Tabl eUpdat €: : Di NA ..ooeiinii e aas 445
5.36.2 Tabl eUpdat €:: CONST T UCT it ea e anas 446
5.36.3 Tabl eUpdat €: : EXECUL € iuuiiiiiii i e e e 446
5.36.4 Tabl eUpdat €: |1 Mt couiiirii e e e et e e aaaas 447
5.36.5 Tabl eUpdat €: : Or der DY oo e 448
5.36.6 Tabl EUDOal € 1 ST civiiiiii i e e 449
5.36.7 Tabl eUpdat €: i WHET € ..uuiiuiiiii i e e e e eas 449

IR ALY - 1 1 T N F= 1= P 450
LR 0 RV o VI o Yo A o oY 1= A U [o 451

TS I ST T (o] g o] - TS 451
5.38.1 XSESSi ON: i CONST I UCT wuiiiiiiiiiie e e e e e e e e anes 451

(SR O o T aT= UV @] I = 453
6.1 INStalliNG/CONTIGUIING ...iiiieiie e e e e e e e e e et e e e e eaaas 454
0 I A =T [W= 0 =T £ 454
0 7 1 1 =1 = o o PN 454
6.1.3 Runtime ConfigUurationcccouiiiiiiiiiie e e e e e e 456
B.1.4 RESOUICE Ty DS ituiiiiitieii it ettt et e et e et et e e e e e e e e et e et e et e et e et e e an e eaneeaneeaeenns 457

LS 1 g - T g To =1 0T N 457
LSRRG o (= T0 (=) 110 T=To IO o] g) = | 458
L = 1 1]][459
6.4.1 MySQL extension oVerview eXampleccoiiiiiiiieiiiieiiiie e e e e e e 459

6.5 MYSQL FUNCLONSuniiiiiii et e e e e e e e e e e et e e et e e et e e et e eannaaes 460
6.5.1 MysSql _af f €CT U I OWS ..oieiii i e e e e e e 460
6.5.2 mysqgl _Client _eNCOAi NQ .ooeuiiiiiiii e e 462

B.5.3 MY SOl Cl 08 it 463

MySQL and PHP

B.5.4 MYSOl _CONMNEBCT it e e e e e e e e e 464
6.5.5 MYSOl _Creat @ _db .o 467
6.5.6 NMYSOl _dat @ SEEK .oiriieii 469
B.5.7 MYSOl _AD _ NAITE .o 470
B.5.8 MY SOl _AD QU Y o e e 472
6.5.9 MY SOl _dr 0P D e 473
Lo KO I VA=Y o | = 1 o T 475
LSR8 o VA=Y o | = o P 476
6.5.12 MY SOl €S CAPE ST I T MO wiieeiiiiie i e e e e e e e eanas 477
6.5.13 MY SOl T L CH Al T AY i e e aaas 479
6.5.14 MY SOl T L CH _@SSOC ittt e 481
6.5.15 Mysql _FetCh _fiel d . e 483
6.5.16 mysqgl _fetch | @NgL NS . 485
6.5.17 mysqgl T et Ch_0D] @CT i 486
6.5.18 MYSOl T L CN T OW et e e e 488
6.5.219 MYSOl _Ti el d 1 ags oo 489
6.5.20 My SOl _Ti el d | N i 491
6.5.21 MysSql i el d NAMB oo e 492
6.5.22 MYSOl _Ti el d _SEEK ciriie i 493
6.5.23 nysql _fiel d tabl @ i 494
6.5.24 MySOl i €l A L Y PO ciriii i e 495
6.5.25 MYSl T ree I eSUl T i e 497
6.5.26 mysql _get _Client 1 N O o 498
6.5.27 mysql _get _hOSt 1 NT O oo 499
6.5.28 mysqgl _get _Prot o i NF O i 500
6.5.29 Mysql _get _Server I N O e 501
B.5.30 MY SOl T NT O cetiiie e 502
LSRR A VA=Y o | R T 0 1= = o S o 504
6.5.32 MYSOl |1 St _ABS cirriiii 505
6.5.33 MySql 11 St _Ti @l S i e 506
6.5.34 MYSOl | | St Pr OCES S S ittt e e e 508
6.5.35 MySql 1St _tabl @S i 509
6.5.36 MYSOl _NUM T T €1 AS ciiiiiiiii e e e ans 511
LRI I VA=Y o | I a0 [T e 512
(SR TRC T I g VA=Y o | I o oo 1 o = o S 513
B.5.39 MY SOl P MO citiiii e e 515
B.5.40 MY SOl QUET ¥ it e 516
6.5.41 nysqgl _real _eSCapPe_St i NQ ciiiiiiiiii i 518
B.5.42 MYSOl T @SUL T cornii e e 521
6.5.43 MySQl Sl ECT D i 523
6.5.44 My Sl _SEL _CRAI SBL i e 524
B.5.45 MY SOl ST Al ciriiiiii i e 525
6.5.46 MySOl T abl ENAITE ..o 527
6.5.47 MySOl T NrEad 1 0 .o 528
6.5.48 mysqgl _UNDUT T er @0 _QUET Y orniieiii e e e e 529

7 MYSQL NALUVE DIIVET ..iiiiiiiiii ettt e e e e e e e e e e e e et e e et e e et e e et e e et e e et eeaneeannns 531
A O =T oY T PP 531
A 10153 = 1 =1 T TSP 532
7.3 RUNIME CONFIQUIALIONuiiie e e e e e e e e e e e e et e e et eeaaeeaanaees 533
A L TeToTaq] o = 1] 11] =P 538
7.5 PersiStent CONMNECHIONS .. .ccouuuieiiiiie et ettt e et e e e et e e e e et e e e e et e e aeeannnas 538
LG TS] = 1113 (o2 PSPPI 539
A A [0 (L S P TOPPUP T UPPTPPT 552
A= T\ 1= 1T A 4 =T =T = 0 0= o | 553

Xi

MySQL and PHP

7.9 MySQL Native Driver PIUGIN APl ... e e e e e e e e e 554
7.9.1 A comparison of mysqgind plugins with MySQL ProXycccoeevuiiiviiiieiiiieiiieciieeeennn, 556

7.9.2 Obtaining the mysqgInd plugin APl ... e 557

7.9.3 MySQL Native Driver Plugin ArchiteCtUreccooovuiiiiiiiiie e 557

7.9.4 The mysqInd PIUGIN AP ... e e e e aeas 562

7.9.5 Getting started building a mysgind pluginccooiiiiiiiii 564

8 Common Problems with MySQL and PHP ... 569

Xii

Preface and Legal Notices

This manual describes the PHP extensions and interfaces that can be used with MySQL.

Legal Notices

Copyright © 1997, 2019, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted

in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

Xiii

Access to Oracle Support

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish

or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Xiv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 Introduction to the MySQL PHP API

PHP is a server-side, HTML-embedded scripting language that may be used to create dynamic Web
pages. It is available for most operating systems and Web servers, and can access most common
databases, including MySQL. PHP may be run as a separate program or compiled as a module for use
with a Web server.

PHP provides four different MySQL API extensions:

e Chapter 3, MySQL Improved Extension: Stands for “MySQL, Improved”; this extension is available
as of PHP 5.0.0. It is intended for use with MySQL 4.1.1 and later. This extension fully supports the
authentication protocol used in MySQL 5.0, as well as the Prepared Statements and Multiple Statements
APIs. In addition, this extension provides an advanced, object-oriented programming interface.

» Chapter 4, MySQL Functions (PDO_MYSQL): Not its own API, but instead it's a MySQL driver for the
PHP database abstraction layer PDO (PHP Data Objects). The PDO MySQL driver sits in the layer
below PDO itself, and provides MySQL-specific functionality. This extension is available as of PHP 5.1.0.

» Chapter 5, Mysql_xdevapi: This extension uses MySQL's X DevAPI and is available as a PECL
extension named mysql_xdevapi. For general concepts and X DevAPI usage details, see X DevAPI User
Guide.

e Chapter 6, Original MySQL API: Available for PHP versions 4 and 5, this extension is intended for use
with MySQL versions prior to MySQL 4.1. This extension does not support the improved authentication
protocol used in MySQL 4.1, nor does it support prepared statements or multiple statements. To use
this extension with MySQL 4.1, you will likely configure the MySQL server to set the ol d_passwor ds
system variable to 1 (see Client does not support authentication protocol).

Warning

This extension was removed from PHP 5.5.0. All users must migrate to either
mysql i, PDO_ MySQL, or nysql _xdevapi . For further information, see
Section 2.3, “Choosing an API”.

Note

This documentation, and other publications, sometimes uses the term Connect or /
PHP. This term refers to the full set of MySQL related functionality in PHP, which
includes the three APIs that are described in the preceding discussion, along with
the mysqlnd core library and all of its plugins.

The PHP distribution and documentation are available from the PHP website.

Portions of this section are Copyright (c) 1997-2019 the PHP Documentation Group This material may
be distributed only subject to the terms and conditions set forth in the Creative Commons Attribution 3.0
License or later. A copy of the Creative Commons Attribution 3.0 license is distributed with this manual.
The latest version is presently available at http://creativecommons.org/licenses/by/3.0/.

https://pecl.php.net/package/mysql_xdevapi
http://dev.mysql.com/doc/x-devapi-userguide/en/
http://dev.mysql.com/doc/x-devapi-userguide/en/
http://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_old_passwords
http://dev.mysql.com/doc/refman/5.6/en/old-client.html
http://www.php.net/
http://creativecommons.org/licenses/by/3.0/

Chapter 2 Overview of the MySQL PHP drivers

Table of Contents

A R [11 (o 18 od 1o o ISP SPP PPN
2.2 TermMiNOIOQY OVEIVIEWiiiiiii ittt et e et e e et e e et et ta e e aa e e et e e ean e eetn e eenaeenaaaes
AR T O o ToTo 1S3 o = g AN = PR RSRN
A O g ToTo 1S3 T o =T 11 o] = 1Y/ PP
AR ©10] g [o1=7 o] KSR

2.5.1 Buffered and Unbuffered QUEKIESoieeiiii e e e e

2.5.2 CRETACIET SESiiiiti ettt ettt ettt ettt e ettt e e et et e e ettt e et e et n e e e e aba e e eeat e aeen

Copyright 1997-2019 the PHP Documentation Group.

2.1 Introduction

Depending on the version of PHP, there are either two or three PHP APIs for accessing the MySQL database. PHP
5 users can choose between the deprecated mysqgl extension, mysqli, or PDO_MySQL. PHP 7 removes the mysq|
extension, leaving only the latter two options.

This guide explains the terminology used to describe each API, information about choosing which API to use, and
also information to help choose which MySQL library to use with the API.

2.2 Terminology overview

Copyright 1997-2019 the PHP Documentation Group.

This section provides an introduction to the options available to you when developing a PHP application
that needs to interact with a MySQL database.

What is an API?

An Application Programming Interface, or API, defines the classes, methods, functions and variables that
your application will need to call in order to carry out its desired task. In the case of PHP applications that
need to communicate with databases the necessary APIs are usually exposed via PHP extensions.

APIs can be procedural or object-oriented. With a procedural API you call functions to carry out tasks, with
the object-oriented API you instantiate classes and then call methods on the resulting objects. Of the two
the latter is usually the preferred interface, as it is more modern and leads to better organized code.

When writing PHP applications that need to connect to the MySQL server there are several API options
available. This document discusses what is available and how to select the best solution for your
application.

What is a Connector?

In the MySQL documentation, the term connector refers to a piece of software that allows your application
to connect to the MySQL database server. MySQL provides connectors for a variety of languages,
including PHP.

If your PHP application needs to communicate with a database server you will need to write PHP code to
perform such activities as connecting to the database server, querying the database and other database-
related functions. Software is required to provide the API that your PHP application will use, and also
handle the communication between your application and the database server, possibly using other

Choosing an API

intermediate libraries where necessary. This software is known generically as a connector, as it allows your
application to connect to a database server.

What is a Driver?

A driver is a piece of software designed to communicate with a specific type of database server. The driver
may also call a library, such as the MySQL Client Library or the MySQL Native Driver. These libraries
implement the low-level protocol used to communicate with the MySQL database server.

By way of an example, the PHP Data Objects (PDO) database abstraction layer may use one of several
database-specific drivers. One of the drivers it has available is the PDO MYSQL driver, which allows it to
interface with the MySQL server.

Sometimes people use the terms connector and driver interchangeably, this can be confusing. In the
MySQL-related documentation the term “driver” is reserved for software that provides the database-specific
part of a connector package.

What is an Extension?

In the PHP documentation you will come across another term - extension. The PHP code consists of a
core, with optional extensions to the core functionality. PHP's MySQL-related extensions, such as the
nysqgl i extension, and the mysql extension, are implemented using the PHP extension framework.

An extension typically exposes an API to the PHP programmer, to allow its facilities to be used
programmatically. However, some extensions which use the PHP extension framework do not expose an
API to the PHP programmer.

The PDO MySQL driver extension, for example, does not expose an API to the PHP programmer, but
provides an interface to the PDO layer above it.

The terms API and extension should not be taken to mean the same thing, as an extension may not
necessarily expose an API to the programmer.

2.3 Choosing an API

Copyright 1997-2019 the PHP Documentation Group.

PHP offers three different APIs to connect to MySQL. Below we show the APIs provided by the mysq],
mysqli, and PDO extensions. Each code snippet creates a connection to a MySQL server running on
"example.com" using the username "user" and the password "password". And a query is run to greet the
user.

Example 2.1 Comparing the three MySQL APIs

<?php

/Il nysqli

$nysqgli = new nysqli ("exanpl e.cont, "user", "password", "database");

$result = $nysqli->query("SELECT 'Hel |l o, dear MySQL user!' AS _nessage FROM DUAL");
$row = $resul t->fetch_assoc();

echo htmentities($row' _nessage']);

/1 PDO

$pdo = new PDQ(' nysql : host =exanpl e. com dbnane=dat abase', 'user', 'password');

$stat enent = $pdo- >query(" SELECT ' Hel | o, dear MySQL user!' AS _nessage FROM DUAL");
$row = $st at enent - >f et ch(PDO : FETCH_ASSQC) ;

echo htmentities($row' _nessage']);

/'l mnysql
$c = nysqgl _connect ("exanpl e. con’, "user", "password");

Choosing an API

nmysql _sel ect _db("dat abase") ;

$result = nysql _query("SELECT 'Hell o, dear MySQ. user!' AS _nessage FROM DUAL");
$row = nysql _fetch_assoc($result);

echo htmentities($row' _nessage']);

?>

Recommended API

It is recommended to use either the mysqli or PDO_MySQL extensions. It is not recommended to use the
old mysql extension for new development, as it was deprecated in PHP 5.5.0 and was removed in PHP 7.
A detailed feature comparison matrix is provided below. The overall performance of all three extensions is
considered to be about the same. Although the performance of the extension contributes only a fraction of
the total run time of a PHP web request. Often, the impact is as low as 0.1%.

Feature comparison

ext/mysqli PDO_MySQL ext/mysql

PHP version introduced |5.0 5.1 2.0

Included with PHP 5.x Yes Yes Yes

Included with PHP 7.x Yes Yes No

Development status Active Active Maintenance only in 5.x;
removed in 7.X

Lifecycle Active Active Deprecated in 5.x;
removed in 7.x

Recommended for new |Yes Yes No

projects

OOP Interface Yes Yes No

Procedural Interface Yes No Yes

API supports non- Yes No No

blocking, asynchronous
queries with mysqind

Persistent Connections |Yes Yes Yes
API supports Charsets Yes Yes Yes
API supports server-side |Yes Yes No
Prepared Statements

API supports client-side |No Yes No
Prepared Statements

API supports Stored Yes Yes No
Procedures

API supports Multiple Yes Most No
Statements

API supports Yes Yes No
Transactions

Transactions can be Yes Yes Yes
controlled with SQL

Supports all MySQL 5.1+ |Yes Most No

functionality

Choosing a library

2.4 Choosing a library

Copyright 1997-2019 the PHP Documentation Group.

The mysqli, PDO_MySQL and mysqgl PHP extensions are lightweight wrappers on top of a C client library.
The extensions can either use the mysqind library or the | i bnysql cl i ent library. Choosing a library is a
compile time decision.

The mysqglnd library is part of the PHP distribution since 5.3.0. It offers features like lazy connections and
guery caching, features that are not available with libmysgiclient, so using the built-in mysqind library is
highly recommended. See the mysqglnd documentation for additional details, and a listing of features and
functionality that it offers.

Example 2.2 Configure commands for using mysqlnd or libmysglclient

/| Recommended, conpiles with nysql nd
$./configure --w th-nysqli=nmysqglnd --with-pdo-nysqgl =nysqgl nd --w th-nysqgl =nysql nd

/1 Alternatively recomended, conpiles with nysqlnd as of PHP 5.4
$./configure --with-nysqgli --wth-pdo-nysqgl --wth-nysql

/1 Not recommended, conpiles with |ibnysqlclient
$./configure --wth-nmysqli=/path/to/ nysql _config --with-pdo-nysql =/path/to/nmysqgl _config --w th-mysql =/path/to

Library feature comparison

It is recommended to use the mysqind library instead of the MySQL Client Server library (libmysglclient).
Both libraries are supported and constantly being improved.

MySQL native driver (mysqind) [MySQL client server library
(I'i brysqgl cli ent)

Part of the PHP distribution Yes No

PHP version introduced 5.3.0 N/A

License PHP License 3.01 Dual-License
Development status Active Active
Lifecycle No end announced No end announced
PHP 5.4 and above; compile Yes No

default (for all MySQL extensions)

PHP 5.3; compile default (for all |No Yes

MySQL extensions)

Compression protocol support Yes (5.3.1+) Yes

SSL support Yes (5.3.3+) Yes

Named pipe support Yes (5.3.4+) Yes
Non-blocking, asynchronous Yes No

gueries

Performance statistics Yes No

LOAD LOCAL INFILE respects Yes No

the open_basedir directive

http://www.php.net/ini.open-basedir

Concepts

MySQL native driver (mysqind) [MySQL client server library
(I'i bnysqgl client)
Uses PHP's native memory Yes No
management system (e.g., follows
PHP memory limits)
Return numeric column as double |Yes No
(COM_QUERY)
Return numeric column as string | Yes Yes
(COM_QUERY)
Plugin API Yes Limited
Read/Write splitting for MySQL Yes, with plugin No
Replication
Load Balancing Yes, with plugin No
Fail over Yes, with plugin No
Lazy connections Yes, with plugin No
Query caching Yes, with plugin No
Transparent query manipulations |Yes, with plugin No
(E.g., auto-EXPLAIN or
monitoring)
Automatic reconnect No Optional

2.5 Concepts

Copyright 1997-2019 the PHP Documentation Group.

These concepts are specific to the MySQL drivers for PHP.

2.5.1 Buffered and Unbuffered queries
Copyright 1997-2019 the PHP Documentation Group.

Queries are using the buffered mode by default. This means that query results are immediately transferred
from the MySQL Server to PHP and then are kept in the memory of the PHP process. This allows
additional operations like counting the number of rows, and moving (seeking) the current result pointer. It
also allows issuing further queries on the same connection while working on the result set. The downside
of the buffered mode is that larger result sets might require quite a lot memory. The memory will be

kept occupied till all references to the result set are unset or the result set was explicitly freed, which will
automatically happen during request end the latest. The terminology "store result" is also used for buffered
mode, as the whole result set is stored at once.

Note

When using libmysqglclient as library PHP's memory limit won't count the memory
used for result sets unless the data is fetched into PHP variables. With mysqind the
memory accounted for will include the full result set.

Unbuffered MySQL queries execute the query and then return a resource while the data is still waiting on
the MySQL server for being fetched. This uses less memory on the PHP-side, but can increase the load
on the server. Unless the full result set was fetched from the server no further queries can be sent over the
same connection. Unbuffered queries can also be referred to as "use result".

Character sets

Following these characteristics buffered queries should be used in cases where you expect only a limited
result set or need to know the amount of returned rows before reading all rows. Unbuffered mode should
be used when you expect larger results.

Because buffered queries are the default, the examples below will demonstrate how to execute unbuffered
gueries with each API.

Example 2.3 Unbuffered query example: mysqli

<?php
$nysqgli = new nysqli("local host", "my_user", "ny_password", "world")
$uresult = $nysqli->query("SELECT Nanme FROM City", MYSQ.I USE RESULT)

if ($uresult) {
while ($row = $uresult->fetch_assoc()) {
echo $rowf' Nanme'] . PHP_EQL
}
}

$ur esul t - >cl ose()
?>

Example 2.4 Unbuffered query example: pdo_mysq|

<?php
$pdo = new PDQ(" nysql : host =l ocal host ; dbname=wor | d", 'ny_user', 'ny_pass')
$pdo- >set At t ri but e(PDO. : MYSQL_ATTR _USE_BUFFERED QUERY, fal se);

$uresult = $pdo->query(" SELECT Nane FROM Gity")
if ($uresult) {
while ($row = $uresul t->fetch(PDO : FETCH _ASSCC)) {
echo $rowf' Name'] . PHP_ECL
}
}

2>

Example 2.5 Unbuffered query example: mysql

<?php
$conn = nysql _connect ("l ocal host", "my_user", "ny_pass")
$db = nysql _sel ect _db("worl d")

$uresult = nysql _unbuffered_query("SELECT Nane FROM City")
if ($uresult) {
while ($row = nysql _fetch_assoc($uresult)) {
echo $rowf' Name'] . PHP_ECL
}
}

?>

2.5.2 Character sets

Copyright 1997-2019 the PHP Documentation Group.

Character sets

Ideally a proper character set will be set at the server level, and doing this is described within the Character
Set Configuration section of the MySQL Server manual. Alternatively, each MySQL API offers a method to
set the character set at runtime.

The character set and character escaping

The character set should be understood and defined, as it has an affect on every
action, and includes security implications. For example, the escaping mechanism
(e.g., nysqli _real escape_string for mysqli, nysql _real escape_string
for mysql, and PDO:. : quot e for PDO_MySQL) will adhere to this setting. It is
important to realize that these functions will not use the character set that is defined
with a query, so for example the following will not have an effect on them:

Example 2.6 Problems with setting the character set with SQL

<?php
$nmysqgli = new nysqli ("l ocal host", "my_user", "ny_password", "world");

/1 WII NOT affect $nysqli->real _escape_string();
$nysqli->query("SET NAMVES utf8");

/1 WII NOT affect $nysqli->real _escape_string();
$nysql i - >query(" SET CHARACTER SET utf8");

// But, this will affect $nysqli->real _escape_string();
$nysqli->set_charset (' utf8');

/] But, this will NOT affect it (utf-8 vs utf8) -- don't use dashes here
$nysqli->set_charset (' utf-8");

?>

Below are examples that demonstrate how to properly alter the character set at runtime using each API.
Possible UTF-8 confusion

Because character set names in MySQL do not contain dashes, the string "utf8" is
valid in MySQL to set the character set to UTF-8. The string "utf-8" is not valid, as
using "utf-8" will fail to change the character set.

Example 2.7 Setting the character set example: mysqli

<?php
$nysqli = new nysqli("local host", "nmy_user", "ny_password", "world");

printf("Initial character set: %\n", $nysqli->character_set_nane());

if (!$nysqli->set_charset('utf8)) {
printf("Error |oading character set utf8: %\n", $nysqli->error);
exit;

}

echo "New character set information:\n";
print_r($nysqli->get_charset());

?>

http://dev.mysql.com/doc/mysql/en/charset-configuration.html
http://dev.mysql.com/doc/mysql/en/charset-configuration.html
http://www.php.net/PDO::quote

Character sets

Example 2.8 Setting the character set example: pdo_mysq|

Note: This only works as of PHP 5.3.6.

<?php

$pdo = new PDQ(" nysql : host =l ocal host ; dbname=wor | d; charset =ut f 8", 'ny_user'

?>

Example 2.9 Setting the character set example: mysql

<?php

$conn = nysql _connect ("l ocal host", "ny_user", "ny_pass");

$db = nysql _sel ect _db("world");

echo 'Initial character set: ' . nysqgl_client_encoding($conn) . "\n"

if (!'nysqgl_set _charset('utf8' , $conn)) {
echo "Error: Unable to set the character set.\n"

exit;
}
echo ' Your current character set is: ' . nysqgl_client_encodi ng($conn)
2>

'my_pass');

10

Chapter 3 MySQL Improved Extension

Table of Contents

G @ =T o T PSPPSR 14
G @ 1W Tt Q=1 = L Ao 13 o [18
3.2.1 Dual procedural and object-oriented INtEIfACEccoviiiiiiiiiii i 18
I o] o 1=l o] £ PPR 20
3.2.3 EXECULING STALEMENTS ...ouuiiiii it e e e e e e e e e e e e et e et e et e e et e eaan s 22
3.2.4 Prepared STAtEIMENTSiiiii it e e e e e e e e e e 26
I SIS (o] =T I = o ol =T U =SSP 33
I Y L0111) SIS = (=T 4=) PPN 37
3.2.7 API Support fOr tranSACIIONSc.uuiiiii e ei e e e e e e e e e e e e e e e e 39
G B 1V =] - To = 1 - PP 40
TR 11y = T T @] T [T o 42
G0 A = 1= o [(=10 0 =] o £ PP 42
I 2 |) =11 = 11T o PP 42
3.3.3 RUNtIME CONfIQUIALION ... ciiie e e e e e e e e e e e an s 44
G TR J0 A LT 0B o= I 1= Lt 46
3.4 The mysqli Extension and Persistent CONNECHIONSccouuiiiiiiiiii e e eens 46
3.5 Predefined CONSLANTSiiiiii et e et e e e et e e et e e et e et e e aaans 47
TG o] (=T PP PP 50
3.7 The MySQLi Extension FUNCHON SUMMAIYcc.uiiiiiiiii e e e e e e e e e et e e e e e e aaaeeeen 51
GRS T ot U 1]][57
3.8.1 MySQLi extension basiC €XamMPIEScouui i 57
e I I o TN 4 £ST | T = 1 59
3.9.1nysqli::$affected rows, mysqgli_affected_rowsccccooeieiiiiiniiiiiiiniiiiinei e 62
3.9.2mysqgli::autocommt, mysqgli _aut OCOMM T ..oooiiiiii e e 65
3.9.3nysqgli::begin_transaction, mysqli_begin_transacti oncccoccoviviieeniennninnnnn. 67
3.9.4 mysqli::change_user, nysqli _Change_USercoccoviiiiiiiiiiiiiii e 68
3.95nysqgli::character_set name, nysqgli _character_set_naneccocceevviivinnennnns 71
3.9.6 Mysqli::close, MYSOIT _Cl OSE i e 72
3.9.7 nmysqgli::commit, MysSgl i _COMMI T .o e ees 73
3.9.8 nysqli:: $connect _errno, mysqgli _CONNECE _ErrNO .cooeveeveiieiiiiiiieieiiii e eeii e 75
3.9.9 nysqli:: $connect _error, mysqgli _CONNECE _Er T Ol .coiiiiiiiiiiiiiiiiieieiiie e 77
3.9.10nysqli::__construct, mysqli::connect, nmysqgli_connectccoeiiiiiiiieiinnnnnns 78
3.9.11 nysqli::debug, mysqli _deBUQ .o 82
3.9.12 nysql i ::dunmp_debug_info, nmysqgli_dunmp_debug info ...ccoooiiiiiiiniiiiiiiiins 83
3.9.13 nysqli::$errno, NYSAl i _BI T N0 coi e e e e e e 83
3914 nysqgli::$error_list,nysqli _error_IiSt i 85
3.9.05 Mysqli:: Berror, MYSOl i BT OF i e et e e e e e e e 86
3.9.16 nysqli::$field_count,nysqli_field countccooooviiiiiiiiiiiiiniiiiii e, 88
3.9.17 mysql i ::get_charset, nysqgli_get_charsetoccooiiiiiiiiiiiii i 90
3.9.18 nysqli::$client_info,nysqgli::get_client_info,
(00 VAo | e =2 S o = 0 X S ¥ o PP 91
3.9.19 nysqli::$client_version,nysqgli_get_client_version ... 92
3.9.20 nysql i::get_connection_stats, nysqgli_get_connection_statsccoceunnen. 93
3.9.21 nysqli:: $host _info, mysqgli_get_host _iNfo .o, 96
3.9.22 nysqli:: $protocol _version,nysqli_get_proto_info ...cococoeeiiiiiiiiniiiiiiinnenennnn, 97
3.9.23 nysqli:: $server_info,nysqli::get_server_info,
(00 VAo | e L= = =1 Y4 = S I) o P 99
3.9.24 nysqli::$server_version, mysqli_get_Server_VersSi ONccccooeveveeiiiieeeeninnennens 100

11

3.9.25 nysql i :
3.9.26 nysql i :

3.9.27 nysql i ::

3.9.28 nysql i :

3.9.29 nysqli::
3.9.30 mysqli::
3.9.31 nmysqli::
3.9.32 mysql i ::

3.9.33 nysql i :

3.9.34 nysqli::
3.9.35 nysqli::
3.9.36 nysqli::

3.9.37 nysql i :

3.9.38 nysqli::
3.9.39 nysql i ::

nmysqli _real

_e

3.9.40 nysql i ::
3.941 nysqli::
3.9.42 nysqli::

3.9.43 nysql i :

3.9.44 nysqli::
3.9.45 nysqli::

3.9.46 nmysql i :
3.9.47 nysql i :
3.9.48 nysql i :
3.9.49 nysql i :
3.9.50 nysql i:

3.9.51 nysqli::

3.10.4 nysqli _stnt::
3.10.5nysqli _stnt::
3.10.6 mysql i _stnt:
3.10.7 nysqli _stnt::
3.10.8 nysqli _stnt:
3.10.9 mysql i _stnt:
3.10.10 nysql i _stnt:
3.10.11 nmysqgl i _stnt:
3.10.12 mysql i _stnt:
3.10.23 mysql i _stnt:
3.10.14 nysql i _stnt::
3.10.15 nysql i _stnt:
3.10.16 nysql i _stnt:

cget_warni ngs, mysqgli _get _War Ni NOS ..vvieiiiiecieeie e e 102
SBINf O, MYSALT T NF O i 102

FNEE, MYSOET TNt e 104

c$insert _id, nysqli _insert _1d . 105

Kii LT, mysgli _Ki T e 107
more_results, mysqli _NDre_resultsS i 108
mul ti _query, mysqgli _MUlti _QUEIY .o 109
next _result, mysgli_next _result ..o, 111

SOPtions, MYSOl T _OPLtT ONS i e 112

[I Yo TR 0 2o | I N oY T 114
POI T, MySQl i POl e e 116

prepare, MYSOl i _PrePar @ .o 117

o U L= YA 4 VA=Y o | I o [= 120

real _connect, mysqli _real _CONNECtccooveiiiiiiiiiii e 123
real escape_string,nysqli::escape_string,

Y o= 1 o == A o o P 127
real _query, nysqli _real _QUEIY ..o e 130
reap_async_query, nysqgli _reap_asynC_qUEerYccoceeeerriereneenneennenns 130
refresh, nysqgli _refresh . 131

:rel ease_savepoi nt, nysqgli _rel ease_savepointccoeeevviieiinennnnnn. 132

roll back, mysqli _rol 1 backccoooiiiiiiiii e 132
rpl _query_type, nysqli _rpl _query type oo, 135

ssavepoi nt, Nysqgl i _Savepoi Nt ..o 136
cselect _db, nysqgli_select _db .o, 136
csend_query, MySqli _SeNA_QUETY euiieiiiiiiii e ee e e e e e 138
:set_charset, nysgli_set_charsetccccooviiiiiiiiiiiice e 139
:set _local __infile_default,mysqli_set local __infile_ default ... 141

set _local _infile_handler,mysqli_set |ocal __infile_handler ... 141

3.9.52 nysqgli::$sqglstate, mysgli _SOl Stat @ .coovviiiiiiiiiii e 144
3.9.53 nmysqli::ssl _set, MySqli _SSI Sl i 146
3954 nysqli::stat, MYSOl i ST Al .o 147
3955 mysqli::stm _init,mysqgli _Stm _init o 148
3.956 nmysqli::store_result,mysqli_store_result ..o, 149
3.957 nysqgli::$thread_id, nysqli_thread i d ..., 150
3.958 nysqli::thread_safe,nysqgli _thread safeccccooiiiiniiiiiii e 152
3.959 nmysqgli::use_result,mysqgli_UsSe result .. 152
3.9.60 nysql i :: $war ni ng_count, mysqgl i _War ni NQ_COUNTocieuuiiiriiiiniereiinee e eeeeenn 155
3.10 The MySqli_SIMLE CIASSuuiiiiiiii e e e e e e e e e e e e e et e e ean e etaees 157
3.10.1 nysqli_stmt:: $affected_rows, nysqli_stnt_affected_rowscccceeevvevennnnnns 158
3.10.2nmysqli _stnt::attr_get,nysqgli_stmt_attr_get .ocoovreiiiiiiiiiec e, 160
3.10.3nysqli _stnt::attr_set,nysqgli_sStm_attr_Set ..cccovviviiiiiiiiiiiicceeee e, 161

bi nd_param nysqgli _stm _bind_param.......ccc.ccooiiiiiiiiiiiniinennnns 162
bind result,mysqli_stnt_bind resultccoccooiiiiiiiiiiinninnnnn.. 165
cclose, nysqgli St _ClOSE oiiiiiii e, 167
I o 1 1= S ¥ T P 168
cdata_seek, nysqgli_stmt _data_seekccoiiiiiiiiiiiiici, 168
2$errno, Nysqli _SEMt _errNo e 171
c$error_list,nysqli_stmt_error_list .iiiiiiiiiiiiiciinieeeee, 173
s$error, nysqli _SEMt _error . 175
cexecute, nysgli _Stm _eXeCUt @ covvvveiii e 177
cfetch,nysqgli_stmt _fetch e, 180

$field_count,nysqgli_stnt_field countcccccvrriiiiiniiennininnnn, 182
cfree_result,nysqgli_stmt _free_ result ...ocooovviiiiiiiiiininnnnn. 182
cget _result,nmysqgli_stnt_get _result ..ooocoviiiiiiniiiiiic, 183

12

3.10.17 nysql i _stnt::get_warnings, mysqgli_stnt_get_warni Ngsccceveeveenieeniennnns 185
3.10.18 mysqgli_stnt::$insert _id, mysqgli_stmt_insert_id ... 186
3.10.19 nysqli _stnt::nore_results, mysqgli_stnt_nmore_resultsoooceveeiiiiiiiinnennnns 186
3.10.20 nysqli _stnt::next_result,nysqli_stm_next_resultcoccovriiiiiiiiiinnnns 187
3.10.21 nysqli _stnt::$numrows, nysqli_stnt::numrows,
00 VAo | I = 0 S 1 10 0 1L 188
3.10.22 mysql i _stnt:: $param count, mysqgl i _stnt_paramcountcccceeevvevineriennnnnn. 190
3.10.23 mysqli _stnt::prepare, mysqli _Stnt _Prepare ..ooccovceeeevieiiii e e 191
3.10.24 mysqli _stnt::reset, mysqgli St _reSet .oviiiiiii i 194
3.10.25nysqgli _stm::result_netadata, nysqgli_stnt _result_netadata................. 195
3.10.26 nysql i _stm::send_|l ong _data, mysqli _stnt_send long dataccc.......... 197
3.10.27 nmysql i _stnt::$sqlstate, nysqli_stnt_sqglstate ...oooviiiiiiiiiiniineec, 198
3.10.28 nysqli _stnt::store_result,mysqgli_stnt_store_ resultcoccoviiiiiiniinnnnnnns 200
3.11 The MYSQli_FESUIL CIASS .. c.uuiiiiiiii e e e e e e e e e e e et e et eaanas 203
3.11.1nysqgli _result::$current_field,nysqgli_field_ tell .oooiiiiiiiiiiiiiiiiiininnnnnn. 204
3.11.2nmysqli _result::data_seek, mysqgli_data_seekccocoiiiiiiiiiiiiiiiii s 206
3.11.3nysqli _result::fetch_all,mysqgli _fetch_all ..., 208
3114 nysqli _result::fetch_array,nysqli_fetch_arrayccooiiiiiiiiiiiiiiiineineenn, 209
3.11.5nysqli _result::fetch_assoc,nysqli_fetch _assoC ...ccccovviviiiviiiiiiiiiiiiiinccneenn, 211
3.11.6nysqgli _result::fetch field direct,mysqli _fetch field direct 214
3.11.7nysqli _result::fetch _field,nmysqli_fetch field.....ccoooiiiiiiiiiiiiiiiiiinnnnnnn. 217
3.11.8nysqli _result::fetch fields,nysqgli_fetch fieldscoooriiiiiiiiininninnnnn. 219
3.11.9nysqli _result::fetch_object,nysqgli_fetch_object ...coccooviiiiiiiniiinnn. 222
3.11.10 mysqli _result::fetch_row, mysqli _fetch row.....cccocoviiiiiiiiiiciee e 225
3.11.11 nmysqli_result::$field_count,mysqgli_numfieldscooooiniiiiiiiniiiiiinnniinnnnn.. 227
3.11.12 nmysqli _result::field _seek,nysqgli_field seekooooiiiiiiiiiiiiiiiiiinn, 228
3.11.13nysqgli _result::free,nysqgli_result::close,
mysqli _result::free_result,mysqgli _free_result ..o, 230
3.11.14 nysqli _result::$lengths, mysqgli_fetch_lengthsccoooiiiiiiiiiiiiinn, 231
3.11.15 nmysqli _result::$num rows, mysSql i _NUM FOWS ...cviiiiiiiiiiiiiiieeeiii e eeii e 233
N 7 I 1= 1) Yo | Lo Y= G = TP 235
3.12.1 nysqgl i _driver::enbedded_server _end, nysqli _enbedded_server_end 236
3.12.2nysql i _driver::enbedded_server_start,nysqgli_enbedded _server_start .. 236
3.12.3 nysqli _driver::$report_node, nysqli _report ..oiiiniiiiiiinieiiineeceen e 237
3.13 The Mysqli_ WarniNg ClASSccuuiiiiiieiiii e e e e e e e e e e e e e et e e ean e ean s 239
3.13.1 mysqgli _Warni NQ: © _ CONSTFUCT .iieiiiiiii e e e e e e e e e e 240
700 I T2 o1 VA=Y o | I TTL= U T o R = 240
3.14 The mysqli_SOl_EXCEPLION CIASScivuiiii et e e e e e e e e e eanes 240
3.15 Aliases and deprecated Mysqli FUNCHONScoouiiiiiiiii e e e e 241
3.15.2 MySl i _ DI N _Par @M. 241
3.15.2 nysqli _Di NA_FeSUlL T o 241
3.15.3 mysqgli _Client _ENCOAI MO couiiiniiiii e e e e e e e e eaees 242
I T o0 A VA=Y o | I o0 1 = o 242
3.15.5nysqli::di sable_reads_from naster,
mysql i _di sabl e_reads _from MBST €5 ..o 243
3.15.6 mysqli _di sabl € I Pl Par SE i 243
3.15.7 nysql i _enabl e_reads_from MBST €ooeiiiiiii i 244
3.15.8 mysql i _enabl @ IPl _Par S€ i 244
T e I o VAT o | I I ==Y o= ¥ o 1= = A I T 245
G 700 o Tt KO I V=0 | T = Q=T o = P 245
700 Lo 0t I V=Y o | T = o P 245
3.15.12 nysql i _get _CaChe ST Al S .iuiiiiiiiii i e e e e 245
3.15.13 nmysqli _get _Cli Nt St Al S .iiiiiiiii i e e e 246
3.15.214 nmysqli _get 11 NKS ST Al S ciuiiiiiiiii i e e e e 249

Overview

3.15.15 nysql i _get _MBt @0t @ ..ovvuieniiiii e 249
TN T AT 0 VA= | I 012 3 A= o U= 249
B T80 o0 A 1 4 V2= o | I o = V= Y0 o o U N 250
G 700 Lo W00 I B V=T o | T =Y o 1 1 PP 250
3.15.19 nysqli _rpl _parse_enabl €d ..o 250
3.15.20 MY SOl i Pl Pr OB e 251
3.15.21 nysql i _Send | ONQ_dat @ ..ccuieniiinii i 251
3.15.22 nysqli::set _opt, MySqli _Set 0Pl i 251
3.15.23 MYSOl I Sl AVE _QUEBT Y i e e e 252
G0 G @1 = T To 1= [Yo T PP 252

Copyright 1997-2019 the PHP Documentation Group.

The nysql i extension allows you to access the functionality provided by MySQL 4.1 and above. More
information about the MySQL Database server can be found at http://www.mysqgl.com/

An overview of software available for using MySQL from PHP can be found at Section 3.1, “Overview”
Documentation for MySQL can be found at http://dev.mysql.com/doc/.
Parts of this documentation included from MySQL manual with permissions of Oracle Corporation.

Examples use either the world or sakila database, which are freely available.

3.1 Overview

Copyright 1997-2019 the PHP Documentation Group.

This section provides an introduction to the options available to you when developing a PHP application
that needs to interact with a MySQL database.

What is an API?

An Application Programming Interface, or API, defines the classes, methods, functions and variables that
your application will need to call in order to carry out its desired task. In the case of PHP applications that
need to communicate with databases the necessary APIs are usually exposed via PHP extensions.

APIs can be procedural or object-oriented. With a procedural API you call functions to carry out tasks, with
the object-oriented API you instantiate classes and then call methods on the resulting objects. Of the two
the latter is usually the preferred interface, as it is more modern and leads to better organized code.

When writing PHP applications that need to connect to the MySQL server there are several API options
available. This document discusses what is available and how to select the best solution for your
application.

What is a Connector?

In the MySQL documentation, the term connector refers to a piece of software that allows your application
to connect to the MySQL database server. MySQL provides connectors for a variety of languages,
including PHP.

If your PHP application needs to communicate with a database server you will need to write PHP code to
perform such activities as connecting to the database server, querying the database and other database-
related functions. Software is required to provide the API that your PHP application will use, and also
handle the communication between your application and the database server, possibly using other

14

http://www.mysql.com/
http://dev.mysql.com/doc/
http://dev.mysql.com/doc/world-setup/en/index.html
http://dev.mysql.com/doc/sakila/en/index.html

Overview

intermediate libraries where necessary. This software is known generically as a connector, as it allows your
application to connect to a database server.

What is a Driver?

A driver is a piece of software designed to communicate with a specific type of database server. The driver
may also call a library, such as the MySQL Client Library or the MySQL Native Driver. These libraries
implement the low-level protocol used to communicate with the MySQL database server.

By way of an example, the PHP Data Objects (PDO) database abstraction layer may use one of several
database-specific drivers. One of the drivers it has available is the PDO MYSQL driver, which allows it to
interface with the MySQL server.

Sometimes people use the terms connector and driver interchangeably, this can be confusing. In the
MySQL-related documentation the term “driver” is reserved for software that provides the database-specific
part of a connector package.

What is an Extension?

In the PHP documentation you will come across another term - extension. The PHP code consists of a
core, with optional extensions to the core functionality. PHP's MySQL-related extensions, such as the
nmysqgl i extension, and the mysql extension, are implemented using the PHP extension framework.

An extension typically exposes an API to the PHP programmer, to allow its facilities to be used
programmatically. However, some extensions which use the PHP extension framework do not expose an
API to the PHP programmer.

The PDO MySQL driver extension, for example, does not expose an API to the PHP programmer, but
provides an interface to the PDO layer above it.

The terms API and extension should not be taken to mean the same thing, as an extension may not
necessarily expose an API to the programmer.

What are the main PHP API offerings for using MySQL?

There are three main API options when considering connecting to a MySQL database server:
* PHP's MySQL Extension

» PHP's mysqli Extension

* PHP Data Objects (PDO)

Each has its own advantages and disadvantages. The following discussion aims to give a brief introduction
to the key aspects of each API.

What is PHP's MySQL Extension?

This is the original extension designed to allow you to develop PHP applications that interact with a MySQL
database. The nysql extension provides a procedural interface and is intended for use only with MySQL
versions older than 4.1.3. This extension can be used with versions of MySQL 4.1.3 or newer, but not all of
the latest MySQL server features will be available.

Note

If you are using MySQL versions 4.1.3 or later it is strongly recommended that you
use the nysqgl i extension instead.

15

Overview

The nysql extension source code is located in the PHP extension directory ext / mysql .
For further information on the nysql extension, see Chapter 6, Original MySQL API.
What is PHP's mysqli Extension?

The nysql i extension, or as it is sometimes known, the MySQL improved extension, was developed
to take advantage of new features found in MySQL systems versions 4.1.3 and newer. The nysql i
extension is included with PHP versions 5 and later.

The nysql i extension has a number of benefits, the key enhancements over the nysql extension being:
» Object-oriented interface
» Support for Prepared Statements
e Support for Multiple Statements
» Support for Transactions
» Enhanced debugging capabilities
» Embedded server support
Note

If you are using MySQL versions 4.1.3 or later it is strongly recommended that you
use this extension.

As well as the object-oriented interface the extension also provides a procedural interface.

The nysqgl i extension is built using the PHP extension framework, its source code is located in the
directory ext / nysql i .

For further information on the nysql i extension, see Chapter 3, MySQL Improved Extension.
What is PDO?

PHP Data Objects, or PDO, is a database abstraction layer specifically for PHP applications. PDO provides
a consistent API for your PHP application regardless of the type of database server your application will
connect to. In theory, if you are using the PDO API, you could switch the database server you used, from
say Firebird to MySQL, and only need to make minor changes to your PHP code.

Other examples of database abstraction layers include JDBC for Java applications and DBI for Perl.

While PDO has its advantages, such as a clean, simple, portable API, its main disadvantage is that it
doesn't allow you to use all of the advanced features that are available in the latest versions of MySQL
server. For example, PDO does not allow you to use MySQL's support for Multiple Statements.

PDO is implemented using the PHP extension framework, its source code is located in the directory ext /
pdo.

For further information on PDO, see the http://www.php.net/book.pdo.
What is the PDO MYSQL driver?

The PDO MYSQL driver is not an API as such, at least from the PHP programmer's perspective. In fact
the PDO MYSQL driver sits in the layer below PDO itself and provides MySQL-specific functionality. The

16

http://www.php.net/book.pdo

Overview

programmer still calls the PDO API, but PDO uses the PDO MYSQL driver to carry out communication with

the MySQL server.

The PDO MYSQL driver is one of several available PDO drivers. Other PDO drivers available include
those for the Firebird and PostgreSQL database servers.

The PDO MYSQL driver is implemented using the PHP extension framework. Its source code is located in
the directory ext / pdo_nysql . It does not expose an API to the PHP programmer.

For further information on the PDO MYSQL driver, see Chapter 4, MySQL Functions (PDO_MYSQL).

What is PHP's MySQL Native Driver?

In order to communicate with the MySQL database server the nysql extension, nysql i and the PDO
MYSQL driver each use a low-level library that implements the required protocol. In the past, the only
available library was the MySQL Client Library, otherwise known as | i brmysql cl i ent .

However, the interface presented by | i bnysqgl cl i ent was not optimized for communication with PHP
applications, as | i bnysql cl i ent was originally designed with C applications in mind. For this reason
the MySQL Native Driver, nysqgl nd, was developed as an alternative to | i brrysql cl i ent for PHP

applications.

The nysql extension, the nysql i extension and the PDO MySQL driver can each be individually
configured to use either | i bnysql cl i ent or mysqgl nd. As nysql nd is designed specifically to be utilised
in the PHP system it has numerous memory and speed enhancements over | i bnysql cl i ent. You are
strongly encouraged to take advantage of these improvements.

Note

The MySQL Native Driver can only be used with MySQL server versions 4.1.3 and

later.

The MySQL Native Driver is implemented using the PHP extension framework. The source code is located
in ext / nysqgl nd. It does not expose an API to the PHP programmer.

Comparison of Features

The following table compares the functionality of the three main methods of connecting to MySQL from

PHP:

Table 3.1 Comparison of MySQL API options for PHP

PHP's mysqli Extension |PDO (Using PDO PHP's MySQL
MySQL Driver and Extension
MySQL Native Driver)
PHP version introduced |5.0 5.0 Prior to 3.0
Included with PHP 5.x yes yes Yes

MySQL development
status

Active development

Active development as of
PHP 5.3

Maintenance only

Prepared Statements

Recommended by Yes - preferred option Yes No
MySQL for new projects

API supports Charsets Yes Yes No
API supports server-side |Yes Yes No

17

Quick start guide

PHP's mysqli Extension |PDO (Using PDO PHP's MySQL
MySQL Driver and Extension
MySQL Native Driver)
API supports client-side |No Yes No
Prepared Statements
API supports Stored Yes Yes No
Procedures
API supports Multiple Yes Most No
Statements
Supports all MySQL 4.1+ |Yes Most No
functionality

3.2 Quick start guide

Copyright 1997-2019 the PHP Documentation Group.
This quick start guide will help with choosing and gaining familiarity with the PHP MySQL API.

This quick start gives an overview on the mysqli extension. Code examples are provided for all major
aspects of the API. Database concepts are explained to the degree needed for presenting concepts
specific to MySQL.

Required: A familiarity with the PHP programming language, the SQL language, and basic knowledge of
the MySQL server.

3.2.1 Dual procedural and object-oriented interface

Copyright 1997-2019 the PHP Documentation Group.

The mysqli extension features a dual interface. It supports the procedural and object-oriented programming
paradigm.

Users migrating from the old mysqgl extension may prefer the procedural interface. The procedural interface
is similar to that of the old mysqgl extension. In many cases, the function names differ only by prefix. Some
mysqli functions take a connection handle as their first argument, whereas matching functions in the old
mysq| interface take it as an optional last argument.

Example 3.1 Easy migration from the old mysql extension

<?php
$nysqgli = nysqgli_connect ("exanpl e. cont’, "user", "password", "database");
$res = nysqli_query($nysqli, "SELECT 'Please, do not use ' AS _nsg FROM DUAL");

$row = nysqli _fetch_assoc($res);
echo $row[' _nmsg'];

$nmysqgl = nysql _connect ("exanpl e. cont', "user", "password");

mysql _sel ect _db("test");

$res = nysql _query("SELECT 'the nysql extension for new devel opnents.' AS _nsg FROM DUAL", $nysql)
$row = nysql _fetch_assoc($res);

echo $row[' _msg'];

?>

The above example will output:

18

Dual procedural and object-oriented interface

Pl ease, do not use the mysqgl extension for new devel opnents

The object-oriented interface

In addition to the classical procedural interface, users can choose to use the object-oriented interface.
The documentation is organized using the object-oriented interface. The object-oriented interface shows
functions grouped by their purpose, making it easier to get started. The reference section gives examples
for both syntax variants.

There are no significant performance differences between the two interfaces. Users can base their choice
on personal preference.

Example 3.2 Object-oriented and procedural interface

<?php
$nmysqli = nysqgli_connect ("exanpl e. cont’, "user", "password", "database");
if (nysqgli_connect_errno($nysqgli)) {
echo "Failed to connect to MySQ.: " . nysqgli_connect_error();
}
$res = nysqli_query($nmysqli, "SELECT 'A world full of ' AS _nmsg FROM DUAL");

$row = nysqli _fetch_assoc($res);
echo $row[' _nsg'];

$nysqgli = new nysqli ("exanpl e.cont', "user", "password", "database");
if ($nysqli->connect_errno) {

echo "Failed to connect to MySQL: " . $nysqli->connect_error
}

$res = $nysqli->query("SELECT ' choi ces to pl ease everybody.' AS _nsg FROM DUAL");
$row = $res->fetch_assoc();

echo $row[' _nmsg'];

?>

The above example will output:

A world full of choices to please everybody.

The object oriented interface is used for the quickstart because the reference section is organized that
way.

Mixing styles

It is possible to switch between styles at any time. Mixing both styles is not recommended for code clarity
and coding style reasons.

Example 3.3 Bad coding style

<?php

19

Connections

$nysqgli = new nysqli ("exanpl e.cont', "user", "password", "database");
if ($nysqli->connect_errno) {
echo "Failed to connect to MySQL: " . $nysqli->connect_error;
}
$res = nysqli_query($nysqli, "SELECT ' Possible but bad style.' AS _nsg FROM DUAL");
if (!%res) {
echo "Failed to run query: (" . $nysqgli->errno . ") " . $nysqli->error;
}

if ($row = $res->fetch_assoc()) {
echo $row ' _nsg'];
}

?>

The above example will output:

Possi bl e but bad style.

See also

mysqli:: _construct
nmysqli::query

mysqli _result::fetch_assoc
$mysqli::connect_errno
$mysqli::connect_error

$mysqli::errno

$mysqli::error

The MySQLI Extension Function Summary

3.2.2 Connections

Copyright 1997-2019 the PHP Documentation Group.

The MySQL server supports the use of different transport layers for connections. Connections use TCP/IP,
Unix domain sockets or Windows named pipes.

The hostname | ocal host has a special meaning. It is bound to the use of Unix domain sockets. It is not
possible to open a TCP/IP connection using the hostname | ocal host you must use 127. 0. 0. 1 instead.

Example 3.4 Special meaning of localhost

<?php
$nmysqgli = new nysqli ("l ocal host", "user", "password", "database");
if ($nysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $nysqli->connect_errno . ") " . $nysqli->connect_error;

echo $nysqgli->host_info . "\n";

$nmysqgli = new nysqli("127.0.0.1", "user", "password", "database", 3306);
if ($nysqli->connect_errno) {

echo "Failed to connect to MySQL: (" . $nysqli->connect_errno . ") " . $nysqli->connect_error;
}

20

Connections

echo $nysqgli->host_info . "\n"
?>

The above example will output:

Local host via UN X socket
127.0.0.1 via TCP/ I P

Connection parameter defaults

Depending on the connection function used, assorted parameters can be omitted. If a parameter is not
provided, then the extension attempts to use the default values that are set in the PHP configuration file.

Example 3.5 Setting defaults

nmysqli.defaul t _host=192. 168. 2. 27
nmysql i . defaul t _user=root

nmysqli.defaul t_pw=""

nmysql i . defaul t _port=3306

nmysql i . defaul t _socket =/t np/ nysqgl . sock

The resulting parameter values are then passed to the client library that is used by the extension. If the
client library detects empty or unset parameters, then it may default to the library built-in values.

Built-in connection library defaults

If the host value is unset or empty, then the client library will default to a Unix socket connection on
| ocal host . If socket is unset or empty, and a Unix socket connection is requested, then a connection to
the default socket on / t np/ nysql . sock is attempted.

On Windows systems, the host name . is interpreted by the client library as an attempt to open a Windows
named pipe based connection. In this case the socket parameter is interpreted as the pipe name. If not
given or empty, then the socket (pipe name) defaults to \ \ . \ pi pe\ MySQL.

If neither a Unix domain socket based not a Windows named pipe based connection is to be established
and the port parameter value is unset, the library will default to port 3306.

The mysqgind library and the MySQL Client Library (libmysglclient) implement the same logic for
determining defaults.

Connection options

Connection options are available to, for example, set init commands which are executed upon connect,
or for requesting use of a certain charset. Connection options must be set before a network connection is
established.

For setting a connection option, the connect operation has to be performed in three steps: creating a
connection handle with mysql i _i ni t, setting the requested options using nysql i _opt i ons, and
establishing the network connection with mnysql i _real _connect.

Connection pooling

21

Executing statements

The mysqli extension supports persistent database connections, which are a special kind of pooled
connections. By default, every database connection opened by a script is either explicitly closed by the
user during runtime or released automatically at the end of the script. A persistent connection is not.
Instead it is put into a pool for later reuse, if a connection to the same server using the same username,
password, socket, port and default database is opened. Reuse saves connection overhead.

Every PHP process is using its own mysqli connection pool. Depending on the web server deployment
model, a PHP process may serve one or multiple requests. Therefore, a pooled connection may be used
by one or more scripts subsequently.

Persistent connection

If a unused persistent connection for a given combination of host, username, password, socket, port and
default database can not be found in the connection pool, then mysqli opens a new connection. The use
of persistent connections can be enabled and disabled using the PHP directive mysqli.allow_persistent.
The total number of connections opened by a script can be limited with mysqgli.max_links. The maximum
number of persistent connections per PHP process can be restricted with mysqli.max_persistent. Please
note, that the web server may spawn many PHP processes.

A common complain about persistent connections is that their state is not reset before reuse. For example,
open and unfinished transactions are not automatically rolled back. But also, authorization changes which
happened in the time between putting the connection into the pool and reusing it are not reflected. This
may be seen as an unwanted side-effect. On the contrary, the name per si st ent may be understood as
a promise that the state is persisted.

The mysqli extension supports both interpretations of a persistent connection: state persisted, and state
reset before reuse. The default is reset. Before a persistent connection is reused, the mysqli extension
implicitly calls mysql i _change_user to reset the state. The persistent connection appears to the user as
if it was just opened. No artifacts from previous usages are visible.

The nysql i _change_user function is an expensive operation. For best performance, users may want to
recompile the extension with the compile flag MYSQLI _NO CHANGE USER ON_ PCONNECT being set.

It is left to the user to choose between safe behavior and best performance. Both are valid optimization
goals. For ease of use, the safe behavior has been made the default at the expense of maximum
performance.

See also

mysqli:: __construct
nysqgli::init
nysqli::options
mysqli::real _connect
nmysql i ::change_user

$mysqli::host_info
MySQLi Configuration Options
Persistent Database Connections

3.2.3 Executing statements

Copyright 1997-2019 the PHP Documentation Group.

Statements can be executed with the nysql i _query, nysqli _real query and

nysqgl i _mul ti _query functions. The nysql i _query function is the most common, and combines the
executing statement with a buffered fetch of its result set, if any, in one call. Calling nysql i _query is
identical to calling nysql i _real query followed by nysqli _store result.

22

http://www.php.net/manual/en/features.persistent-connections

Executing statements

Example 3.6 Connecting to MySQL

<?php
$nysqgli = new nysqli ("exanpl e.cont', "user", "password", "database");
if ($nysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $nysqgli->connect_errno . ") " . $nmysqgli->connect_error;
}

if (!$nysqli->query("DROP TABLE | F EXISTS test") ||
I $nysql i - >quer y(" CREATE TABLE test(id INT)") ||
I $nysql i - >query ("I NSERT | NTO test (id) VALUES (1)")) {
echo "Table creation failed: (" . $nysqgli->errno . ") " . $nysqli->error;

Buffered result sets

After statement execution results can be retrieved at once to be buffered by the client or by read row by
row. Client-side result set buffering allows the server to free resources associated with the statement
results as early as possible. Generally speaking, clients are slow consuming result sets. Therefore, it is
recommended to use buffered result sets. mysql i _query combines statement execution and result set
buffering.

PHP applications can navigate freely through buffered results. Navigation is fast because the result sets
are held in client memory. Please, keep in mind that it is often easier to scale by client than it is to scale the
server.

Example 3.7 Navigation through buffered results

<?php
$nysqli = new nysqli ("exanpl e.cont, "user", "password", "database");
if ($nysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $nysqli->connect_errno . ") " . $nysqli->connect_error;
}

if (!$nysqli->query("DROP TABLE | F EXI STS test") ||
1 $nysql i - >query(" CREATE TABLE test(id INT)") ||
I $nysql i ->query("I NSERT I NTO test(id) VALUES (1), (2), (3)")) {
echo "Table creation failed: (" . $nysqgli->errno . ") " . $nysqgli->error;

}

$res = $nysqli->query("SELECT id FROM test ORDER BY id ASC');

echo "Reverse order...\n";

for ($row no = $res->numrows - 1; $row no >= 0; $row no--) {
$res->dat a_seek($row_no) ;
$row = $res->fetch_assoc();
echo " id =" . $rowf'id] . "\n";

}

echo "Result set order...\n";

$r es- >dat a_seek(0) ;

while ($row = $res->fetch_assoc()) {
echo " id =" . $rowf'id] . "\n";
}

?>

23

Executing statements

The above example will output:

Reverse order..

id =3
id=2
id=1
Result set order..
id=1
id=2
id =3

Unbuffered result sets

If client memory is a short resource and freeing server resources as early as possible to keep server load
low is not needed, unbuffered results can be used. Scrolling through unbuffered results is not possible
before all rows have been read.

Example 3.8 Navigation through unbuffered results

<?php
$nysqli->real _query("SELECT id FROM test ORDER BY id ASC')
$res = $nysqli->use_resul t()

echo "Result set order...\n"

while ($row = $res->fetch_assoc()) {
echo " id =" . $rowf'id] . "\n";

}

?>

Result set values data types

The nysqli _query, nysqli _real queryandnysqli _multi query functions are used to execute
non-prepared statements. At the level of the MySQL Client Server Protocol, the command COM QUERY
and the text protocol are used for statement execution. With the text protocol, the MySQL server converts
all data of a result sets into strings before sending. This conversion is done regardless of the SQL result
set column data type. The mysq| client libraries receive all column values as strings. No further client-side
casting is done to convert columns back to their native types. Instead, all values are provided as PHP
strings.

Example 3.9 Text protocol returns strings by default

<?php
$nmysqgli = new nysqli ("exanpl e.cont, "user", "password", "database")
if ($nysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $nysqgli->connect_errno . ") " . $nysqli->connect_error
}

if (!$nysqli->query("DROP TABLE | F EXI STS test") ||
! $nysql i - >quer y(" CREATE TABLE test(id INT, |abel CHAR(1))") ||
I $nysqli->query("I NSERT I NTO test(id, l|abel) VALUES (1, 'a')")) {
echo "Table creation failed: (" . $nysqgli->errno . ") " . $nysqli->error

24

Executing statements

$res
$row

$nmysql i - >query(" SELECT id, |abel FROMtest WHERE id = 1");
$res->fetch_assoc();

printf("id = % (%)\n", $rowf'id], gettype($rowf'id]));
printf("label = % (%)\n", $row 'label'], gettype($row'label']));
2>

The above example will output:

id =1 (string)
| abel = a (string)

It is possible to convert integer and float columns back to PHP numbers by setting the

MYSQLI _OPT | NT_AND_FLOAT_NATI VE connection option, if using the mysqlnd library. If set, the
mysq|Ind library will check the result set meta data column types and convert numeric SQL columns to
PHP numbers, if the PHP data type value range allows for it. This way, for example, SQL INT columns are
returned as integers.

Example 3.10 Native data types with mysqglnd and connection option

<?php

$nysqgli = nysqli_init();

$mysql i - >opti ons(MYSQLI _OPT_| NT_AND_FLQOAT_NATI VE, 1);

$nysql i - >real _connect ("exanpl e. cont, "user", "password", "database");

if ($nysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $nysqli->connect_errno . ") " . $nysqli->connect_error;
}

if (!$nysqli->query("DROP TABLE | F EXI STS test") ||
I $nysql i - >query(" CREATE TABLE test(id INT, |abel CHAR(1))") ||
1'$nysqli->query("I NSERT I NTO test(id, l|abel) VALUES (1, 'a')")) {

echo "Table creation failed: (" . $nysqgli->errno . ") " . $nysqgli->error;
}
$res = $nysqli->query("SELECT id, |abel FROMtest WHERE id = 1");
$row = $res->fetch_assoc();

printf("id = % (%)\n", $rowf'id], gettype($rowf'id]));
printf("label = % (%)\n", $row 'label'], gettype($row'label']));
?>

The above example will output:

id =1 (integer)

| abel = a (string)
See also
mysqli:: _construct

25

Prepared Statements

nysqgli::init
nysqli::options
mysqli::real _connect

[
[
i
nysqli::query
[
[
[
[

mysqli::multi_query
mysqli::use_result

mysqli::store_result
mysqli _result::free

3.2.4 Prepared Statements
Copyright 1997-2019 the PHP Documentation Group.

The MySQL database supports prepared statements. A prepared statement or a parameterized statement
is used to execute the same statement repeatedly with high efficiency.

Basic workflow

The prepared statement execution consists of two stages: prepare and execute. At the prepare stage
a statement template is sent to the database server. The server performs a syntax check and initializes
server internal resources for later use.

The MySQL server supports using anonymous, positional placeholder with ?.

Example 3.11 First stage: prepare

<?php

$nysqli = new nysqli ("exanpl e.cont', "user", "password", "database");

if ($nysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $nysqgli->connect_errno . ") " . $nmysqgli->connect_error;

}

/* Non-prepared statenent */

if (!$nysqli->query("DROP TABLE | F EXI STS test") || !$nmysqli->query("CREATE TABLE test(id INT)")) {
echo "Table creation failed: (" . $nysqgli->errno . ") " . $nysqgli->error;

}

/* Prepared statenent, stage 1: prepare */
if (!($stnt = $nysqli->prepare("| NSERT | NTO test(id) VALUES (?)"))) {
echo "Prepare failed: (" . $nysqgli->errno . ") " . $nysqgli->error

}

?>

Prepare is followed by execute. During execute the client binds parameter values and sends them to the
server. The server creates a statement from the statement template and the bound values to execute it
using the previously created internal resources.

Example 3.12 Second stage: bind and execute

<?php
/* Prepared statement, stage 2: bind and execute */
$id =1
if (!$stnt->bind _paran("i", $id)) {
echo "Binding paraneters failed: (" . $stnt->errno . ") " . $stnt->error
}

26

Prepared Statements

if (!$stnt->execute()) {
echo "Execute failed: (" . $stnt->errno . ") " . $stnt->error;

}

?>

Repeated execution

A prepared statement can be executed repeatedly. Upon every execution the current value of the bound
variable is evaluated and sent to the server. The statement is not parsed again. The statement template is
not transferred to the server again.

Example 3.13 INSERT prepared once, executed multiple times

<?php

$nysqli = new nysqli ("exanpl e.cont, "user", "password", "database");

if ($nysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $nysqli->connect_errno . ") " . $nysqli->connect_error;

}

/* Non-prepared statenent */

if (!$nysqli->query("DROP TABLE I F EXISTS test") || !$nysqli->query("CREATE TABLE test(id INT)")) {
echo "Table creation failed: (" . $nysqgli->errno . ") " . $nysqli->error;

}

/* Prepared statement, stage 1: prepare */
if (!($stmt = $nysqli->prepare("| NSERT | NTO test(id) VALUES (?)"))) {

echo "Prepare failed: (" . $nysqgli->errno . ") " . $nysqgli->error;
}
/* Prepared statement, stage 2: bind and execute */
$id = 1;
if (!$stnt->bind_paranm("i", $id)) {
echo "Binding paraneters failed: (" . $stnt->errno . ") " . $stnt->error;
}
if (!$stnt->execute()) {
echo "Execute failed: (" . $stnt->errno . ") " . $stnt->error;
}

/* Prepared statenment: repeated execution, only data transferred fromclient to server */
for ($id = 2; $id < 5; $id++) {
if (!$stnt->execute()) {
echo "Execute failed: (" . $stnt->errno . ") " . $stnt->error;
}
}

/* explicit close recomrended */
$stnt - >cl ose();

/* Non-prepared statenent */
$res = $nysqli->query("SELECT id FROM test");

var _dunp($res->fetch_all ());
?>

The above example will output:

array(4) {

27

Prepared Statements

[0]=>
array(1) {
[0] =>
string(1) "1"
}
[1]=>
array(1) {
[0] =>
string(1) "2"
}
[2]=>
array(1) {
[0] =>
string(1) "3"
}
[3]=>
array(1) {
[0] =>
string(1) "4"
}
}

Every prepared statement occupies server resources. Statements should be closed explicitly immediately
after use. If not done explicitly, the statement will be closed when the statement handle is freed by PHP.

Using a prepared statement is not always the most efficient way of executing a statement. A prepared
statement executed only once causes more client-server round-trips than a non-prepared statement. This
is why the SELECT is not run as a prepared statement above.

Also, consider the use of the MySQL multi-INSERT SQL syntax for INSERTSs. For the example, multi-
INSERT requires less round-trips between the server and client than the prepared statement shown above.

Example 3.14 Less round trips using multi-INSERT SQL

<?php

if (!$nysqli->query("INSERT I NTO test(id) VALUES (1), (2), (3), (4")) {
echo "Multi-INSERT failed: (" . $nysqgli->errno . ") " . $nysqli->error

}

2>

Result set values data types

The MySQL Client Server Protocol defines a different data transfer protocol for prepared statements and
non-prepared statements. Prepared statements are using the so called binary protocol. The MySQL server
sends result set data "as is" in binary format. Results are not serialized into strings before sending. The
client libraries do not receive strings only. Instead, they will receive binary data and try to convert the
values into appropriate PHP data types. For example, results from an SQL | NT column will be provided as
PHP integer variables.

Example 3.15 Native datatypes

<?php
$nmysqgli = new nysqli ("exanpl e.cont, "user", "password", "database")
if ($nysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $nysqgli->connect_errno . ") " . $nysqli->connect_error

28

Prepared Statements

}

if (!$nysqli->query("DROP TABLE | F EXI STS test") ||
! $nysql i - >quer y(" CREATE TABLE test(id INT, |abel CHAR(1))") ||
I $nysqli->query("I NSERT I NTO test(id, l|abel) VALUES (1, 'a')")) {
echo "Table creation failed: (" . $nysqgli->errno . ") " . $nysqli->error;

}

$stnt = $nysqli->prepare("SELECT id, |abel FROMtest WHERE id = 1");
$st nt - >execut e();

$res = $stnt->get _result();

$row = $res->fetch_assoc();

printf("id = % (%)\n", $rowf'id], gettype($rowf'id]));
printf("label = % (%)\n", $row 'label'], gettype($row'label']));
2>

The above example will output:

id =1 (integer)
| abel = a (string)

This behavior differs from non-prepared statements. By default, non-prepared statements return all results
as strings. This default can be changed using a connection option. If the connection option is used, there
are no differences.

Fetching results using bound variables

Results from prepared statements can either be retrieved by binding output variables, or by requesting a
nysql i _result object.

Output variables must be bound after statement execution. One variable must be bound for every column
of the statements result set.

Example 3.16 Output variable binding

<?php
$nysqgli = new nysqli ("exanpl e.cont', "user", "password", "database");
if ($nysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $nysqli->connect_errno . ") " . $nysqli->connect_error;
}

if (!$nysqli->query("DROP TABLE | F EXI STS test") ||
! $nysql i - >quer y(" CREATE TABLE test(id INT, |abel CHAR(1))") ||
1 $nysqli->query("I NSERT I NTO test(id, l|abel) VALUES (1, 'a')")) {

echo "Table creation failed: (" . $nysqgli->errno . ") " . $nysqli->error;
}
if (!($stnmt = $nysqli->prepare("SELECT id, |abel FROMtest"))) {
echo "Prepare failed: (" . $nysqgli->errno . ") " . $nysqli->error;
}
if (!$stnt->execute()) {
echo "Execute failed: (" . $nysqgli->errno . ") " . $nysqgli->error;
}
$out _i d = NULL;

29

Prepared Statements

$out _| abel = NULL;
if (!'$stnt->bind_result($out_id, $out_|abel)) {
echo "Binding output paraneters failed: (" . $stnt->errno . ") " . $stnt->error;

}
while ($stnt->fetch()) {

printf("id = % (%), label = % (%)\n", $out_id, gettype($out_id), $out_|abel, gettype($out_|abel));
}

?>

The above example will output:

id =1 (integer), label = a (string)

Prepared statements return unbuffered result sets by default. The results of the statement are not implicitly
fetched and transferred from the server to the client for client-side buffering. The result set takes server
resources until all results have been fetched by the client. Thus it is recommended to consume results
timely. If a client fails to fetch all results or the client closes the statement before having fetched all data,
the data has to be fetched implicitly by nysql i .

It is also possible to buffer the results of a prepared statement using nysql i _stnt_store_resul t.
Fetching results using mysqli_result interface

Instead of using bound results, results can also be retrieved through the mysqli_result interface.
nysqgli _stmt _get result returns a buffered result set.

Example 3.17 Using mysqli_result to fetch results

<?php
$nysqgli = new nysqli ("exanpl e.cont', "user", "password", "database");
if ($nysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $nysqli->connect_errno . ") " . $nysqli->connect_error;
}

if (!$nysqli->query("DROP TABLE | F EXI STS test") ||
! $nysql i - >quer y(" CREATE TABLE test(id INT, |abel CHAR(1))") ||
I $nysqli->query("I NSERT I NTO test(id, l|abel) VALUES (1, 'a')")) {

echo "Table creation failed: (" . $nysqgli->errno . ") " . $nysqli->error;
}
if (!($stnmt = $nysqli->prepare("SELECT id, |abel FROMtest ORDER BY id ASC'))) {
echo "Prepare failed: (" . $nysqgli->errno . ") " . $nysqli->error;
}
if (!$stnt->execute()) {
echo "Execute failed: (" . $stnt->errno . ") " . $stnt->error;
}
if (! ($res = $stnt->get _result())) {
echo "Getting result set failed: (" . $stnt->errno . ") " . $stnt->error;
}

var _dunp($res->fetch_all());
?>

30

Prepared Statements

The above example will output:

array(1) {
[0]=>
array(2) {
[0]=>
int(1)
[1]=>
string(1) "a"

Using the nysql i _resul t interface offers the additional benefit of flexible client-side result set

navigation.

Example 3.18 Buffered result set for flexible read out

<?php
$nmysqgli = new nysqli ("exanpl e.cont', "user", "password", "database");
if ($nysqli->connect_errno) {

echo "Failed to connect to MySQL: (" . $nysqli->connect_errno . ") " . $nysqli->connect_error;

}

if (!$nysqli->query("DROP TABLE | F EXI STS test") ||
! $nysql i - >quer y(" CREATE TABLE test(id INT, [abel CHAR(1))") ||

I $nysqli->query("I NSERT I NTO test(id, label) VALUES (1, 'a'), (2, 'b"), (3,

echo "Table creation failed: (" . $nysqgli->errno . ") " . $nysqli->error;
}
if (!($stnt = $nysqli->prepare("SELECT id, |abel FROMtest"))) {
echo "Prepare failed: (" . $nysqgli->errno . ") " . $nysqli->error;
}
if (!$stnt->execute()) {
echo "Execute failed: (" . $stnt->errno . ") " . $stnt->error;
}
if (! ($res = $stnt->get _result())) {
echo "Getting result set failed: (" . $stnt->errno . ") " . $stnt->error;
}

for ($row no = ($res->numrows - 1); $row no >= 0; $row no--) {
$r es- >dat a_seek($row_no) ;
var _dunp($res->f et ch_assoc());

}

$res->cl ose();
2>

The above example will output:

array(2) {
["id"]=>
int(3)
["] abel "] =>

e |

31

Prepared Statements

string(1) "c"

array(2) {
["id"]=>
int(2)
["]abel "] =>
string(1) "b"

}

array(2) {
["id"]=>
int(1)
["] abel "] =>
string(1) "a"

}

Escaping and SQL injection

Bound variables are sent to the server separately from the query and thus cannot interfere with it. The
server uses these values directly at the point of execution, after the statement template is parsed. Bound
parameters do not need to be escaped as they are never substituted into the query string directly. A hint
must be provided to the server for the type of bound variable, to create an appropriate conversion. See the
nmysql i _stnt _bi nd_par amfunction for more information.

Such a separation sometimes considered as the only security feature to prevent SQL injection, but the
same degree of security can be achieved with non-prepared statements, if all the values are formatted
correctly. It should be noted that correct formatting is not the same as escaping and involves more logic
than simple escaping. Thus, prepared statements are simply a more convenient and less error-prone
approach to this element of database security.

Client-side prepared statement emulation

The API does not include emulation for client-side prepared statement emulation.

Quick prepared - non-prepared statement comparison

The table below compares server-side prepared and non-prepared statements.

Table 3.2 Comparison of prepared and non-prepared statements

Prepared Statement

Non-prepared statement

SELECT, repeated (n) execution

Client-server round trips, 2 1
SELECT, single execution

Statement string transferred from |1 1
client to server

Client-server round trips, 1+n n

Statement string transferred from
client to server

1 template, n times bound
parameter, if any

n times together with parameter, if
any

Input parameter binding API

Yes, automatic input escaping

No, manual input escaping

Output variable binding API

Yes

No

Supports use of mysqli_result API

Yes, use
mysqli _stnt_get result

Yes

Buffered result sets

Yes, use
mysqli _stnt_get _result

Yes, default of mysql i _query

32

Stored Procedures

Prepared Statement Non-prepared statement
or binding with
nmysqgli_stm store result

Unbuffered result sets Yes, use output binding API Yes, use nysqli _real query
with mysql i _use_resul t

MySQL Client Server protocol Binary protocol Text protocol
data transfer flavor

Result set values SQL data types |Preserved when fetching Converted to string or preserved
when fetching

Supports all SQL statements Recent MySQL versions support |Yes
most but not all

See also

nmysqgli::__construct
nmysqli::query
nysqli::prepare
nmysqgli_stmt::prepare
nmysqgli _stmt::execute
nmysql i _stmt::bind_param
nmysqgli_stmt::bind_result

3.2.5 Stored Procedures

Copyright 1997-2019 the PHP Documentation Group.

The MySQL database supports stored procedures. A stored procedure is a subroutine stored in the
database catalog. Applications can call and execute the stored procedure. The CALL SQL statement is
used to execute a stored procedure.

Parameter

Stored procedures can have | N, | NOUT and OUT parameters, depending on the MySQL version. The
mysqli interface has no special notion for the different kinds of parameters.

IN parameter
Input parameters are provided with the CALL statement. Please, make sure values are escaped correctly.

Example 3.19 Calling a stored procedure

<?php

$nysqgli = new nysqli ("exanpl e.cont', "user", "password", "database");

if ($nysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $nysqli->connect_errno . ") " . $nysqli->connect_error;

}

if (!$nysqli->query("DROP TABLE |F EXISTS test") || !$nysqli->query("CREATE TABLE test(id INT)")) {
echo "Table creation failed: (" . $nysqgli->errno . ") " . $nysqli->error;

}

if (!$nysqli->query("DROP PROCEDURE | F EXI STS p") ||
I $nysql i - >quer y(" CREATE PROCEDURE p(IN id_val INT) BEG N I NSERT | NTO test(id) VALUES(id_val); END;")) -
echo "Stored procedure creation failed: (" . $nysqgli->errno . ") " . $nysqli->error;

33

Stored Procedures

}
if (!$nysqli->query("CALL p(1)")) {

echo "CALL failed: (" . $nysqgli->errno . ") " . $nysqli->error;
}
if (! ($res = $nysqli->query("SELECT id FROMtest"))) {

echo "SELECT failed: (" . $nysqgli->errno . ") " . $nysqli->error;
}

var _dunp($res->f et ch_assoc());
?>

The above example will output:

array(1) {
["id"]=>
string(1) "1"
}

INOUT/OUT parameter
The values of | NOUT/OUT parameters are accessed using session variables.

Example 3.20 Using session variables

<?php
$nysqli = new nysqli ("exanpl e.cont', "user", "password", "database");
if ($nysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $nysqgli->connect_errno . ") " . $nmysqgli->connect_error;
}
if (!$nysqli->query("DROP PROCEDURE | F EXI STS p") ||
I $mysql i - >quer y(' CREATE PROCEDURE p(OUT msg VARCHAR(50)) BEG N SELECT "Hi!" |NTO nmsg; END;')) {
echo "Stored procedure creation failed: (" . $nysqgli->errno . ") " . $nysqli->error;
}
if (!'$nysqli->query("SET @sg = ""'") || !'$nysqli->query("CALL p(@sg)")) {
echo "CALL failed: (" . $nmysqgli->errno . ") " . $nysqgli->error;
}
if (!($res = $nysqli->query("SELECT @sg as _p _out"))) {
echo "Fetch failed: (" . $nysqgli->errno . ") " . $nysqgli->error;
}

$row = $res->fetch_assoc();
echo $row' _p_out'];
?>

The above example will output:

Hi !

Stored Procedures

Application and framework developers may be able to provide a more convenient API using a mix of
session variables and databased catalog inspection. However, please note the possible performance
impact of a custom solution based on catalog inspection.

Handling result sets

Stored procedures can return result sets. Result sets returned from a stored procedure cannot be fetched
correctly using nysql i _query. The nysql i _query function combines statement execution and fetching
the first result set into a buffered result set, if any. However, there are additional stored procedure result
sets hidden from the user which cause nysql i _query to fail returning the user expected result sets.

Result sets returned from a stored procedure are fetched using mysql i _real query or
nysqgl i _mul ti _query. Both functions allow fetching any number of result sets returned by a statement,
such as CALL. Failing to fetch all result sets returned by a stored procedure causes an error.

Example 3.21 Fetching results from stored procedures

<?php
$nysqli = new nysqli ("exanpl e.cont', "user", "password", "database");
if ($nysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $nysqgli->connect_errno . ") " . $nmysqgli->connect_error;
}

if (!$nysqli->query("DROP TABLE | F EXI STS test") ||
I $nysql i - >quer y(" CREATE TABLE test(id INT)") ||
I $nysql i - >query ("I NSERT | NTO test (id) VALUES (1), (2), (3)")) {
echo "Table creation failed: (" . $nysqgli->errno . ") " . $nysqli->error;

}

if (!$nysqli->query("DROP PROCEDURE | F EXI STS p") ||
I $mysql i - >quer y(' CREATE PROCEDURE p() READS SQL DATA BEG N SELECT id FROMtest; SELECT id + 1 FROM test

echo "Stored procedure creation failed: (" . $nysqgli->errno . ") " . $nysqli->error;
}
if (!$nysqli->nulti_query("CALL p()")) {
echo "CALL failed: (" . $nysqgli->errno . ") " . $nysqli->error;
}
do {

if ($res = $nysqli->store_result()) {
printf("---\n");
var _dunp($res->fetch_all());
$res->free();
} else {
if ($nysqli->errno) {
echo "Store failed: (" . $nmysqgli->errno . ") " . $nysqgli->error;
}

} while ($nysqli->nore_results() && $nysqli->next_result());
?>

The above example will output:

array(3) {
[0]=>

35

Stored Procedures

array(1) {
[0] =>
string(1) "1"
}
[1]=>
array(1) {
[0] =>
string(1) "2"
}
[2]=>
array(1) {
[0] =>
string(1) "3"
}
}

array(3) {
[0]=>
array(1) {
[0] =>
string(1) "2"
}
[1]=>
array(1) {
[0] =>
string(1) "3"
}
[2]=>
array(1) {
[0] =>
string(1) "4"
}
}

Use of prepared statements

No special handling is required when using the prepared statement interface for fetching results from
the same stored procedure as above. The prepared statement and non-prepared statement interfaces
are similar. Please note, that not every MYSQL server version may support preparing the CALL SQL
statement.

Example 3.22 Stored Procedures and Prepared Statements

<?php
$nysqgli = new nysqli ("exanpl e.cont', "user", "password", "database");
if ($nysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $nysqli->connect_errno . ") " . $nysqli->connect_error;
}

if (!$nysqli->query("DROP TABLE | F EXI STS test") ||
1 $nysql i - >query(" CREATE TABLE test(id INT)") ||
I $nmysql i - >query(" 1 NSERT | NTO test (id) VALUES (1), (2), (3)")) {
echo "Table creation failed: (" . $nysqgli->errno . ") " . $nysqli->error;

}

if (!$nysqli->query("DROP PROCEDURE | F EXI STS p") ||

I $nmysql i - >quer y(' CREATE PROCEDURE p() READS SQ. DATA BEG N SELECT id FROMtest; SELECT id + 1 FROM test;
echo "Stored procedure creation failed: (" . $nysqgli->errno . ") " . $nysqli->error;

}

if (!($stnt = $nysqli->prepare("CALL p()"))) {
echo "Prepare failed: (" . $nysqgli->errno . ") " . $nysqgli->error;

36

E

Multiple Statements

}
if (!$stnt->execute()) {
echo "Execute failed: (" . $stnt->errno . ") " . $stnt->error;
}
do {

if ($res = $stnt->get _result()) {
printf("---\n");
var _dunp(nysqli_fetch_all($res));
nysqgli_free_result($res);
} else {
if ($stnt->errno) {
echo "Store failed: (" . $stnt->errno . ") " . $stnt->error;

}

} while ($stnt->nmore_results() & $stnt->next_result());
2>

Of course, use of the bind API for fetching is supported as well.

Example 3.23 Stored Procedures and Prepared Statements using bind API

<?php
if (!($stnt = $nysqli->prepare("CALL p()"))) {
echo "Prepare failed: (" . $nysqgli->errno . ") " . $nmysqgli->error;
}
if (!$stnt->execute()) {
echo "Execute failed: (" . $stnt->errno . ") " . $stnt->error;
}
do {

$id_out = NULL;
if (!$stnt->bind result($id out)) {

echo "Bind failed: (" . $stnt->errno . ") " . $stnmt->error;
}

while ($stnt->fetch()) {
echo "id = $id_out\n";

} while ($stnt->nore_results() & $stnt->next _result());
2>

See also

nysqli::query
mysqli::multi_query

mysqli _result::next-result
nysqgli_result::nore-results

3.2.6 Multiple Statements

Copyright 1997-2019 the PHP Documentation Group.

MySQL optionally allows having multiple statements in one statement string. Sending multiple statements

at once reduces client-server round trips but requires special handling.

37

http://www.php.net/mysqli_result::next-result
http://www.php.net/mysqli_result::more-results

Multiple Statements

Multiple statements or multi queries must be executed with mysql i _nul ti _query. The individual
statements of the statement string are separated by semicolon. Then, all result sets returned by the
executed statements must be fetched.

The MySQL server allows having statements that do return result sets and statements that do not return
result sets in one multiple statement.

Example 3.24 Multiple Statements

<?php
$nysqli = new nysqli ("exanpl e.cont', "user", "password", "database");
if ($nysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $nmysqgli->connect_errno . ") " . $nmysqgli->connect_error;
}
if (!$nysqli->query("DROP TABLE | F EXI STS test") || !$nysqli->query("CREATE TABLE test(id INT)")) {
echo "Table creation failed: (" . $nmysqgli->errno . ") " . $nysqgli->error;
}
$sgl = "SELECT COUNT(*) AS _num FROM test;
$sqgl .= "I NSERT | NTO test(id) VALUES (1);
$sqgl . = "SELECT COUNT(*) AS _num FROM test;
if (!'$nysqgli->multi_query($sql)) {
echo "Multi query failed: (" . $nysqgli->errno . ") " . $nysqli->error;
}
do {

if ($res = $nysqli->store_result()) {
var _dunp($res->fetch_al | (MYSQLI _ASSCOC)) ;
$res->free();

}
} while ($nysqli->nore_results() && $nysqli->next_result());
?>

The above example will output:

array(1) {
[0]=>
array(1) {
["_nuni'] =>
string(1) "0"
}

}
array(1) {
[0]=>
array(1) {
["_nuni'] =>
string(1) "1"
}
}

Security considerations

The API functions nysql i _query and nysql i _real query do not set a connection flag necessary
for activating multi queries in the server. An extra API call is used for multiple statements to reduce the
likeliness of accidental SQL injection attacks. An attacker may try to add statements such as; DROP

38

API support for transactions

DATABASE nysql or; SELECT SLEEP(999). If the attacker succeeds in adding SQL to the statement
string but mysql i _nul ti _query is not used, the server will not execute the second, injected and
malicious SQL statement.

Example 3.25 SQL Injection

<?php
$nysqgli = new nysqli ("exanpl e.cont', "user", "password", "database");
$res = $nysqli->query("SELECT 1; DROP TABLE nysql . user");
if (!$res) {
echo "Error executing query: (" . $nysqli->errno . ") " . $nysqli->error
}
2>

The above example will output:

Error executing query: (1064) You have an error in your SQL syntax
check the manual that corresponds to your MySQL server version for the right syntax
to use near 'DROP TABLE nysql .user' at line 1

Prepared statements
Use of the multiple statement with prepared statements is not supported.

See also

nysqli::query
nysqli::multi_query

nysqgli _result::next-result
nysqli_result::nore-results

3.2.7 API support for transactions
Copyright 1997-2019 the PHP Documentation Group.

The MySQL server supports transactions depending on the storage engine used. Since MySQL 5.5, the
default storage engine is InnoDB. InnoDB has full ACID transaction support.

Transactions can either be controlled using SQL or API calls. It is recommended to use API calls for
enabling and disabling the auto commit mode and for committing and rolling back transactions.

Example 3.26 Setting auto commit mode with SQL and through the API

<?php
$nmysqgli = new nysqli ("exanpl e.cont, "user", "password", "database")
if ($nysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $nysqgli->connect_errno . ") " . $nysqli->connect_error
}

/* Recommended: using APl to control transactional settings */
$nmysql i - >aut ocommi t (f al se)

39

http://www.php.net/mysqli_result::next-result
http://www.php.net/mysqli_result::more-results

Metadata

/* Won't be nonitored and recogni zed by the replication and the | oad bal anci ng pl ugin */
if (!$nysqli->query('SET AUTOCOWM T = 0')) {

echo "Query failed: (" . $nysqgli->errno . ") " . $nysqli->error
}

?>

Optional feature packages, such as the replication and load balancing plugin, can easily monitor API calls.
The replication plugin offers transaction aware load balancing, if transactions are controlled with API calls.
Transaction aware load balancing is not available if SQL statements are used for setting auto commit
mode, committing or rolling back a transaction.

Example 3.27 Commit and rollback

<?php
$nysqgli = new nysqli ("exanpl e.cont', "user", "password", "database");
$nysql i - >aut ocomi t (f al se);

$nysql i ->query(" I NSERT I NTO test(id) VALUES (1)");
$nysqli->rol | back();

$nysql i ->query("I NSERT I NTO test(id) VALUES (2)");
$nysqli->comit();
2>

Please note, that the MySQL server cannot roll back all statements. Some statements cause an implicit
commit.

See also
mysqli::autocommit

mysqli _result::conmt
mysqli _result::roll back

3.2.8 Metadata

Copyright 1997-2019 the PHP Documentation Group.

A MySQL result set contains metadata. The metadata describes the columns found in the result set. All
metadata sent by MySQL is accessible through the nysqgl i interface. The extension performs no or
negligible changes to the information it receives. Differences between MySQL server versions are not
aligned.

Meta data is access through the mysql i _resul t interface.

Example 3.28 Accessing result set meta data

<?php
$nmysqgli = new nysqli ("exanpl e.cont, "user", "password", "database")
if ($nysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $nysqgli->connect_errno . ") " . $nysqli->connect_error
}

40

http://www.php.net/mysqli_result::commit
http://www.php.net/mysqli_result::rollback

Metadata

$res = $nysqli->query("SELECT 1 AS _one, 'Hello' AS _two FROM DUAL");
var _dunp($res->fetch_fields())
?>

The above example will output:

array(2) {

[0] =>

obj ect (stdCl ass) #3 (13) {
["nane"] =>
string(4) "_one"
["orgnanme"]=>
string(0) ""
["table"]=>
string(0) ""
["orgtabl e"]=>
string(0) ""
["def"]=>
string(0) ""
["db"]=>
string(0) ""
["catal og"]=>
string(3) "def"
["max_| engt h"] =>
int(1)
["length"]=>
int(1)
["charsetnr"]=>
int(63)
["flags"]=>
i nt (32897)
["type"]=>
int(8)
["deci mal s"]=>
int(0)

}

[1] =

obj ect (stdCl ass) #4 (13) {
["name"] =>
string(4) "_two"
["orgnanme"]=>
string(0) ""
["table"]=>
string(0) ""
["orgtable"]=>
string(0) ""
["def"]=>
string(0) ""
["db"]=>
string(0) ""
["catal og"] =>
string(3) "def"
["max_l engt h"] =>
int(5)
["length"]=>
int(5)
["charsetnr"]=>
int(8)
["flags"]=>
int(1)
["type"]=>
i nt (253)
["deci mal s"]=>

41

Installing/Configuring

i nt(31)
}
}

Prepared statements

Meta data of result sets created using prepared statements are accessed the same way. A suitable
nysql i _resul t handle is returned by nmysql i _stnt _resul t _net adat a.

Example 3.29 Prepared statements metadata

<?php

$stnt = $nysqli->prepare("SELECT 1 AS _one, 'Hello' AS _two FROM DUAL");
$st nt - >execute();

$res = $stnt->result_netadata();

var _dunp($res->fetch_fields())
?>

See also

mysqli::query
mysqli _result::fetch fields

3.3 Installing/Configuring
Copyright 1997-2019 the PHP Documentation Group.

3.3.1 Requirements
Copyright 1997-2019 the PHP Documentation Group.
In order to have these functions available, you must compile PHP with support for the mysgli extension.
MySQL 8

When running a PHP version before 7.1.16, or PHP 7.2 before 7.2.4, set MySQL 8 Server's
default password plugin to mysql_native_password or else you will see errors similar to The server
requested authentication method unknown to the client [caching_sha2_password] even when
caching_sha2_password is not used.

This is because MySQL 8 defaults to caching_sha2_password, a plugin that is

not recognized by the older PHP (mysqind) releases. Instead, change it by setting

defaul t _aut hentication_pl ugi n=nysql _native_password inny.cnf.The
caching_sha2_password plugin will be supported in a future PHP release. In the meantime, the
mysql_xdevapi extension does support it.

3.3.2 Installation

Copyright 1997-2019 the PHP Documentation Group.

The nysql i extension was introduced with PHP version 5.0.0. The MySQL Native Driver was included in
PHP version 5.3.0.

42

Installation

3.3.2.1 Installation on Linux

Copyright 1997-2019 the PHP Documentation Group.

The common Unix distributions include binary versions of PHP that can be installed. Although these binary
versions are typically built with support for the MySQL extensions, the extension libraries themselves

may need to be installed using an additional package. Check the package manager that comes with your
chosen distribution for availability.

For example, on Ubuntu the php5- nmysql package installs the ext/mysql, ext/mysqgli, and pdo_mysql PHP
extensions. On CentOS, the php- mysql package also installs these three PHP extensions.

Alternatively, you can compile this extension yourself. Building PHP from source allows you to specify the
MySQL extensions you want to use, as well as your choice of client library for each extension.

The MySQL Native Driver is the recommended client library option, as it results in improved performance
and gives access to features not available when using the MySQL Client Library. Refer to What is PHP's
MySQL Native Driver? for a brief overview of the advantages of MySQL Native Driver.

The / pat h/ t o/ mysql _confi g represents the location of the nysqgl _conf i g program that comes with
MySQL Server.

Table 3.3 mysqli compile time support matrix

PHP Version Default Configure Configure Changelog
Options: mysqglnd |Options:
I'i brrysql client
5.4.x and above mysqlnd --wi th-nysql i --wi t h-nysqgl i =/ |mysqlnd is the
pat h/t o/ default
mysql _config
5.3.x libmysqlclient --with- --wi t h-nysql i =/ |mysqglnd is
mysql i =nysql nd |path/to/ supported
nysql _config
5.0.x, 5.1.x, 5.2.x libmysglclient Not Available --wi t h-nysql i =/ |mysqlnd is not
pat h/t o/ supported
nysql _config

Note that it is possible to freely mix MySQL extensions and client libraries. For example, it is possible

to enable the MySQL extension to use the MySQL Client Library (libmysglclient), while configuring the
nysqgl i extension to use the MySQL Native Driver. However, all permutations of extension and client
library are possible.

3.3.2.2 Installation on Windows Systems

Copyright 1997-2019 the PHP Documentation Group.

On Windows, PHP is most commonly installed using the binary installer.

PHP 5.3.0 and newer

Copyright 1997-2019 the PHP Documentation Group.

On Windows, for PHP versions 5.3 and newer, the nysql i extension is enabled and uses the MySQL
Native Driver by default. This means you don't need to worry about configuring accessto | i bnysql . dl | .

43

Runtime Configuration

PHP 5.0,5.1,5.2

Copyright 1997-2019 the PHP Documentation Group.

On these old unsupported PHP versions (PHP 5.2 reached EOL on '6 Jan 2011"), additional configuration
procedures are required to enable nmysql i and specify the client library you want it to use.

The nysql i extension is not enabled by default, so the php_mnysql i . dl | DLL must be enabled inside
of php. i ni . In order to do this you need to find the php. i ni file (typically located in c: \ php), and make
sure you remove the comment (semi-colon) from the start of the line ext ensi on=php_nysqli.dl |, in
the section marked [PHP_MYSQLI] .

Also, if you want to use the MySQL Client Library with nysql i , you need to make sure PHP can access
the client library file. The MySQL Client Library is included as a file named | i brrysqgl . dl | in the Windows
PHP distribution. This file needs to be available in the Windows system's PATH environment variable, so
that it can be successfully loaded. See the FAQ titled "How do | add my PHP directory to the PATH on
Windows" for information on how to do this. Copying | i bnysqgl . dl | to the Windows system directory
(typically c: \ W ndows\ syst em) also works, as the system directory is by default in the system's PATH.
However, this practice is strongly discouraged.

As with enabling any PHP extension (such as php_mnysql i . dl |'), the PHP directive extension_dir should
be set to the directory where the PHP extensions are located. See also the Manual Windows Installation
Instructions. An example ext ensi on_di r value for PHP 5is c: \ php\ ext .

Note

If when starting the web server an error similar to the following occurs: " Unabl e
to load dynamic library './php_mysqgli.dll"",thisis because
php_nysqgli.dll and/orli brysqgl . dl | cannot be found by the system.

3.3.3 Runtime Configuration

Copyright 1997-2019 the PHP Documentation Group.
The behaviour of these functions is affected by settings in php. i ni .

Table 3.4 MySQLi Configuration Options

Name Default Changeable Changelog
mysqli.allow_local_infile |"1" PHP_INI_SYSTEM Available since PHP
5.2.4.
mysqli.allow_persistent |"1" PHP_INI_SYSTEM Available since PHP
5.3.0.
mysgqli.max_persistent "-1" PHP_INI_SYSTEM Available since PHP
5.3.0.
mysqli.max_links "-1" PHP_INI_SYSTEM Available since PHP
5.0.0.
mysqli.default_port "3306" PHP_INI_ALL Available since PHP
5.0.0.
mysqli.default_socket NULL PHP_INI_ALL Available since PHP
5.0.0.
mysqli.default_host NULL PHP_INI_ALL Available since PHP
5.0.0.

44

http://www.php.net/manual/en/faq.installation.php#faq.installation.addtopath
http://www.php.net/manual/en/faq.installation.php#faq.installation.addtopath
http://www.php.net/manual/en/ini.core.php#ini.extension-dir
http://www.php.net/manual/en/install.windows.manual
http://www.php.net/manual/en/install.windows.manual

Runtime Configuration

Name Default Changeable Changelog

mysqli.default_user NULL PHP_INI_ALL Available since PHP
5.0.0.

mysqli.default_pw NULL PHP_INI_ALL Available since PHP
5.0.0.

mysqli.reconnect "0" PHP_INI_SYSTEM Available since PHP
4.35.

mysqli.rollback_on_cachedT Rl PHP_INI_SYSTEM Available since PHP
5.6.0.

For further details and definitions of the preceding PHP_INI_* constants, see the chapter on configuration

changes.

Here's a short explanation of the configuration directives.

nysqli.allow_| ocal _infile Allowaccessing, from PHP's perspective, local files with LOAD DATA

integer

nysql i
integer

nysqli.
integer

mysqli.

nysql i
integer

nysql i
string

nysql i
mysql i

nmysql i

nysql i .

mysqli.
bool

.default_port

.al l ow_persi stent

nmax_per si st ent

max_| i nks integer

.default _socket

. def aul t _host string

.defaul t _user string

.def aul t _pwstring

reconnect integer

statements

Enable the ability to create persistent connections using
nysql i _connect.

Maximum of persistent connections that can be made. Set to 0 for
unlimited.

The maximum number of MySQL connections per process.

The default TCP port number to use when connecting to the database
server if no other port is specified. If no default is specified, the

port will be obtained from the MYSQL_TCP_PORT environment
variable, the nysql -t cp entry in/ et ¢/ ser vi ces or the compile-
time MYSQL_PORT constant, in that order. Win32 will only use the
MYSQL_PORT constant.

The default socket name to use when connecting to a local database
server if no other socket name is specified.

The default server host to use when connecting to the database server
if no other host is specified. Doesn't apply in safe mode.

The default user name to use when connecting to the database server if
no other name is specified. Doesn't apply in safe mode.

The default password to use when connecting to the database server if
no other password is specified. Doesn't apply in safe mode.

Automatically reconnect if the connection was lost.
Note

This php. i ni setting is ignored by the mysqind
driver.

rol | back_on_cached_Ipthisibption is enabled, closing a persistent connection will rollback

any pending transactions of this connection before it is put back into
the persistent connection pool. Otherwise, pending transactions will be

45

http://www.php.net/manual/en/configuration.changes
http://www.php.net/manual/en/configuration.changes
http://www.php.net/manual/en/ini.core.php#ini.safe-mode
http://www.php.net/manual/en/ini.core.php#ini.safe-mode
http://www.php.net/manual/en/ini.core.php#ini.safe-mode

Resource Types

rolled back only when the connection is reused, or when it is actually
closed.

Users cannot set M\YSQL_OPT_READ_TI MEQUT through an API call or runtime configuration setting. Note
that if it were possible there would be differences between how | i bnysql cl i ent and streams would
interpret the value of M\YSQL_OPT_READ TI MEQUT.

3.3.4 Resource Types
Copyright 1997-2019 the PHP Documentation Group.

This extension has no resource types defined.

3.4 The mysqli Extension and Persistent Connections

Copyright 1997-2019 the PHP Documentation Group.

Persistent connection support was introduced in PHP 5.3 for the nysql i extension. Support was already
present in PDO MYSQL and ext/mysqgl. The idea behind persistent connections is that a connection
between a client process and a database can be reused by a client process, rather than being created
and destroyed multiple times. This reduces the overhead of creating fresh connections every time one is
required, as unused connections are cached and ready to be reused.

Unlike the mysql extension, mysqli does not provide a separate function for opening persistent
connections. To open a persistent connection you must prepend p: to the hosthame when connecting.

The problem with persistent connections is that they can be left in unpredictable states by clients. For
example, a table lock might be activated before a client terminates unexpectedly. A new client process
reusing this persistent connection will get the connection “as is”. Any cleanup would need to be done by
the new client process before it could make good use of the persistent connection, increasing the burden
on the programmer.

The persistent connection of the nysql i extension however provides built-in cleanup handling code. The
cleanup carried out by nysql i includes:

* Rollback active transactions

e Close and drop temporary tables

+ Unlock tables

* Reset session variables

» Close prepared statements (always happens with PHP)
+ Close handler

» Release locks acquired with GET_LOCK

This ensures that persistent connections are in a clean state on return from the connection pool, before the
client process uses them.

The nysql i extension does this cleanup by automatically calling the C-API function
nmysql _change_user ().

The automatic cleanup feature has advantages and disadvantages though. The advantage is that the
programmer no longer needs to worry about adding cleanup code, as it is called automatically. However,

46

http://www.php.net/GET_LOCK

Predefined Constants

the disadvantage is that the code could potentially be a little slower, as the code to perform the cleanup
needs to run each time a connection is returned from the connection pool.

It is possible to switch off the automatic cleanup code, by compiling PHP with
MYSQLI _NO CHANGE_USER_ON_PCONNECT defined.

Note

The nysql i extension supports persistent connections when using either MySQL
Native Driver or MySQL Client Library.

3.5 Predefined Constants

Copyright 1997-2019 the PHP Documentation Group.

The constants below are defined by this extension, and will only be available when the extension has either
been compiled into PHP or dynamically loaded at runtime.

MYSQLI _READ DEFAULT_ GROUP Read options from the named group from ny. cnf or the file specified

with MYSQLI _READ DEFAULT_FI LE

MYSQLI _READ DEFAULT FI LE Read options from the named option file instead of from nmy. cnf

MYSQLI _OPT_CONNECT_TI MEQUTConnect timeout in seconds

MYSQLI _OPT_LOCAL_| NFI LE

MYSQLI _I NI T_COVVAND

MYSQLI _CLI ENT_SSL

MYSQLI _CLI ENT_COVPRESS

Enables command LOAD LOCAL | NFI LE

Command to execute when connecting to MySQL server. Will
automatically be re-executed when reconnecting.

Use SSL (encrypted protocol). This option should not be set by
application programs; it is set internally in the MySQL client library

Use compression protocol

MYSQLI _CLI ENT_| NTERACTI VE Allow i nt eractive_ti nmeout seconds (instead of wai t _ti nmeout

seconds) of inactivity before closing the connection. The client's
sessionwai t _ti meout variable will be set to the value of the session
i nteractive_tineout variable.

MYSQLI _CLI ENT_| GNORE_SPACHAllow spaces after function names. Makes all functions names reserved

MYSQLI _CLI ENT_NO_SCHEMA

words.

Don't allow the db_nane. t bl _nane. col _nane syntax.

MYSQLI _CLI ENT_MJLTI _QUERI EAllows multiple semicolon-delimited queries in a single nysql i _query

MYSQLI _STORE_RESULT
MYSQLI _USE_RESULT

MYSQLI _ASSOC
MYSQLI _NUM
MYSQLI _BOTH

call.
For using buffered resultsets
For using unbuffered resultsets

Columns are returned into the array having the fieldname as the array
index.

Columns are returned into the array having an enumerated index.

Columns are returned into the array having both a numerical index and
the fieldname as the associative index.

47

Predefined Constants

MYSQLI _NOT_NULL_FLAG
MYSQLI PRI _KEY_FLAG

MYSQLI _UNI QUE_KEY_FLAG

MYSQLI _MULTI PLE_KEY_FLAG

MYSQLI _BLOB_FLAG
MYSQLI _UNSI GNED_FLAG

MYSQLI _ZEROFI LL_FLAG

MYSQLI _AUTO_| NCREMENT_FLAGrield is defined as AUTO_| NCREVENT

MYSQLI _TI MESTAMP_FLAG
MYSQLI _SET_FLAG

MYSQLI _NUM FLAG

MYSQLI _PART_KEY_FLAG
MYSQLI _GROUP_FLAG
MYSQLI _TYPE_DECI MAL
MYSQLI _TYPE_NEWDEC! MAL
MYSQLI _TYPE BI T

MYSQLI _TYPE_TI NY
MYSQLI _TYPE_SHORT
MYSQLI _TYPE_LONG
MYSQLI _TYPE_FLOAT
MYSQLI _TYPE_DOUBLE
MYSQLI _TYPE_NULL
MYSQLI _TYPE_TI MESTAMP
MYSQLI _TYPE_LONGLONG
MYSQLI _TYPE_ I NT24
MYSQLI _TYPE_DATE
MYSQLI _TYPE_TI ME
MYSQLI _TYPE_DATETI ME
MYSQLI _TYPE_YEAR

MYSQLI _TYPE_NEWDATE

Indicates that a field is defined as NOT NULL

Field is part of a primary index
Field is part of a unique index.
Field is part of an index.
Field is defined as BLOB
Field is defined as UNSI GNED

Field is defined as ZERCFI LL

Field is defined as T MESTAMWP
Field is defined as SET

Field is defined as NUVERI C
Field is part of an multi-index
Field is part of GROUP BY

Field is defined as DECI MAL

Precision math DECI MAL or NUVERI Cfield (MySQL 5.0.3 and up)

Field is defined as Bl T (MySQL 5.0.3 and up)

Field is defined as TI NYI NT
Field is defined as SMALLI NT
Field is defined as | NT

Field is defined as FLOAT

Field is defined as DOUBLE
Field is defined as DEFAULT NULL
Field is defined as TI MESTAMP
Field is defined as Bl G NT
Field is defined as MEDI UM NT
Field is defined as DATE

Field is defined as Tl VE

Field is defined as DATETI Ve
Field is defined as YEAR

Field is defined as DATE

48

Predefined Constants

MYSQLI _TYPE_| NTERVAL
MYSQLI _TYPE_ENUM

MYSQLI _TYPE_SET

MYSQLI _TYPE_TI NY_BLOB
MYSQLI _TYPE_MEDI UM BLOB

MYSQLI _TYPE_LONG BLOB

Field is defined as | NTERVAL
Field is defined as ENUM

Field is defined as SET

Field is defined as TI NYBLOB
Field is defined as MEDI UVBLOB

Field is defined as LONGBLOB

MYSQLI _TYPE_BLOB Field is defined as BLOB

MYSQLI _TYPE_VAR_STRI NG Field is defined as VARCHAR
MYSQLI _TYPE_STRI NG Field is defined as CHAR or Bl NARY
MYSQLI _TYPE_CHAR Field is defined as TI NYI NT. For CHAR, see MYSQLI _TYPE_STRI NG
MYSQLI _TYPE GEQOVETRY Field is defined as GEOVETRY
MYSQLI _NEED DATA More data available for bind variable
MYSQLI _NO DATA No more data available for bind variable
MYSQLI _DATA_TRUNCATED
MYSQLI _ENUM FLAG Field is defined as ENUM Available since PHP 5.3.0.
MYSQLI _BI NARY_FLAG Field is defined as Bl NARY. Available since PHP 5.3.0.
MYSQLI _CURSOR_TYPE_FOR_UPDATE

MYSQLI _CURSOR _TYPE_NO CURSOR

MYSQLI _CURSOR _TYPE_READ ONLY

MYSQLI _CURSOR TYPE_SCROLLABLE

MYSQLI _STMI_ATTR_CURSOR_TYPE

MYSQLI _STMI_ATTR_PREFETCH_ROAS

MYSQLI _STMI_ATTR_UPDATE_MAX_LENGTH

MYSQLI _SET_CHARSET_ NAME
MYSQLI _REPORT_| NDEX Report if no index or bad index was used in a query.
MYSQLI _ REPORT_ERROR Report errors from mysqli function calls.
MYSQLI _REPORT_STRI CT Throw a nysqgl i _sqgl _excepti on for errors instead of warnings.
MYSQLI _REPORT_ALL Set all options on (report all).
MYSQLI _REPORT_CFF Turns reporting off.

MYSQLI _DEBUG TRACE ENABLEDSs setto 1 if mysql i _debug functionality is enabled.

Data truncation occurred. Available since PHP 5.1.0 and MySQL 5.0.5.

49

Notes

MYSQLI _SERVER_QUERY_NO_GOOD_| NDEX_USED

MYSQLI _SERVER QUERY_NO | NDEX_USED

MYSQLI _REFRESH_GRANT
MYSQLI _REFRESH_LOG

MYSQLI _REFRESH_TABLES

MYSQLI _REFRESH_HOSTS

MYSQLI _REFRESH_STATUS

MYSQLI _ REFRESH _THREADS

MYSQLI _REFRESH_SLAVE

MYSQLI _REFRESH MASTER

Refreshes the grant tables.
Flushes the logs, like executing the FLUSH LOGS SQL statement.

Flushes the table cache, like executing the FLUSH TABLES SQL
statement.

Flushes the host cache, like executing the FLUSH HOSTS SQL
statement.

Reset the status variables, like executing the FLUSH STATUS SQL
statement.

Flushes the thread cache.

On a slave replication server: resets the master server information, and
restarts the slave. Like executing the RESET SLAVE SQL statement.

On a master replication server: removes the binary log files listed in the
binary log index, and truncates the index file. Like executing the RESET
MASTER SQL statement.

MYSQLI _TRANS COR_AND_CHAI Mppends "AND CHAIN"to nysql i _commit ornysql i _rol | back.

MYSQLI _TRANS_COR_AND_NO_CHAppénds "AND NO CHAIN" to mysql i _conmmi t or

nysqli _rol | back.

MYSQLI _TRANS_ COR _RELEASE Appends "RELEASE" to mysql i _commit ornmysql i _rol | back.

MYSQLI _TRANS COR NO RELEAS&ppends "NO RELEASE" to mysql i _commit ornmysqli _rol | back.

MYSQLI _TRANS_START_READ_ONbtért the transaction as "START TRANSACTION READ ONLY" with

nmysql i _begi n_transacti on.

MYSQLI _TRANS_START_READ_ \\RbtaH the transaction as "START TRANSACTION READ WRITE" with

nysql i _begin_transacti on.

MYSQLI _TRANS_START_CONSI STHidi tBelAR®BIdaction as "START TRANSACTION WITH CONSISTENT

3.6 Notes

Copyright 1997-2019 the PHP Documentation Group.

Some implementation notes:

SNAPSHOT" with mysql i _begi n_transacti on.

1. Support was added for M\YSQL_TYPE_GEOVETRY to the MySQLi extension in PHP 5.3.

2. Note there are different internal implementations within | i brmysqgl cl i ent and nysql nd for handling
columns of type M\YSQL_TYPE_GEOVETRY. Generally speaking, mysql nd will allocate significantly less
memory. For example, if there is a PO NT column in aresult set, | i bnysqgl cl i ent may pre-allocate
up to 4GB of RAM although less than 50 bytes are needed for holding a PO NT column in memory.
Memory allocation is much lower, less than 50 bytes, if using nysql nd.

50

The MySQLi Extension Function Summary

3.7 The MySQLi Extension Function Summary

Copyright 1997-2019 the PHP Documentation Group.

Table 3.5 Summary of nysql i methods

mysqli Class

OOP Interface

Procedural Interface

Alias (Do not use)

Description

Properties

$mysqli:

.affected_rows

nysql i _affected rows

5N/A

Gets the number
of affected rows in
a previous MySQL
operation

$mysqli:

:client_info

nmysqgli _get client i

INGA

Returns the MySQL client
version as a string

$mysqli:

.client_version

mysqgl i _get _client_vg

BNAA on

Returns MySQL client
version info as an integer

Smysqli:

‘connect_errno

mysql i _connect _errn

DN/A

Returns the error code
from last connect call

$mysqli:

:connect_error

nmysqgl i _connect _erro

N/A

Returns a string
description of the last
connect error

$mysqli:

.erro

nysqli_errno

N/A

Returns the error code
for the most recent
function call

$mysqli:

.error

nmysqli _error

N/A

Returns a string
description of the last
error

Smysqli:

:field_count

mysqli _field_count

N/A

Returns the number of
columns for the most
recent query

$mysqli:

:host_info

nysqgl i _get host i nf

DN/A

Returns a string
representing the type of
connection used

$mysqli:

‘protocol_version

nmysqgli _get proto_inf

N/A

Returns the version of
the MySQL protocol used

$mysqli:

:server_info

nmysql i _get_server _i

niNGA

Returns the version of
the MySQL server

Smysqli:

:server_version

mysql i _get _server _vg¢

BNAA on

Returns the version of
the MySQL server as an
integer

$mysqli:

;info

nysqli_info

N/A

Retrieves information
about the most recently
executed query

$mysqli:

sinsert_id

nysqli_insert_id

N/A

Returns the auto
generated id used in the
last query

51

The MySQLi Extension Function Summary

mysqli Class

OOP Interface

Procedural Interface

Alias (Do not use)

Description

$mysqli::sqlstate nysqgl i _sql state N/A Returns the SQLSTATE
error from previous
MySQL operation

$mysqli::warning_count [nmysql i _war ni ng_countN/A Returns the number of
warnings from the last
query for the given link

Methods

mysqli::autocommt |nysqli _autoconmt N/A Turns on or off auto-
committing database
modifications

mysql i ::change_user |mysqgl i _change_user |N/A Changes the user of
the specified database
connection

mysqli:: character_setysagnie,character _setmpagtei cl i ent _encodiRgturns the default

mysqli::client_encoding

character set for the
database connection

mysqli::close

nmysqgl i _cl ose

N/A

Closes a previously
opened database
connection

mysqli::commt

mysql i _conm t

N/A

Commits the current
transaction

mysqli:: _construct

nysql i _connect

N/A

Open a new connection
to the MySQL server
[Note: static (i.e. class)
method]

mysql i :: debug

nmysql i _debug

N/A

Performs debugging
operations

mysqli:: dunp_debug_ |

mi®ql i _dunp_debug_i

niNGA

Dump debugging
information into the log

mysqli::get_charset

mysql i _get charset

N/A

Returns a character set
object

mysqli::get_connecti

oys gltiat get _connecti

DN/t at s

Returns client connection
statistics. Available only
with mysqind.

mysqli::get _client |

mi®ql i _get client i

INGA

Returns the MySQL client
version as a string

mysqgli::get_client _

sinas @l | get _cl i ent st

[sltAs

Returns client per-
process statistics.

Available only with
mysqlnd.

mysqli::get_cache_st

Rysql i _get cache_st

ANAA

Returns client Zval cache
statistics. Available only
with mysqind.

mysqli::get_server |

mieql i _get _server _i

nINGA

Returns a string
representing the version

52

The MySQLi Extension Function Summary

mysqli Class

OOP Interface

Procedural Interface

Alias (Do not use)

Description

of the MySQL server that
the MySQLi extension is
connected to

mysqli::get_warning

snysql i _get _war ni ngs

N/A

NOT DOCUMENTED

mysqli::init

mysqli _init

N/A

Initializes MySQLi

and returns a

resource for use with
mysqli_real_connect.
[Not called on an object,
as it returns a $mysqli
object.]

nysqli::kill

mysqli_kill

N/A

Asks the server to kill a
MySQL thread

mysqgli::nmore_result

snysql i _nore_results

N/A

Check if there are any
more query results from a
multi query

mysqgli::multi_query

nmysqgli _multi_query

N/A

Performs a query on the
database

mysqli::next _result

mysqli _next_result

N/A

Prepare next result from
multi_query

nysqli::options

nmysql i _options

nysql i _set opt

Set options

nysqli::ping

mysql i _ping

N/A

Pings a server
connection, or tries
to reconnect if the
connection has gone
down

mysqli::prepare

nmysql i _prepare

N/A

Prepare an SQL
statement for execution

mysqli::query

mysql i _query

N/A

Performs a query on the
database

nysqli::real _connect

nmysql i _real connect

N/A

Opens a connection to a
mysql server

mysqli::real escape|
mysqli::escape_stri

g

sy $qlnig, r eal _escape_

sy $qlgi - escape_strin

hEscapes special
characters in a string for
use in an SQL statement,
taking into account the
current charset of the
connection

mysqli::real _query

nmysqgl i _real query

N/A

Execute an SQL query

mysqli::refresh

mysqli _refresh

N/A

Flushes tables or caches,
or resets the replication
server information

mysqli::roll back

nmysql i _roll back

N/A

Rolls back current

transaction

53

The MySQLi Extension Function Summary

mysqli Class

OOP Interface

Procedural Interface

Alias (Do not use)

Description

mysqli::select_db |nmysqgli_select db N/A Selects the default
database for database
queries

mysqli::set _charset |mysqgli _set charset |N/A Sets the default client
character set

mysqli::set_local _infyse idesetul tocal i nfNIA_def aul t Unsets user defined
handler for load local
infile command

mysqli::set_local _infy$el ihanetl erocal i nfNIA_handl er Set callback function for
LOAD DATA LOCAL
INFILE command

mysqli::ssl_set nysql i _ssl _set N/A Used for establishing
secure connections using
SSL

mysqli::stat nmysql i _stat N/A Gets the current system
status

mysqgli::stnt_init nmysqgli_stmt _init N/A Initializes a statement
and returns an
object for use with
mysqli_stmt_prepare

mysqli::store_resulinysqli_store_result [N/A Transfers a result set
from the last query

mysqgli::thread id |nmysqgli_thread id N/A Returns the thread ID for
the current connection

mysqli::thread_safe|mysqgli _thread safe |N/A Returns whether thread
safety is given or not

mysqgli::use_result |mysqgli_use_result N/A Initiate a result set
retrieval

Table 3.6 Summary of nysql i _stnt methods

MySQL_STMT

OORP Interface Procedural Interface Alias (Do not use) Description

Properties

$mysqli_stmt::affected_roywsysql i _st nt _af f ect edNfows Returns the total number
of rows changed,
deleted, or inserted
by the last executed
statement

$mysqli_stmt::errno nysqli_stnmt_errno [N/A Returns the error code
for the most recent
statement call

$mysqli_stmt::error nmysqgli_stmt _error N/A Returns a string

description for last
statement error

54

The MySQLi Extension Function Summary

MySQL_STMT

OOP Interface Procedural Interface Alias (Do not use) Description

$mysqli_stmt::field_count [nysql i _stnt field coNfA Returns the number
of field in the given
statement - not
documented

$mysqli_stmt::insert_id |[nmysqli _stnt _i nsert _iN/A Get the ID generated

from the previous
INSERT operation

$mysqli_stmt::num_rows

mysqgli _stm _num r ows

5N/A

Return the number of
rows in statements result
set

$mysqgli_stmt::param_cou

nysqli _stnmt_paramc

pay$ gl | _par am count

Returns the number of
parameter for the given
statement

$mysqli_stmt::sqlstate

nysqgli _stm _sql stat ¢

2N/A

Returns SQLSTATE error
from previous statement
operation

Methods

mysqgli_stm::attr_gg

rysql i sttt _attr_get

N/A

Used to get the current
value of a statement
attribute

mysqli _stnt::attr_s¢

pysql i _stnt_attr_set

N/A

Used to modify the
behavior of a prepared
statement

nysqli_stnt::bind_p

amasgl | st nt _bi nd_pa

@ysql i _bi nd_param

Binds variables to a
prepared statement as
parameters

nysqli_stnt:: bind_r¢

ogyisdl i sttt _bind re

sy $qgl i _bi nd_resul t

Binds variables to a
prepared statement for
result storage

mysqgli_stmt::close

nmysqgli_stmt _cl ose

N/A

Closes a prepared
statement

mysqli _stnt::data_s¢

peksql | _stnt_data_sed

oIM/A

Seeks to an arbitrary row
in statement result set

mysqgli _stnt::execut:é

enysql i _stnt_execute

nysql i _execute

Executes a prepared
Query

mysqgli_stmt::fetch

nmysqgli_stm fetch

nysqli_fetch

Fetch results from a
prepared statement into
the bound variables

mysqgli_stm::free_rg¢

syisdl i sttt _free re

sNJA

Frees stored result
memory for the given
statement handle

mysqli _stnt::get _re

sy $ql i _stnt_get _res

UINLA

Gets a result set from
a prepared statement.
Available only with
mysqlind.

55

The MySQLi Extension Function Summary

MySQL_STMT

OOP Interface Procedural Interface Alias (Do not use) Description

mysqgl i _stnt::get _warmysglsi st get war nNAgs NOT DOCUMENTED

mysqgli_stmt::nore resysdglsi_stm _nore reshNIAs Checks if there are more
query results from a
multiple query

nysqli_stnt::next_reswpsgli_stnt_next_resNIA Reads the next result
from a multiple query

mysqgli_stmt::numrowsysqgli_stnmt _num rowsN/A See also property
$mysgli_stmt::num_rows

nysqli_stnt:: preparemysgli_stnt_prepare|N/A Prepare an SQL
statement for execution

mysqgli_stmt::reset |mysqgli_stm reset N/A Resets a prepared
statement

mysqgli_stm::result |mps@ldatst mt_resul t _mmeysglat aget et adat a |Returns result set
metadata from a
prepared statement

mysqli _stnt::send_| omgsglait ast nt _send_| ongysigitia send_| ong_dat Send data in blocks

mysqgli_stmt::store_ rmpgadiiti _stm _store reN(At Transfers a result
set from a prepared
statement

Table 3.7 Summary of nysql i _result methods

mysqli_result

OORP Interface Procedural Interface Alias (Do not use) Description

Properties

$mysqli_result::current_fieldysql i _field_tell N/A Get current field offset of
a result pointer

$mysqli_result::field_countnysqgli _num fields |N/A Get the number of fields
in a result

$mysqli_result::lengths [mysql i _fetch_I engt hsN/A Returns the lengths
of the columns of the
current row in the result
set

$mysqli_result::num_rows|nmysql i _num r ows N/A Gets the number of rows
in a result

Methods

mysqgli _result::data|seedl i data seek N/A Adjusts the result pointer
to an arbitrary row in the
result

mysqgli _result::fetchmasdli fetch_all N/A Fetches all result rows

and returns the result

set as an associative
array, a numeric array, or
both. Available only with
mysqind.

56

Examples

mysqli_result

OOP Interface

Procedural Interface

Alias (Do not use)

Description

mysqgli _result::fetc

masalay fetch_array

N/A

Fetch a result row as an
associative, a numeric
array, or both

mysql i _result::fetchmasgloic fetch _assoc |N/A Fetch a result row as an
associative array

mysqgli_result::fetchmfselid fdetrelctfi el d_dNflect Fetch meta-data for a
single field

mysqli _result::fetchmfsglid fetch field |[N/A Returns the next field in
the result set

mysqgli _result::fetchmiselidsf etch fiel ds|N/A Returns an array of
objects representing the
fields in a result set

mysql i _result::fetchmpbjleictf et ch_obj ect |N/A Returns the current row
of aresult set as an
object

mysqgli_result::fetchhysagti fetch_row N/A Get aresult row as an
enumerated array

mysqli _result::fieldngegki field seek N/A Set result pointer to a
specified field offset

mysqgli _result::freejmysqgli _free result |N/A Frees the memory

mysqli_result::close,

mysqli_result::free_result

associated with a result

Table 3.8 Summary of ny

sqgl i _driver methods

MySQL_Driver

OOP Interface Procedural Interface Alias (Do not use) Description

Properties

N/A

Methods

mysql i _driver: : enbedaesiglsier ebedaeld ser yHfA end NOT DOCUMENTED

mysql i _driver:: enbedaesiqlsier oebeddad t ser yHFA st art NOT DOCUMENTED
Note

Alias functions are provided for backward compatibility purposes only. Do not use

them in

3.8 Examples

Copyright 1997-2019 the PHP Documentation Group.

new projects.

3.8.1 MySQLi extension basic examples

Copyright 1997-2019 the PHP Documentation Group.

57

MySQLi extension basic examples

This example shows how to connect, execute a query, use basic error handling, print resulting rows, and
disconnect from a MySQL database.

This example uses the freely available Sakila database that can be downloaded from dev.mysqgl.com, as
described here. To get this example to work, (a) install sakila and (b) modify the connection variables (host,
your_user, your_pass).

Example 3.30 MySQLi extension overview example

<?php
/l Let's pass in a $_CET variable to our exanple, in this case
I/l it's aid for actor_id in our Sakila database. Let's make it
// default to 1, and cast it to an integer as to avoid SQL injection
/'l and/or related security problens. Handling all of this goes beyond
/] the scope of this sinple exanple. Exanple:
/1 http://exanpl e. org/ scri pt. php?ai d=42
if (isset($_GET['aid']) & is_numeric($_GET['aid])) {
$aid = (int) $_CGET['aid];
} else {
$aid = 1;
}

/'l Connecting to and selecting a MySQL dat abase named sakil a
// Hostname: 127.0.0.1, username: your_user, password: your_pass, db: sakila
$nysqgli = new nysqli('127.0.0.1', 'your_user', 'your_pass', 'sakila');

/1 Oh no! A connect_errno exists so the connection attenpt fail ed!

if ($nysqli->connect_errno) {
/'l The connection failed. Wat do you want to do?
/1 You could contact yourself (enmil?), log the error, show a nice page, etc.
/1 You do not want to reveal sensitive infornmation

/] Let's try this:
echo "Sorry, this website is experiencing problens.";

/1 Somet hi ng you should not do on a public site, but this exanple will show you

/1 anyways, is print out MyYSQL error related information -- you might log this
echo "Error: Failed to make a MySQL connection, here is why: \n";

echo "Errno: " . $nysqli->connect_errno . "\n";

echo "Error: " . $nysqli->connect_error . "\n";

/1 You m ght want to show them sonething nice, but we will sinply exit
exit;

}

/1 Performan SQ query
$sql = "SELECT actor_id, first_nanme, |ast_name FROM actor WHERE actor_id = $aid";
if (!$result = $nysqli->query($sql)) {

/] Oh no! The query failed.

echo "Sorry, the website is experiencing problens.";

/1 Again, do not do this on a public site, but we'll show you how
/l to get the error infornation
echo "Error: Qur query failed to execute and here is why: \n";

echo "Query: " . $sqgl . "\n";

echo "Errno: " . $nysqgli->errno . "\n";
echo "Error: " . $nysqgli->error . "\n";
exit;

}

/1 Phew, we nmade it. We know our MySQL connection and query
/'l succeeded, but do we have a result?
if ($result->numrows === 0) {
/]l Oh, no rows! Sonetinmes that's expected and okay, sonetines

58

http://dev.mysql.com/doc/sakila/en/index.html
http://dev.mysql.com/doc/sakila/en/index.html

The mysqli class

/1 it is not. You decide. In this case, maybe actor_id was too

Il large?
echo "W could not find a match for I D $aid, sorry about that. Please try again.";
exit;

}

/1 Now, we know only one result will exist in this exanple so let's

/] fetch it into an associated array where the array's keys are the
/'l table's colum nanes
$actor = $result->fetch_assoc();

echo "Sonetinmes | see " . $actor['first_pame'] . " " . S$actor['last_name'] . " on TV."

/1 Now, let's fetch five random actors and output their nanes to a |list.
/1 We'll add | ess error handling here as you can do that on your own now
$sgl = "SELECT actor_id, first_nane, |ast_nane FROM actor ORDER BY rand() LIMT 5";
if (!'$result = $nysqli->query($sql)) {
echo "Sorry, the website is experiencing problens.";
exit;

}

/1 Print our 5 randomactors in a list, and link to each actor

echo "\ n";

while ($actor = $result->fetch_assoc()) {
echo "<a href="" . $_SERVER[' SCRI PT_FILENAME'] . "?aid=" . $actor['actor_id"]
echo $actor['first_name'] . ' ' . S$actor['last_nane'];
echo "\n";

echo "\n";

/] The script will automatically free the result and cl ose the M/SQL
/] connection when it exits, but let's just do it anyways
$result->free();

$nysqli->cl ose();
2>

3.9 The mysqli class

Copyright 1997-2019 the PHP Documentation Group.

Represents a connection between PHP and a MySQL database.

nysqli {
nysql i
Properties
int

nysqli->affected_rows ;

int
nmysql i - >connect _errno ;

string
nysql i - >connect _error ;

i nt
nmysqli->errno ;

array
nysqli->error_list ;

string

59

The mysqli class

nmysqli->error ;

i nt
nysqli->field_count ;

string
nysqli->client_info ;

int
mysqli->client_version ;

string
nysql i ->host _info ;

string
nmysql i - >pr ot ocol _version ;

string
nysql i - >server_info ;

i nt
nysql i - >server _version ;

string
nmysqli->info ;

m xed
nysqli->insert_id ;

string
nmysqli->sql state ;

i nt
nysqgli->thread_id ;

int
nysql i - >war ni ng_count ;

Met hods

mysqli::__construct(

string host

= =ini_get("nmysqli.default_host"),
string usernane

= =ini_get("nmysqli.default_user"),
string passwd

= =ini_get("nmysqli.default_pw'),
string dbnane

int port

= =ini_get("nysqli.default_port"),
string socket

= =ini_get("mysqli.default_socket"));

bool nysqli::autoconmit(
bool node);
bool nysqli::change_user (

string user,
string password,
string database);
string nysqli::character_set_nane();

bool nysqli::close();

bool nysqli::conmt(
int flags

60

The mysqli class

= =0,
string nane)

voi d nmysqgli::connect (

string host

= =ini_get("nmysqli.default_host"),
string usernane

= =ini_get("nmysqli.default_user"),
string passwd

= =ini_get("mnmysqli.default_pw')
string dbnane
int port

= =ini_get("nmysqli.default_port"),
string socket

= =ini_get("mysqli.default_socket"));

bool nysqli:: debug(
string message)

bool nysqli::dunp_debug_i nfo()

obj ect nmysqli::get_charset();

string nysqgli::get_client_info()

bool nysqli::get_connection_stats();
string nmysqli_stnt::get_server _info()
nysql i _warning nmysqgli::get_warnings();
nmysqli nmysqli::init();

bool nysqli::kill(
int processid)

bool nysqli::nmore_results();

bool nysqli::multi_query(
string query)

bool nysqli::next_result()

bool nysqli::options(
int option,
m xed val ue)

bool nysqli:: ping()

public static int nysqgli::poll(
array read,
array error
array reject,
int sec,
int usec
= :0) ;

nmysqli _stm nysqli:: prepare(
string query);

m xed nysqli::query(
string query,
int resultnode
= =MYSQLI _STORE_RESULT)

bool nysqli::real _connect (

61

nysqli::$affected rows, nysqli _affected rows

3.9.1 nysql

}

string host,
string usernane
string passwd,
string dbnane
int port,
string socket,
int flags);

string nysqli::escape_string(
string escapestr);

string nmysqli::real _escape_string(
string escapestr);

bool nysqli::real _query(
string query)

public nmysqli_result mysqli::reap_async_query();

public bool nysqgli::refresh(
int options);

bool nysqli::roll back(
int flags
= :O‘
string name);

int nysqgli::rpl_query_type(
string query)

bool nysqli::sel ect_db(
string dbname)

bool nysqgli::send_query(
string query)

bool nysqli::set_charset(
string charset);

bool nysqli::set_local _infile_handler(
nmysqli |ink,
cal | abl e read_f unc)

bool nysqli::ssl_set(
string key,
string cert,
string ca
string capath
string cipher);

string nysqgli::stat();
nysqgli_stnt nysqgli::stnt_init()

nysqgli_result nysqli::store_result(
int option);

nysqgli_result nysqgli::use_result()

Copyright 1997-2019 the PHP Documentation Group.

* nysqli:: $affected_rows

62

.. $affected rows, nysqli _affected rows

nysqli::$affected rows, nysqli _affected rows

nmysqli _affected_rows
Gets the number of affected rows in a previous MySQL operation
Description

Object oriented style

i nt
nysql i ->affected_rows ;

Procedural style

int nysqgli_affected_rows(
nmysqli |ink);

Returns the number of rows affected by the last | NSERT, UPDATE, REPLACE or DELETE query.
For SELECT statements nysql i _af f ect ed_r ows works like nysql i _num r ows.
Parameters

[ink Procedural style only: A link identifier returned by nmysql i _connect or
nysqli_init

Return Values

An integer greater than zero indicates the number of rows affected or retrieved. Zero indicates that no
records were updated for an UPDATE statement, no rows matched the VVHERE clause in the query or that
no query has yet been executed. -1 indicates that the query returned an error.

Note

If the number of affected rows is greater than the maximum integer value(
PHP_I NT_MAX), the number of affected rows will be returned as a string.

Examples
Example 3.31 $nysql i - >af f ect ed_r ows example

Object oriented style

<?php
$nysqli = new nysqli("local host", "nmy_user", "ny_password", "world");

/* check connection */

if (nysqli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

/* Insert rows */
$nysql i - >quer y(" CREATE TABLE Language SELECT * from CountrylLanguage");
printf("Affected rows (INSERT): %\ n", $nysqli->affected_rows);

$nysql i - >query("ALTER TABLE Language ADD Status int default 0");
/* update rows */

$nysql i - >quer y(" UPDATE Language SET Status=1 WHERE Percentage > 50");
printf("Affected rows (UPDATE): %\ n", $nysqli->affected_rows);

63

nysqli::$affected rows, nysqli _affected rows

/* delete rows */
$nysql i - >quer y(" DELETE FROM Language WHERE Percent age < 50");
printf("Affected rows (DELETE): %l\n", $nysqli->affected_rows);

/* select all rows */
$result = $nysqli->query("SELECT CountryCode FROM Language");
printf("Affected rows (SELECT): %l\n", $nysqli->affected_rows);

$resul t->cl ose();

/* Delete table Language */
$nysql i - >query("DROP TABLE Language");

/* cl ose connection */

$nysqli->cl ose();
2>

Procedural style

<?php

$link = nmysqli_connect("local host", "ny_user", "ny_password", "world");

if (!$link) {
printf("Can't connect to |ocal host. Error: 9%\n", nysqgli_connect_error());
exit();

}

/* Insert rows */
nysql i _query($link, "CREATE TABLE Language SELECT * from CountrylLanguage");
printf("Affected rows (INSERT): %\ n", nysqli_affected_rows($link));

nysql i _query($link, "ALTER TABLE Language ADD Status int default 0");

/* update rows */
nysql i _query($link, "UPDATE Language SET Status=1 WHERE Percentage > 50");
printf("Affected rows (UPDATE): %\ n", nysqli_affected_rows($link));

/* delete rows */
nysql i _query($link, "DELETE FROM Language WHERE Percentage < 50");
printf("Affected rows (DELETE): %\ n", nysqli_affected_rows($link));

/* select all rows */
$result = nysqli_query($link, "SELECT CountryCode FROM Language");
printf("Affected rows (SELECT): %\ n", nysqli_affected_rows($link));

nysqli_free_result($result);

/* Del ete table Language */
nysql i _query($link, "DROP TABLE Language");

/* cl ose connection */

nysql i _cl ose($link);
?>

The above examples will output:

Affected rows (I NSERT): 984
Affected rows (UPDATE): 168

64

mysqli::autocommt, nysqgli _autocommt

Affected rows (DELETE): 815
Affected rows (SELECT): 169

See Also

mysql i _num.rows
nmysqli _info

3.9.2nysqgli::autocommt, nysqgli _autoconmt
Copyright 1997-2019 the PHP Documentation Group.
e nysqli::autocommt
nysql i _aut oconmi t
Turns on or off auto-committing database modifications
Description

Object oriented style

bool nysqli::autocommi t (
bool node);

Procedural style

bool nysqli _autoconmit(
nmysqli |ink,
bool node);
Turns on or off auto-commit mode on queries for the database connection.

To determine the current state of autocommit use the SQL command SELECT @@aut ocommi t .

Parameters

['i nk Procedural style only: A link identifier returned by nysql i _connect or
nysqgli _init

node Whether to turn on auto-commit or not.

Return Values

Returns TRUE on success or FALSE on failure.

Notes
Note
This function doesn't work with non transactional table types (like MyISAM or
ISAM).

Examples

Example 3.32 nysql i : : aut ocomm t example

Object oriented style

65

mysqli::autocommt, nysqgli _autocommt

<?php

$nmysqgli = new nysqli ("l ocal host",

if (nysqgli_connect_errno()) {

printf("Connect failed:

exit();
}

/* turn aut

ocomit on */

$nysql i - >aut ocomi t (TRUE) ;

%\ n"

"my_user", "my_password", "world");

, nmysqgli_connect_error());

if ($result = $nysqli->query("SELECT @@utocommit")) {
$row = $result->fetch_row();
printf("Autocommit is %\n", $row 0]);
$result->free();

}

/* cl ose connection */

$nysqli->cl ose();

2>

Procedural style

<?php

$link = nysqgli_connect ("l ocal host", "my_user", "ny_password", "world");

if (!$link) {

printf("Can't connect to |local host. Error: %\n", nysqli_connect _error());

exit();
}

/* turn aut

ocomit on */

nysql i _autocommit ($l i nk, TRUE);

if ($result

= nysql i _query($link,

"SELECT @@aut ocommit")) {

$row = nysqli_fetch_row($result);

printf(

nysqli _

}

"Autocommit is %\n",
free result($result);

/* cl ose connection */
nysqli _cl ose($link);

?>

The above examples will output:

Aut oconmi t

See Also

is 1

mysql i _begi n_transaction
nmysql i _comm t
mysqli _roll back

$rowf 0]);

66

mysqli:: begin_transaction,mysqli _begin_transaction

3.9.3nysqgli::begin_transaction,nysqli_begin_transaction
Copyright 1997-2019 the PHP Documentation Group.
e mysqli::begin_transaction
nysql i _begi n_transaction
Starts a transaction
Description

Object oriented style (method):

public bool nysqli::begin_transaction(
int flags
= =0,
string nane);

Procedural style:

bool nysqgli _begi n_transacti on(
nysqgli |ink,
int flags
= =0,
string name);

Begins a transaction. Requires the InnoDB engine (it is enabled by default). For additional details about
how MySQL transactions work, see http://dev.mysql.com/doc/mysql/en/commit.html.

Parameters
[ink Procedural style only: A link identifier returned by nysqgl i _connect or
mysqli _init
fl ags Valid flags are:
e MYSQLI TRANS START_ READ ONLY: Start the transaction as
"START TRANSACTION READ ONLY". Requires MySQL 5.6 and
above.
e MYSQLI _TRANS_START_READ WRI TE: Start the transaction as
"START TRANSACTION READ WRITE". Requires MySQL 5.6 and
above.
e MYSQLI _TRANS_START W TH_CONSI STENT _SNAPSHOT: Start
the transaction as "START TRANSACTION WITH CONSISTENT
SNAPSHOT".
nane Savepoint name for the transaction.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 3.33 $nysql i - >begi n_transacti on example

Object oriented style

67

http://dev.mysql.com/doc/mysql/en/commit.html
http://www.php.net/$mysqli->begin_transaction

mysql i :: change_user, nmysql i _change_user

<?php
$nysqli = new nysqli("127.0.0.1", "ny_user", "ny_password", "sakila");
if ($nysqli->connect_errno) {
printf("Connect failed: %\n", $nysqli->connect_error);
exit();
}

$nmysql i - >begi n_t ransacti on(MYSQLI _TRANS_START_READ_ONLY)

$nysql i ->query(" SELECT first_nane, |ast_name FROM actor")
$nmysql i ->commit();

$nysql i ->cl ose()
2>

Procedural style

<?php
$link = nysqgli_connect("127.0.0.1", "ny_user", "nmy_password", "sakila");

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());

exit();
}

nysql i _begi n_transaction($link, MYSQLI _TRANS_START_READ ONLY)

nysql i _query($link, "SELECT first_nane, |ast_name FROM actor LIMT 1");
nysql i _commi t ($li nk);

nysql i _cl ose($link);
?>

See Also
nysql i _aut ocommi t

nmysql i _comm t
nysql i _roll back

3.9.4 nysql i ::change_user, nysqgli _change_user
Copyright 1997-2019 the PHP Documentation Group.
e nysqli::change_user
nmysql i _change_user
Changes the user of the specified database connection
Description

Object oriented style

bool nysqli::change_user (
string user

68

mysql i :: change_user, nmysql i _change_user

string password,
string database)

Procedural style

bool nysqli_change_user(
nysqgli |ink,
string user
string password,
string dat abase);

Changes the user of the specified database connection and sets the current database.

In order to successfully change users a valid user nane and passwor d parameters must be provided and
that user must have sufficient permissions to access the desired database. If for any reason authorization
fails, the current user authentication will remain.

Parameters

[ink Procedural style only: A link identifier returned by nysql i _connect or
nysqgli _init

user The MySQL user name.

passwor d The MySQL password.

dat abase The database to change to.

If desired, the NULL value may be passed resulting in only changing the
user and not selecting a database. To select a database in this case
use the nysql i _sel ect _db function.

Return Values

Returns TRUE on success or FALSE on failure.

Notes
Note
Using this command will always cause the current database connection to behave
as if was a completely new database connection, regardless of if the operation was
completed successfully. This reset includes performing a rollback on any active
transactions, closing all temporary tables, and unlocking all locked tables.
Examples
Example 3.34 nysql i : : change_user example

Object oriented style

<?php

/* connect database test */
$nysqli = new nysqli ("l ocal host", "ny_user", "ny_password", "test");

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nmysqli_connect_error());
exit();

69

mysql i :: change_user, nmysql i _change_user

}

/* Set Variable a */
$nysqli->query("SET @: =1");

/* reset all and sel ect a new database */
$nysql i - >change_user ("nmy_user", "ny_password", "world");

if ($result = $nysqli->query("SELECT DATABASE()")) {
$row = $resul t->fetch_row();
printf("Default database: %\n", $row0]);
$resul t->cl ose();

}

if ($result = $nysqli->query("SELECT @")) {
$row = $resul t->fetch_row();
if ($rowf 0] === NULL) {
printf("Value of variable a is NULL\n");
}

$resul t->cl ose();

}

/* cl ose connection */
$nysqli->cl ose();
2>

Procedural style

<?php
/* connect database test */

$link = nysqli_connect ("l ocal host", "ny_user", "ny_password",

/* check connection */

if (!$link) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

/* Set Variable a */
nysql i _query($link, "SET @:=1");

/* reset all and sel ect a new dat abase */

nysql i _change_user ($li nk, "ny_user", "nmy_password", "world");

if ($result = nysqli_query($link, "SELECT DATABASE()")) {
$row = nysqli_fetch_row($result);
printf("Default database: %\n", $row0]);
nysqli_free_result($result);

if ($result = nysqli_query($link, "SELECT @")) {
$row = nysqli_fetch_row($result);
if ($rowf 0] === NULL) {
printf("Value of variable a is NULL\n");

nysqli_free_result($result);

}

/* cl ose connection */
nysql i _cl ose($link);
?>

"test");

70

mysqli::character_set _nane,nysqgli _character_set nane

The above examples will output:

Def aul t dat abase: world
Val ue of variable a is NULL

See Also

nmysql i _connect
mysqli _sel ect _db

3.9.5nysqgli::character_set nane,nysgli _character_set nane
Copyright 1997-2019 the PHP Documentation Group.
e mysqli::character_set nane
nysqli _character_set nane
Returns the default character set for the database connection
Description

Object oriented style

string nysqli::character_set_nane();

Procedural style

string nmysqli_character_set_nanme(
nmysqli |ink);

Returns the current character set for the database connection.
Parameters

[ink Procedural style only: A link identifier returned by nysql i _connect or
mysqli _init

Return Values

The default character set for the current connection
Examples

Example 3.35 nysql i :: character_set _nane example

Object oriented style

<?php
/* Open a connection */
$nmysqgli = new nysqli ("l ocal host", "my_user", "ny_password", "world");

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

71

mysqli::close,nmysqli _close

}

/* Print current character set */

$charset = $nysqli->character_set_nanme();

printf ("Current character set is %\n", $charset);

$nysqli->cl ose();
?>

Procedural style

<?php
/* QOpen a connection */
$link = nysqli_connect ("l ocal host", "ny_user", "ny_password"

/* check connection */

if (!'$link) {
printf("Connect failed: %\n", nysqli_connect_error());
exit();

}

/* Print current character set */

$charset = nysqli_character_set _nane($link);
printf ("Current character set is %\n", $charset);
/* cl ose connection */

nysql i _cl ose($link);
2>

The above examples will output:

Current character set is latinl_swedish_c

See Also

nysql i _set charset
nysqgli _client_encoding
nysqgli _real escape_string

3.9.6nysqgli::close,nysgli _close

Copyright 1997-2019 the PHP Documentation Group.
e nysqli::close

nysqgli _cl ose

Closes a previously opened database connection
Description

Object oriented style

bool nysqli::close();

"worl d");

72

mysqli::commt,nysqgli_commt

Procedural style

bool nysqgli _cl ose(
nysqgli |ink);

Closes a previously opened database connection.

Open non-persistent MySQL connections and result sets are automatically destroyed when a PHP script
finishes its execution. So, while explicitly closing open connections and freeing result sets is optional,
doing so is recommended. This will immediately return resources to PHP and MySQL, which can improve
performance. For related information, see freeing resources

Parameters

[ink Procedural style only: A link identifier returned by nysql i _connect or
nysqli_init

Return Values
Returns TRUE on success or FALSE on failure.
Examples

See nysql i _connect.

Notes
Note
nysqgl i _cl ose will not close persistent connections. For additional details, see the
manual page on persistent connections.

See Also

nmysqgli::__construct

nmysqgli _init

nmysql i _real connect
nysqgli_free_result

3.9.7nysqgli::commt,nysqli_commt

Copyright 1997-2019 the PHP Documentation Group.
e nysqli::commt

nysqli _comm t

Commits the current transaction
Description

Object oriented style

bool nysqli::conmmt(
int flags
= =0,
string nane);

Procedural style

73

http://www.php.net/manual/en/language.types.resource.php#language.types.resource.self-destruct
http://www.php.net/manual/en/features.persistent-connections

mysqli::commt,nysqgli_commt

bool nysqli_conmit (
nysqgli |ink,
int flags
= =0,
string name);

Commits the current transaction for the database connection.

Parameters

['i nk Procedural style only: A link identifier returned by nysql i _connect or
nysqgli _init

flags A bitmask of MYSQLI _ TRANS_CCOR _* constants.

name If provided then COVM T/ * nane*/ is executed.

Return Values

Returns TRUE on success or FALSE on failure.

Changelog

Version Description

5.5.0 Added f | ags and nane parameters.
Examples

Example 3.36 nysql i : : conmit example

Object oriented style

<?php
$nmysqgli = new nysqli ("l ocal host", "my_user", "ny_password", "world");

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

$nysql i - >quer y(" CREATE TABLE Language LI KE CountrylLanguage");

/* set autoconmt to off */
$nysql i - >aut ocomni t (FALSE) ;

/* Insert some val ues */
$nmysqgl i - >query("| NSERT | NTO Language VALUES (' DEU , 'Bavarian', 'F', 11.2)");
$nmysql i - >query(" | NSERT | NTO Language VALUES ('DEU , 'Swabian', 'F', 9.4)");

/* commit transaction */

if (!$nysqli->commit()) {
print("Transaction commit failed\n");
exit();

}

/* drop table */
$nysql i - >quer y("DROP TABLE Language");

/* cl ose connection */
$nysqli->cl ose();

74

nysqli:: $connect _errno, mysqli _connect_errno

?>

Procedural style

<?php
$link = nysqli_connect ("l ocal host", "ny_user", "ny_password", "test");
/* check connection */
if (!$link) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();
}

/* set autocommit to off */
nysql i _aut ocommi t ($l i nk, FALSE)

nysql i _query($link, "CREATE TABLE Language LI KE CountrylLanguage");
/* Insert sone val ues */
nysql i _query($link, "INSERT INTO Language VALUES ('DEU, 'Bavarian', 'F, 11.2)");
nysql i _query($link, "INSERT |INTO Language VALUES ('DEU, 'Swabian', 'F', 9.4)");
/* commit transaction */
if (!mysqgli_commit($link)) {

print("Transaction comit failed\n");

exit();
}

/* cl ose connection */
nysqli _cl ose($link);
2>

See Also
nmysql i _aut ocommi t
nysql i _begin_transaction

nysql i _rol | back
nysql i _savepoi nt

3.9.8 nysqgl i ::$connect _errno, mysqli _connect _errno
Copyright 1997-2019 the PHP Documentation Group.
* nysqli:: $connect _errno
nmysql i _connect _errno
Returns the error code from last connect call
Description

Object oriented style

i nt
nysql i - >connect _errno

Procedural style

75

mysqli::$connect _errno, nysqgli_connect _errno

int nmysqgli_connect_errno()
Returns the last error code number from the last call to nysql i _connect.
Note

Client error message numbers are listed in the MySQL er r nsg. h header file,
server error message numbers are listed in nysql d_error. h. In the MySQL
source distribution you can find a complete list of error messages and error
numbers in the file Docs/ mysql d_error. t xt.

Return Values

An error code value for the last call to mysql i _connect, if it failed. zero means no error occurred.
Examples

Example 3.37 $nysql i - >connect _errno example

Object oriented style

<?php
$nmysqgli = @ew nysqgli('local host', 'fake_user', 'ny_password', 'ny_db')
if ($nysqli->connect_errno) {
di e(' Connect Error: ' . $nysqli->connect_errno)
}
?>

Procedural style

<?php
$link = @vysqli_connect ('l ocal host', 'fake_user', 'ny_password', 'my_db')
if (!1$link) {
di e(' Connect Error: ' . nysqgli_connect_errno())
}
?>

The above examples will output:

Connect Error: 1045

See Also

nysql i _connect

nysql i _connect _error
nysqli_errno

nysqli _error

nysqgli _sql state

76

nysqli::$connect _error, nmysqli_connect_error

3.9.9nysqgli::$connect _error,nysqli_connect_error
Copyright 1997-2019 the PHP Documentation Group.
* nysqli:: $connect _error
nysql i _connect _error
Returns a string description of the last connect error
Description

Object oriented style

string
nmysql i - >connect _error

Procedural style

string nmysqgli_connect_error();
Returns the last error message string from the last call to mysql i _connect .
Return Values
A string that describes the error. NULL is returned if no error occurred.
Examples
Example 3.38 $nysql i - >connect _error example

Object oriented style

<?php
$nysqli = @ew nysqli('local host', 'fake_user', 'ny_password', 'ny_db');

/'l Works as of PHP 5.2.9 and 5.3.0
if ($nysqli->connect _error) {
di e(' Connect Error: ' . $nysqgli->connect_error);

}

2>

Procedural style

<?php
$link = @rysqli_connect('local host', 'fake_user', 'ny_password', 'ny_db');
if (!$link) {
di e(' Connect Error: ' . mysqgli_connect_error());
}
?>

The above examples will output:

mysqli:: __construct,mysqli::connect,nysqli _connect

Connect Error: Access denied for user 'fake_user' @l ocal host' (using password: YES)

Notes
Warning
The mysqli->connect_error property only works properly as of PHP versions 5.2.9
and 5.3.0. Use the nysql i _connect _error function if compatibility with earlier
PHP versions is required.

See Also

nmysql i _connect

nmysql i _connect _errno
nmysqgli _errno

nysqli _error

nysqgli _sql state

3.9.10nysqgli:: __construct,nysqgli::connect,nysgli _connect
Copyright 1997-2019 the PHP Documentation Group.
e mysqli:: __construct
nysqli::connect

nysql i _connect
Open a new connection to the MySQL server
Description

Object oriented style

nysqli::__construct (

string host

= =ini_get("mysqli.default_host"),
string usernane

= =ini_get("nmysqli.default_user"),
string passwd

= =ini_get("nmysqli.default_pw'),
string dbnane

int port

= =ini_get("mysqli.default_port"),
string socket

= =ini_get("mysqli.default_socket"));

voi d nysqli::connect (

string host

= =ini_get("nmysqgli.default_host"),
string usernane

= =ini_get("nmysqli.default_user"),
string passwd

= =ini_get("nmysqli.default_pw'),
string dbnane

—nn

int port
= =ini_get("nmysqli.default_port"),
string socket

78

mysqli:: __construct,mysqli::connect,nysqli _connect

= =ini_get("mysqli.default_socket"));

Procedural style

nysqli mnysqli_connect (

string host

= =ini_get("nysqgli.default_host"),
string usernane

= =ini_get("nysqgli.default_user"),
string passwd

= =ini_get("nysqgli.default_pw'),
string dbnane

"

int port

= =ini_get("nysqgli.default_port"),
string socket

= =ini_get("nmysqli.default_socket"));

Opens a connection to the MySQL Server.

Parameters

host Can be either a host name or an IP address. Passing the NULL value or
the string "localhost" to this parameter, the local host is assumed. When
possible, pipes will be used instead of the TCP/IP protocol.
Prepending host by p: opens a persistent connection.
nysql i _change_user is automatically called on connections opened
from the connection pool.

user name The MySQL user name.

passwd If not provided or NULL, the MySQL server will attempt to authenticate
the user against those user records which have no password only. This
allows one username to be used with different permissions (depending
on if a password is provided or not).

dbnane If provided will specify the default database to be used when performing
queries.

port Specifies the port number to attempt to connect to the MySQL server.

socket Specifies the socket or named pipe that should be used.

Note

Specifying the socket parameter will not
explicitly determine the type of connection to

be used when connecting to the MySQL server.
How the connection is made to the MySQL
database is determined by the host parameter.

Return Values

Returns an object which represents the connection to a MySQL Server.

Changelog
Version Description
5.3.0 Added the ability of persistent connections.

79

mysqli:: __construct,mysqli::connect,nysqli _connect

Examples
Example 3.39 nysql i :: __construct example

Object oriented style

<?php
$nysqgli = new nysqli('local host', 'ny_user', 'ny_password', 'ny_db');

/*
* This is the "official" OO way to do it
* BUT $connect_error was broken until PHP 5.2.9 and 5.3.0
*/
if ($nysqli->connect _error) {
di e(' Connect Error (' . $nysqli->connect_errno . ') '
$nmysql i - >connect _error);

}

/*
* Use this instead of $connect _error if you need to ensure
* conpatibility with PHP versions prior to 5.2.9 and 5.3.0
*/
if (nysqgli_connect_error()) {
di e(' Connect Error (' . nysqli_connect_errno() . ")
nmysqli _connect_error());

}

echo 'Success... ' . $nysqgli->host_info . "\n"

$nysqli->cl ose();
?>

Object oriented style when extending mysqli class

<?php
class foo_nysqgli extends nysqli {
public function __construct ($host, $user, $pass, $db) {
parent::__construct ($host, $user, $pass, $db);
if (nysqgli_connect_error()) {

di e(' Connect Error (' . nysqli_connect_errno() . ")
nmysqli _connect _error());

}
$db = new foo_nysqli('local host', 'my_user', 'ny_password', 'ny_db');
echo 'Success... ' . $db->host_info . "\n"

$db- >cl ose();
2>

Procedural style

80

mysqli:: __construct,mysqli::connect,nysqli _connect

<?php
$link = nmysqli_connect('local host', 'ny_user', 'ny_password', 'my_db');
if (!1$link) {
di e(' Connect Error (' . mnysqli_connect_errno() . ') '
mysql i _connect _error());
}
echo 'Success... ' . nysqgli_get_host_info($link) . "\n";

nysql i _cl ose($link);
?>

The above examples will output:

Success... MySQ host info: |ocal host via TCP/IP

Notes
Note
MySQLnd always assumes the server default charset. This charset is sent during
connection hand-shake/authentication, which mysqlnd will use.
Libmysqlclient uses the default charset set in the ny. cnf or by an explicit
call to nysql i _opti ons prior to calling nysql i _real connect, but after
nysqgli_init.
Note
OO syntax only: If a connection fails an object is still returned. To check if the
connection failed then use either the mysql i _connect error function or the
mysqli->connect_error property as in the preceding examples.
Note
If it is necessary to set options, such as the connection timeout,
nysqgl i _real connect mustbe used instead.
Note
Calling the constructor with no parameters is the same as calling nysqgl i _init.
Note
Error "Can't create TCP/IP socket (10106)" usually means that the variables_order
configure directive doesn't contain character E. On Windows, if the environment is
not copied the SYSTENMROOT environment variable won't be available and PHP will
have problems loading Winsock.

See Also

mysql i _real _connect
nmysql i _options
mysql i _connect _errno

81

http://www.php.net/manual/en/ini.core.php#ini.variables-orde

mysql i :: debug, mysql i _debug

mysql i _connect _error
mysqli _cl ose

3.9.11 nysqgl i ::debug, mysqgl i _debug
Copyright 1997-2019 the PHP Documentation Group.
e mysqli::debug
nysql i _debug
Performs debugging operations
Description

Object oriented style

bool nysqli:: debug(
string nessage)

Procedural style

bool nysqli _debug(
string nmessage);

Performs debugging operations using the Fred Fish debugging library.

Parameters

nessage A string representing the debugging operation to perform
Return Values

Returns TRUE.

Notes
Note
To use the nysql i _debug function you must compile the MySQL client library to
support debugging.

Examples

Example 3.40 Generating a Trace File

<?php

/* Create a trace file in '/tnp/client.trace' on the local (client) machine: */
nysql i _debug("d:t:o,/tnp/client.trace");

?>

See Also

nmysql i _dunp_debug_info
nmysqli _report

82

mysql i :: dunp_debug_i nfo, mysqgli _dunp_debug_info

3.9.12 nysql i : : dunp_debug_i nf o, nysql i _dunp_debug_i nfo
Copyright 1997-2019 the PHP Documentation Group.
e nysqli::dunp_debug_info
nysql i _dunp_debug info
Dump debugging information into the log
Description
Object oriented style
bool nysqli::dunp_debug_info()

Procedural style

bool nysqli _dunp_debug_i nfo(
nysqli |ink);

This function is designed to be executed by an user with the SUPER privilege and is used to dump
debugging information into the log for the MySQL Server relating to the connection.

Parameters

['ink Procedural style only: A link identifier returned by nysql i _connect or
nysqgli _init

Return Values
Returns TRUE on success or FALSE on failure.
See Also
mysql i _debug
3.9.13 nysql i::$errno, nysqgli _errno
Copyright 1997-2019 the PHP Documentation Group.
e nysqgli::$errno
nysqli _errno
Returns the error code for the most recent function call
Description

Object oriented style

i nt
nysql i ->errno

Procedural style

int nysqgli_errno(
nmysqli 1ink);

Returns the last error code for the most recent MySQLi function call that can succeed or fail.

83

nysqli::$errno, mysqli_errno

Client error message numbers are listed in the MySQL er r nsg. h header file, server error message
numbers are listed in nysql d_error. h. In the MySQL source distribution you can find a complete list of
error messages and error numbers in the file Docs/ nysqgl d_error. t xt.

Parameters

[ink Procedural style only: A link identifier returned by nysql i _connect or
nysqgli_init

Return Values

An error code value for the last call, if it failed. zero means no error occurred.
Examples

Example 3.41 $nysql i - >err no example

Object oriented style

<?php
$nysqli = new nysqli("local host", "nmy_user", "ny_password", "world")

/* check connection */

if ($nysqli->connect_errno) {
printf("Connect failed: %\n", $nysqli->connect_error)
exit();

}

if (!$nysqli->query("SET a=1")) {
printf("Errorcode: %\ n", $nysqli->errno)
}

/* cl ose connection */
$nysql i - >cl ose()
?>

Procedural style

<?php
$link = nysqli_connect ("l ocal host", "ny_user", "nmy_password", "world")

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error())
exit();

}

if (!'nysqli_query($link, "SET a=1")) {
printf("Errorcode: %\ n", nysqgli_errno($link))
}

/* cl ose connection */
nysql i _cl ose($l i nk)
?>

The above examples will output:

84

nysqli::$error_list,mysqgli_error_list

Errorcode: 1193

See Also

nysql i _connect _errno
nysql i _connect _error
nysqli _error

nysqgli _sql state

3.9.14nysqgli::$error list,mysqgli _error _|ist
Copyright 1997-2019 the PHP Documentation Group.
e nmysqli::$error_|ist
nysqli_error_|ist
Returns a list of errors from the last command executed
Description

Object oriented style

array
nysqli->error_list

Procedural style

array mysqli_error_list(
nmysqli |ink);

Returns a array of errors for the most recent MySQLi function call that can succeed or fail.
Parameters

[ink Procedural style only: A link identifier returned by nysql i _connect or
nysqgli _init

Return Values

A list of errors, each as an associative array containing the errno, error, and sqlstate.
Examples

Example 3.42 $nysql i ->error _|ist example

Object oriented style

<?php
$nmysqgli = new nysqli ("l ocal host", "nobody", "");

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

85

nysqli::$error,nmysqli_error

}

if (!$nysqli->query("SET a=1")) {
print_r($nysqgli->error_list);
}

/* cl ose connection */
$nysqli->cl ose();
?>

Procedural style

<?php
$link = nysqli_connect ("l ocal host", "ny_user", "ny_password", "world");

/* check connection */

if (nysqli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

if (!'nysqgli_query($link, "SET a=1")) {
print_r(nysqgli_error_list($link));
}

/* cl ose connection */
nysql i _cl ose($link);
2>

The above examples will output:

Array
[0] => Array
[errno] => 1193
[sql state] => HY000
[error] => Unknown system variable 'a
)
)
See Also

nysql i _connect _errno

nysql i _connect _error

nysqli _error

nysqgli _sql state
3.9.15nysqgli::$%error,nysqli_error

Copyright 1997-2019 the PHP Documentation Group.

e nysqli::$error

86

nysqli::$error,nmysqgli_error

nmysqli _error
Returns a string description of the last error
Description

Object oriented style

string
nysqli->error

Procedural style

string nmysqli_error(
nmysqli 1ink);

Returns the last error message for the most recent MySQLi function call that can succeed or fail.
Parameters

[ink Procedural style only: A link identifier returned by nysql i _connect or
nysqgli_init

Return Values
A string that describes the error. An empty string if no error occurred.

Examples

Example 3.43 $nysql i - >error example

Object oriented style

<?php
$nysqgli = new nysqli ("l ocal host", "nmy_user", "ny_password", "world")

/* check connection */

if ($nysqli->connect_errno) {
printf("Connect failed: %\n", $nysqli->connect_error)
exit();

if (!$nysqli->query("SET a=1")) {
printf("Errornmessage: %\n", $nysqli->error)
}

/* cl ose connection */
$nysqli->cl ose()
?>

Procedural style

<?php
$link = nysqli_connect ("l ocal host", "ny_user", "ny_password", "world")

/* check connection */
if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error())

87

nysqli::$field_count,nysqgli_field_count

exit();
}

if (!'nysqli_query($link, "SET a=1")) {
printf("Errornmessage: %\n", nysqgli_error($link));
}

/* cl ose connection */
nysql i _cl ose($link);
?>

The above examples will output:

Errornessage: Unknown system variable 'a'

See Also

nysql i _connect _errno
nysql i _connect _error
nysqli_errno

nysqgli _sql state

3.9.16 nysqgli::$field count,nysqli field count
Copyright 1997-2019 the PHP Documentation Group.
e nysqli::$field count
nysqli _field count
Returns the number of columns for the most recent query
Description

Object oriented style

int
nysqli->field_count ;

Procedural style

int nysqgli_field_count(
nysqgli |ink);

Returns the number of columns for the most recent query on the connection represented by the | i nk
parameter. This function can be useful when using the mysql i _store_resul t function to determine if
the query should have produced a non-empty result set or not without knowing the nature of the query.

Parameters

[ink Procedural style only: A link identifier returned by nysql i _connect or
nysqli_init

Return Values

An integer representing the number of fields in a result set.

88

nysqli::$field count,nysqli_field count

Examples
Example 3.44 $nysql i - >fi el d_count example

Object oriented style

<?php
$nysqgli = new nysqli ("l ocal host", "my_user", "ny_password", "test");

$nysql i ->query("DROP TABLE I F EXI STS friends");
$nysql i - >query("CREATE TABLE friends (id int, name varchar(20))");

$nmysql i ->query("I NSERT INTO friends VALUES (1,'Hartnut'), (2, "Uf"')");

$nmysql i - >real _query("SELECT * FROM friends");

if ($nysqli->field_count) {
/* this was a sel ect/show or describe query */
$result = $nysqli->store_result();

/* process resultset */
$row = $result->fetch_row();

/* free resultset */
$resul t->cl ose();

}

/* cl ose connection */
$nysqli->cl ose();
2>

Procedural style

<?php
$link = nysqgli_connect ("l ocal host", "ny_user", "ny_password", "test")

nysql i _query($link, "DROP TABLE |F EXI STS friends")
nysql i _query($link, "CREATE TABLE friends (id int, name varchar(20))")

nysql i _query($link, "INSERT INTO friends VALUES (1,'Hartnut'), (2, '"Uf")");
nysql i _real _query($link, "SELECT * FROM friends")

if (mysqgli_field_count($link)) {
/* this was a sel ect/show or describe query */
$result = nysqgli_store_result($link)

/* process resul tset */
$row = nysqli_fetch_row($result)

/* free resultset */
nysqli_free_result($result)

}

/* cl ose connection */
nysql i _cl ose($l i nk)
?>

89

mysqli::get_charset,mysqli _get_charset

3.9.17 nysqgl i ::get_charset,nysqgli _get_charset
Copyright 1997-2019 the PHP Documentation Group.
* nysqli::get charset
nysql i _get _charset
Returns a character set object
Description
Object oriented style
obj ect nysqli::get_charset();

Procedural style

obj ect nysqli_get_charset (
nysqgli |ink);

Returns a character set object providing several properties of the current active character set.
Parameters

[ink Procedural style only: A link identifier returned by nysql i _connect or
nysqli _init
Return Values

The function returns a character set object with the following properties:

char set Character set name
col lation Collation name
dir Directory the charset description was fetched from (?) or " for built-in

character sets

mn_|ength Minimum character length in bytes
max_| engt h Maximum character length in bytes
nunber Internal character set number
state Character set status (?)

Examples

Example 3.45 nysql i : : get _char set example

Object oriented style

<?php
$db = nysqli_init();
$db- >r eal _connect ("l ocal host", "root","","test");

var _dunp($db->get charset());
2>

90

nysqli::$client_info,nysqgli::get_client_info,mysqgli_get_client_info

Procedural style

<?php
$db = nysqli_init();
nysql i _real _connect ($db, "l ocal host","root","","test");
var _dunp(nysql i _get charset ($db));

2>

The above examples will output:

obj ect (stdd ass)#2 (7) {
["charset"] =>
string(6) "latinl"
["collation"]=>
string(17) "latinl_swedish_ci"
["dir"]=>
string(0) ""
["m n_|l ength"] =>
int(1)
["max_| engt h"] =>
int(1)
[" nunber"] =>
int(8)
["state"]=>
i nt (801)

}

See Also

nysql i _character_set nane
nysql i _set _char set

3.9.18 nysqgli::$client_info,nysqli::get _client_info,
nmysqli_get client_info
Copyright 1997-2019 the PHP Documentation Group.
e nysqgli::$client_info
mysqli::get _client _info
nysqli_get_client_info
Get MySQL client info
Description

Object oriented style

string
nysqli->client_info

string nysqgli::get_client_info();

Procedural style

nysqli::$client_version,nmysqgli_get_client_version

string nysqgli_get_client_info(
nysqgli |ink);

Returns a string that represents the MySQL client library version.
Return Values

A string that represents the MySQL client library version
Examples

Example 3.46 mysqli_get_client_info

<?php

/* We don't need a connection to determ ne
the version of nysqgl client library */

printf("Client library version: %\n", nysqli_get_client_info())
2>

See Also
nmysqgli _get _client_version

nmysql i _get _server_info
nmysql i _get _server_version

3.9.19nysqgli:: $client_version,nysqgli_get client_version
Copyright 1997-2019 the PHP Documentation Group.
 nysqli::$client _version
nmysqli _get _client_version
Returns the MySQL client version as an integer
Description

Object oriented style

i nt
nysqli->client_version

Procedural style

int nysqgli_get_client_version(
nysqgli |ink)

Returns client version number as an integer.
Return Values

A number that represents the MySQL client library version in format: mai n_ver si on* 10000 +
m nor _version *100 + sub_versi on. For example, 4.1.0 is returned as 40100.

This is useful to quickly determine the version of the client library to know if some capability exists.

92

mysqli::get_connection_stats,nysqli_get_connection_stats

Examples

Example 3.47 mysqli_get_client_version

<?php

/* We don't need a connection to determ ne
the version of nysql client library */

printf("Cient library version: %\ n", nysqli_get_client_version())
2>

See Also
nmysqgli _get _client_info

nmysqgl i _get_server_info
nmysql i _get _server_version

3.9.20 nysqgl i::get _connection_stats,nysgli _get _connection_stats
Copyright 1997-2019 the PHP Documentation Group.
e nysqli::get_connection_stats
nysqli _get _connection_stats
Returns statistics about the client connection
Description
Object oriented style
bool mysqli::get_connection_stats();

Procedural style

array nysqli_get_connection_stats(
nysqli |ink)

Returns statistics about the client connection. Available only with mysgind.
Parameters

[ink Procedural style only: A link identifier returned by nmysql i _connect or
nysqgli _init

Return Values

Returns an array with connection stats if success, FALSE otherwise.

Examples

Example 3.48 A nysql i _get connection_stats example

<?php
$link = nysqli_connect();
print_r(nysqgli_get_connection_stats($link));

93

mysqli::get_connection_stats,nysqli_get_connection_stats

?>

The above example will output something similar to:

Array

(
[bytes_sent] => 43
[bytes_received] => 80
[packets_sent] => 1
[packets_received] => 2
[prot ocol _overhead_in] => 8
[prot ocol _overhead_out] => 4
[bytes_recei ved_ok_packet] => 11
[byt es_recei ved_eof _packet] => 0
[bytes_recei ved_rset_header_packet] => 0
[bytes_received_rset_field_neta_packet] => 0
[bytes_recei ved_rset_row _packet] => 0
[byt es_recei ved_prepare_response_packet] => 0
[byt es_recei ved_change_user _packet] => 0
[packet s_sent _command] => 0
[packets_recei ved_ok] => 1
[packets_recei ved_eof] => 0
[packet s_recei ved_rset _header] => 0
[packets_received_rset_field_neta] => 0
[packets_received_rset _row] => 0
[packet s_recei ved_prepare_response] => 0
[packet s_recei ved_change_user] => 0
[result_set_queries] => 0
[non_result_set_queries] => 0
[no_i ndex_used] => 0
[bad_i ndex_used] => 0
[sl ow_queries] => 0
[buf fered_sets] => 0
[unbuffered_sets] => 0
[ps_buffered_sets] => 0
[ps_unbuffered_sets] => 0
[flushed_normal _sets] => 0
[flushed_ps_sets] => 0
[ps_prepared_never _executed] => 0
[ps_prepared_once_executed] => 0
[rows_fetched_fromserver_normal] => 0
[rows_fetched_fromserver_ps] => 0
[rows_buffered_fromclient_normal] => 0
[rows_buffered_fromclient_ps] => 0
[rows_fetched_fromclient_normal _buffered] => 0
[rows_fetched_fromclient_normal _unbuffered] => 0
[rows_fetched_fromclient_ps_buffered] => 0
[rows_fetched_fromclient_ps_unbuffered] => 0
[rows_fetched_fromclient_ps_cursor] => 0
[rows_ski pped_normal] => 0
[rows_ski pped_ps] => 0
[copy_on_wite_saved] => 0
[copy_on_wite_performed] => 0
[command_buffer_too_small] => 0
[connect _success] => 1
[connect _failure] => 0
[connection_reused] => 0
[reconnect] => 0
[pconnect _success] => 0
[active_connections] => 1
[active_persistent _connections] => 0
[explicit_close] => 0
[implicit_close] => 0

mysqli::get_connection_stats,nysqli_get_connection_stats

[di sconnect _cl ose] => 0

[in_m ddl e_of _commuand_cl ose] => 0
[explicit_free_ result] => 0
[implicit_free_ result] => 0
[explicit_stnt_close] => 0
[implicit_stnt_close] => 0

[mem emal | oc_count] => 0

[mem emal | oc_ammount] => 0

[mem ecal | oc_count] => 0

[mem_ ecal | oc_ammount] => 0

[mem ereal | oc_count] => 0

[mem ereal | oc_ammount] => 0
[mem efree_count] => 0

[mem mal | oc_count] => 0

[mem mal | oc_amount] => 0

[mem cal | oc_count] => 0

[mem cal | oc_amount] => 0
[memreal |l oc_count] => 0

[memreal | oc_ammount] => 0

[mem free_count] => 0

[proto_text _fetched_null] => 0
[proto_text_fetched_bit] => 0
[proto_text_fetched_tinyint] => 0
[proto_text_fetched_short] => 0
[proto_text_fetched_int24] => 0
[proto_text_fetched_int] => 0
[proto_text_fetched_bigint] => 0
[proto_text_fetched_decimal] => 0
[proto_text_fetched_float] => 0
[proto_text_fetched_double] => 0
[proto_text _fetched_date] => 0
[proto_text _fetched_year] => 0
[proto_text _fetched_tine] => 0
[proto_text_fetched_datetine] => 0
[proto_text_fetched_timestanp] => 0
[proto_text _fetched_string] => 0
[proto_text _fetched_blob] => 0
[proto_text _fetched_enuni => 0
[proto_text_fetched_set] => 0
[proto_text_fetched_geonetry] => 0
[proto_text_fetched_other] => 0
[proto_binary_fetched_null] => 0
[proto_binary_fetched_bit] => 0
[proto_binary_fetched_tinyint] => 0
[proto_binary_fetched_short] => 0
[proto_binary_fetched_int24] => 0
[proto_binary_fetched_int] => 0

[proto_binary_fetched_bigint] => 0
[proto_binary_fetched_deciml] => 0
[proto_binary_fetched_float] => 0
[proto_bi nary_fetched_double] => 0
[proto_binary_fetched_date] => 0
[proto_binary_fetched_year] => 0
[proto_binary_fetched_tine] => 0
[proto_binary_fetched_datetinme] => 0
[proto_binary_fetched_tinestanp] => 0
[proto_binary_fetched_string] => 0
[proto_bi nary_fetched_blob] => 0

[proto_binary_fetched_enun] => 0
[proto_binary_fetched_set] => 0

[proto_binary_fetched_geonetry] => 0
[proto_binary_fetched_other] => 0

See Also

nysqli::$host _info,nmysqli_get_host_info

Stats description

3.9.21 nysqgl i::$host _info,nysqgli _get host info

Copyright 1997-2019 the PHP Documentation Group.
* nysqli::$host _info

nysqli _get _host _info

Returns a string representing the type of connection used
Description

Object oriented style

string
nysql i - >host _i nfo

Procedural style

string nmysqli_get_host_info(
nysqgli |ink);

Returns a string describing the connection represented by the | i nk parameter (including the server host
name).

Parameters

[ink Procedural style only: A link identifier returned by nysql i _connect or
nysqli_init

Return Values
A character string representing the server hostname and the connection type.

Examples

Example 3.49 $nysql i - >host _i nf o example

Object oriented style

<?php
$nysqli = new nysqli("local host", "my_user", "ny_password", "world")

/* check connection */

if (nysqli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error())
exit();

}

/* print host information */
printf("Host info: %\n", $nysqli->host_info)

/* cl ose connection */
$nysql i ->cl ose();
?>

96

nysqli:: $protocol version,nysqli_get_proto_info

Procedural style

<?php
$link = nysqli_connect ("l ocal host", "ny_user", "ny_password", "world");

/* check connection */

if (nmysqli_connect_errno()) {
printf("Connect failed: %\n", nysqli_connect_error());
exit();

}

/* print host information */
printf("Host info: %\n", nysqli_get_host_info($link));

/* cl ose connection */
nysqli _cl ose($link);
2>

The above examples will output:

Host info: Local host via UN X socket

See Also
nysqli_get_proto_info
3.9.22nysql i:: $protocol version,nysqli_get proto_info
Copyright 1997-2019 the PHP Documentation Group.
e nysqli:: $protocol version
nysqli _get _proto_info
Returns the version of the MySQL protocol used
Description

Object oriented style

string
nmysql i - >pr ot ocol _versi on

Procedural style

int nysqgli_get_proto_info(
nmysqli 1ink);

Returns an integer representing the MySQL protocol version used by the connection represented by the
I i nk parameter.

Parameters

nysqli:: $protocol version,nmysqli_get proto_info

[ink

Return Values

Procedural style only: A link identifier returned by nysql i _connect or
nysqgli_init

Returns an integer representing the protocol version.

Examples

Example 3.50 $nysql i - >pr ot ocol _ver si on example

Object oriented style

<?php

$nysqli = new nysqli ("l ocal host", "ny_user", "ny_password");

/* check connection */
if (nysqgli_connect_errno()) {

printf("Connect failed: %\n", nysqgli_connect _error());

exit();
}

/* print protocol version */
printf("Protocol version: %l\n"

/* cl ose connection */
$nmysql i - >cl ose();
?>

Procedural style

<?php

$mysql i - >prot ocol _version);

$link = nysqli_connect ("l ocal host", "ny_user", "ny_password")

/* check connection */
if (nysqgli_connect_errno()) {

printf("Connect failed: %\n", nysqgli_connect_error())

exit();
}

/* print protocol version */
printf("Protocol version: %l\n"

/* cl ose connection */
nysqli _cl ose($link)
2>

The above examples will output:

Prot ocol version: 10

See Also

nysqli _get proto_info($link))

98

nysqli:: $server_info,nysqgli::get_server_info,mysqgli_get_server_info

mysqli _get _host _info

3.9.23nysql i:: $server _info,nysqli::get _server _info,
nysqli _get _server_info

Copyright 1997-2019 the PHP Documentation Group.
e mysqli::$server_info

nmysqli::get_server_info

nysqli _get_server_info

Returns the version of the MySQL server
Description

Object oriented style

string
nysql i - >server _i nfo

string nmysqgli_stnt::get_server_info();
Procedural style

string nmysqgli_get_server_info(
nysqli |ink)

Returns a string representing the version of the MySQL server that the MySQLi extension is connected to.

Parameters

[ink Procedural style only: A link identifier returned by nysql i _connect or

nysqli_init
Return Values
A character string representing the server version.
Examples
Example 3.51 $nysql i - >server _i nf o example

Object oriented style

<?php

$nysqli = new nysqli ("l ocal host", "ny_user", "ny_password");

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqli_connect_error());
exit();

}

/* print server version */
printf("Server version: %\n", $nysqli->server_info);

99

nysqli:: $server_version, nysqgli_get_server_version

/* cl ose connection */
$nysqli->cl ose();
?>

Procedural style

<?php
$link = nysqli_connect ("l ocal host", "ny_user", "ny_password");

/* check connection */

if (nmysqli_connect_errno()) {
printf("Connect failed: %\n", nmysqli_connect_error());
exit();

}

/* print server version */
printf("Server version: %\n", nysqli_get_server_info($link));

/* cl ose connection */
nysql i _cl ose($link);
2>

The above examples will output:

Server version: 4.1.2-al pha-debug

See Also
nmysqgli _get _client_info

nmysqgli _get _client_version
nmysqgl i _get _server_version

3.9.24nysql i :: $server _version,nysqgli _get _server_version
Copyright 1997-2019 the PHP Documentation Group.
e nysqli::$server_version
nysql i _get_server_version
Returns the version of the MySQL server as an integer
Description

Object oriented style

i nt
nmysql i - >server _versi on

Procedural style

int nysqgli_get_server_version(

100

nysqli:: $server_version,nysqli _get _server_version

mysqli |ink)

The nysql i _get server versi on function returns the version of the server connected to (represented

by the | i nk parameter) as an integer.

Parameters

[ink Procedural style only: A link identifier returned by nysql i _connect or

nysqgli_init
Return Values

An integer representing the server version.

The form of this version number is mai n_versi on * 10000 + mi nor_version * 100 +

sub_ver si on (i.e. version 4.1.0 is 40100).
Examples
Example 3.52 $nysql i - >server _ver si on example

Object oriented style

<?php
$nysqgli = new nysqli("local host", "nmy_user", "ny_password");

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

/* print server version */
printf("Server version: %\ n", $nysqli->server_version);

/* cl ose connection */
$nysqli->cl ose();

72>

Procedural style

<?php
$link = nmysqli_connect("local host", "ny_user", "ny_password")

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error())
exit();

}

/* print server version */
printf("Server version: %\ n", nysqgli_get_server_version($link))

/* cl ose connection */
nysql i _cl ose($l i nk)
?>

101

mysqli:: get_warnings, nysqgli_get_warnings

The above examples will output:

Server version: 40102

See Also
nmysqgli _get _client_info

nmysqgli _get _client_version
nmysqgl i _get_server_info

3.9.25nysql i : : get _war ni ngs, nysql i _get _war ni ngs
Copyright 1997-2019 the PHP Documentation Group.
* nysqli::get_warnings
nysql i _get _war ni ngs
Get result of SHOW WARNINGS
Description
Object oriented style
nysqli _warning nysqli::get_warnings();

Procedural style

nysql i _warni ng nysqli _get_war ni ngs(
nysqgli |ink)

Warning
I This function is currently not documented; only its argument list is available.
3.9.26 nysqli::$info,mysqgli _info

Copyright 1997-2019 the PHP Documentation Group.
e nysqgli::$info

nysqli _info

Retrieves information about the most recently executed query
Description

Object oriented style

string
nysqli->info

Procedural style

string nmysqli_info(
nysqgli |ink);

102

nysqli:

:$info,nysqgli_info

The nysql i _i nf o function returns a string providing information about the last query executed. The

nature of this string is provided below:

Table 3.9 Possible mysqli_info return values

Query type

Example result string

INSERT INTO...SELECT...

Records: 100 Duplicates: 0 Warnings: 0

INSERT INTO...VALUES (...),(...),(...)

Records: 3 Duplicates: 0 Warnings: 0

LOAD DATA INFILE ...

Records: 1 Deleted: 0 Skipped: 0 Warnings: 0

ALTER TABLE ...

Records: 3 Duplicates: 0 Warnings: 0

UPDATE ... Rows matched: 40 Changed: 40 Warnings: O
Note
Queries which do not fall into one of the preceding formats are not supported. In
these situations, nysql i _i nf o will return an empty string.
Parameters
[ink Procedural style only: A link identifier returned by nysql i _connect or

mysqli _init

Return Values

A character string representing additional information about the most recently executed query.

Examples
Example 3.53 $nysql i - >i nf o example

Object oriented style

<?php
$nysqgli = new nysqli ("l ocal host", "my_user",

/* check connection */
if (nysqgli_connect_errno()) {

"my_password", "world");

printf("Connect failed: %\n", nysqgli_connect_error());

exit();
}

$nysql i - >quer y(" CREATE TEMPORARY TABLE t1 LIKE City");

/* INSERT INTO .. SELECT */

$nysql i - >query(" I NSERT INTO t1 SELECT * FROM Gity ORDER BY ID LIMT 150");

printf("9%\n", $nysqli->info)

/* cl ose connection */
$nysqli->cl ose();
2>

Procedural style

<?php

103

mysqli::init,nmysqgli_init

$link = mysqli_connect("local host", "ny_user", "ny_password", "world");

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

nysql i _query($link, "CREATE TEMPORARY TABLE t1 LIKE City");

/* I NSERT | NTO .. SELECT */

nysql i _query($link, "INSERT INTOt1l SELECT * FROM City ORDER BY ID LIM T 150");
printf("%\n", nysqgli_info($link));

/* cl ose connection */

nysql i _cl ose($link);
?>

The above examples will output:

Records: 150 Duplicates: 0 Wrnings: O

See Also

mysqli _affected_rows
mysql i _war ni ng_count
mysql i _num.rows

3.9.27nysgli::init,nmysqgli _init
Copyright 1997-2019 the PHP Documentation Group.
e mysqli::init
nysqli_init

Initializes MySQLi and returns a resource for use with mysqli_real_connect()
Description
Object oriented style
nysqgli nysqgli::init();
Procedural style
nmysqli nysqli_init();
Allocates or initializes a MYSQL obiject suitable for nysql i _opti ons and nysqli _real connect.
Note

Any subsequent calls to any mysqli function (except mysql i _opt i ons) will fail
until nysqgl i _real _connect was called.

Return Values

104

nysqli::$insert_id, mysqli_insert_id

Returns an object.

Examples

Seenysqgli _real connect.
See Also

nysql i _options

nmysqgl i _cl ose

nmysql i _real connect
nysql i _connect

3.9.28 nysqgli::$%insert _id, nysqgli insert _id
Copyright 1997-2019 the PHP Documentation Group.
e mysqli::$insert_id
nysqli _insert _id
Returns the auto generated id used in the latest query
Description

Object oriented style

m xed
nysqgli->insert_id ;

Procedural style

m xed nysqli_insert _id(
nysqgli 1ink);

The nysqli _insert _id function returns the ID generated by a query (usually INSERT) on a table with

a column having the AUTO_INCREMENT attribute. If no INSERT or UPDATE statements were sent via
this connection, or if the modified table does not have a column with the AUTO_INCREMENT attribute, this
function will return zero.

Note
Performing an INSERT or UPDATE statement using the LAST_INSERT _ID()
function will also modify the value returned by the nysql i _i nsert _i d function.
Parameters
[ink Procedural style only: A link identifier returned by nysql i _connect or
nysqgli _init

Return Values

The value of the AUTO | NCRENMENT field that was updated by the previous query. Returns zero if there was
no previous query on the connection or if the query did not update an AUTO | NCREMENT value.

Note

If the number is greater than maximal int value, nysql i _i nsert i d will return a
string.

105

nysqli::$insert_id, mysqli_insert_id

Examples
Example 3.54 $nysql i - >i nsert i d example

Object oriented style

<?php
$nysqgli = new nysqli ("l ocal host", "nmy_user", "ny_password", "world");

/* check connection */

if (nysqli_connect_errno()) {
printf("Connect failed: %\n", nysqli_connect_error());
exit();

}

$nysql i - >query(" CREATE TABLE nmyCity LIKE City");

$query = "INSERT | NTO nyCity VALUES (NULL, 'Stuttgart', 'DEU, 'Stuttgart', 617000)";
$nmysql i - >quer y($query);

printf ("New Record has id %l.\n", $nysqli->insert_id);

/* drop table */
$nmysql i - >query("DROP TABLE nyCity");

/* cl ose connection */
$nmysql i - >cl ose();
?>

Procedural style

<?php
$link = nmysqli_connect("local host", "ny_user", "ny_password", "world");

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

nysql i _query($link, "CREATE TABLE nyCity LIKE City")

$query = "INSERT INTO nyGCity VALUES (NULL, 'Stuttgart', 'DEU, 'Stuttgart', 617000)"
nysql i _query($link, $query);

printf ("New Record has id %.\n", nysqli_insert_id($link));

/* drop table */
nysql i _query($link, "DROP TABLE nyCity");

/* cl ose connection */

nysql i _cl ose($link);
2>

The above examples will output:

106

mysqli::kill,mysqgli_kill

New Record has id 1

3.9.29nysqgli::kill,nmysqgli _kill
Copyright 1997-2019 the PHP Documentation Group.
e nysqli::kill
nysqgli _kill
Asks the server to kill a MySQL thread
Description

Object oriented style

bool nysqli::kill(
int processid);

Procedural style
bool nysqgli _kill(

nmysqli |ink,
int processid);

This function is used to ask the server to kill a MySQL thread specified by the pr ocessi d parameter. This
value must be retrieved by calling the mysql i _t hread_i d function.

To stop a running query you should use the SQL command Kl LL QUERY processi d.
Parameters

['i nk Procedural style only: A link identifier returned by nysql i _connect or
nysqgli _init

Return Values

Returns TRUE on success or FALSE on failure.
Examples

Example 3.55 nysql i:: kill example

Object oriented style

<?php
$nysqgli = new nysqli ("l ocal host", "my_user", "ny_password", "world");

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

/* determine our thread id */
$thread_id = $nysqli->thread_id

107

mysqli::nore_results,nysqgli_nore_results

/* Kill connection */
$nysqli->kill ($thread_id)

/* This should produce an error */

if (!$nysqli->query("CREATE TABLE nyCity LIKE Gty")) {
printf("Error: 9%\n", $nysqli->error);
exit;

}

/* cl ose connection */
$nysqli->cl ose();
?>

Procedural style

<?php
$link = nmysqli_connect("local host", "ny_user", "ny_password", "world");
/* check connection */
if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();
}

/* determine our thread id */
$thread_id = nysqli_thread_i d($link)

/* Kill connection */

nysql i _Kkill($link, $thread_id);

/* This should produce an error */

if (!'nysqli_query($link, "CREATE TABLE nyCity LIKE City")) {
printf("Error: %\n", nysqgli_error($link));
exit;

}

/* cl ose connection */
nysql i _cl ose($link);
?>

The above examples will output:

Error: MySQL server has gone away

See Also
nysqli _thread_id
3.9.30nysqgli::nore results,nysqgli_nore results
Copyright 1997-2019 the PHP Documentation Group.
e mysqli::nore_results

nysqli_nore results

108

mysqli::multi_query,mysqgli_nulti_query

Check if there are any more query results from a multi query
Description

Object oriented style

bool nysqli::nmore_results();

Procedural style

bool nysqli_nore_results(
nysqgli |ink);

Indicates if one or more result sets are available from a previous call to nysql i _nmul ti _query.
Parameters

[ink Procedural style only: A link identifier returned by nysql i _connect or
nysqli_init

Return Values

Returns TRUE if one or more result sets are available from a previous call to mysqgl i _nul ti _query,
otherwise FALSE.

Examples
Seenysqgli_multi _query.
See Also

nmysqgli _multi_query
nmysqgl i _next _result

nmysqgli_store_result
nmysqgl i _use_result

3.9.31nysqgli::multi_query,mysqgli_nmulti_query
Copyright 1997-2019 the PHP Documentation Group.
e mysqli::multi_query
nysqli_multi_query
Performs a query on the database
Description

Object oriented style

bool nysqli::mlti_query(
string query);

Procedural style

bool nysqli_multi_query(
nmysqli |ink,
string query);

109

mysqgli::multi_query,nmysqli_nulti_query

Executes one or multiple queries which are concatenated by a semicolon.

To retrieve the resultset from the first query you can use nysql i _use_result or
nmysql i _store_result.All subsequent query results can be processed using mysql i _nore_results
and nysqgl i _next _result.

Procedural style only: A link identifier returned by nysql i _connect or

Parameters
[ink
mysqli _init
query The query, as a string.

Data inside the query should be properly escaped.

Return Values

Returns FALSE if the first statement failed. To retrieve subsequent errors from other statements you have
tocall nysqli _next result first.

Examples

Example 3.56 nysql i ::mul ti _query example

Object oriented style

<?php

$nysql

= new nysqli ("l ocal host", "my_user", "my_password"

/* check connection */
if (nmysqli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());

exit();
}
$query = "SELECT CURRENT_USER();"
$query .= "SELECT Nanme FROM City ORDER BY ID LIMT 20, 5";

/* execute multi query */
if ($nysqli->multi_query($query)) {

do {

/* store first result set */

if ($result = $nysqli->store_result()) {
while ($row = $result->fetch_row()) {

printf("%\n", $row 0])

}
$resul t->free()

}

[* print divider */

if ($nysqgli->nore_results()) {
printf("----------------- \n");

}
} while ($nysqli->next_result());

}

/* cl ose connection */
$nysql i - >cl ose();

2>

Procedural style

"worl d");

110

mysqli::next_result,mysqgli_next_result

3.9.32 nysql i

<?php

$link = nysqli_connect ("l ocal host", "ny_user", "ny_password"

/* check connection */
if (nmysqli_connect_errno()) {

printf("Connect failed: %\n", nysqgli_connect_error())

exit();
}
$query = "SELECT CURRENT_USER();"
$query .= "SELECT Nane FROM City ORDER BY ID LIMT 20, 5";

/* execute multi query */
if (mysqgli_multi_query($link, $query)) {
do {
/* store first result set */
if ($result = nysqli_store_result($link)) {
while ($row = nysqli_fetch_rowm $result)) {
printf("%\n", $row 0])
}

nysqli_free_result($result)

}

[* print divider */

if (nysqgli_nore_results($link)) {
printf("----------------- \n")

} while (nysqli_next _result($link))
}

/* cl ose connection */
nysql i _cl ose($link)
2>

The above examples will output something similar to:

nmy_user @ ocal host

Aner sf oort
Maastri cht
Dor dr echt

Lei den
Haar | emmer meer

See Also

mysql i _query

mysqli _use_result
nysqgli_store_result
mysqli _next_result
nysqgli_nore_results

Copyright 1997-2019 the PHP Documentation Group.

* nysqgli::next_result

.. next _result,nysqgli _next result

111

mysqli::options,nysqli_options

mysql i _next_result
Prepare next result from multi_query
Description

Object oriented style

bool nysqli::next_result();

Procedural style

bool nysqli_next_result(
nysqgli |ink);

Prepares next result set from a previous call to mysql i _nul ti _query which can be retrieved by
mysqli _store_result ornysqgli_use_result.

Parameters

[ink Procedural style only: A link identifier returned by nysql i _connect or
nysqgli _init

Return Values

Returns TRUE on success or FALSE on failure.
Examples

Seenysqgli_multi _query.

See Also

nysqli_nulti_query

nysqli_nore_results
nysqli_store_result
nysqgli _use result

3.9.33nysqgli::options,nysqgli _options
Copyright 1997-2019 the PHP Documentation Group.
e nysqli::options
nmysql i _options
Set options
Description

Object oriented style
bool nysqli::options(

int option,
m xed val ue);

Procedural style

112

mysqli::options,nysqli_options

bool nysqli _options(
nysqgli |ink,
int option,
m xed val ue);

Used to set extra connect options and affect behavior for a connection.

This function may be called multiple times to set several options.

nysql i _opti ons should be called after nysql i _i nit and before nysqli _real connect.

Parameters

[ink Procedural style only: A link identifier returned by nmysql i _connect or
nysqli_init

option The option that you want to set. It can be one of the following values:
Table 3.10 Valid options

Name Description

MYSQLI _OPT_CONNECT _TI MEQUT|connection timeout in seconds
(supported on Windows with TCP/
IP since PHP 5.3.1)

MYSQLI _OPT_LOCAL_I NFI LE enable/disable use of LOAD
LOCAL | NFI LE

MYSQLI _I NI T_COMVAND command to execute after when
connecting to MySQL server

MYSQLI _READ DEFAULT_FI LE |Read options from named option
file instead of my. cnf

MYSQLI READ DEFAULT GROUP |Read options from the
named group from ny. cnf
or the file specified with
MYSQL_READ DEFAULT_FI LE.

MYSQLI SERVER PUBLI C KEY [RSA public key file used with the
SHA-256 based authentication.

MYSQLI _OPT_NET_CMVD BUFFER SThEEsize of the internal command/
network buffer. Only valid for
mysqind.

MYSQLI _OPT_NET_READ_ BUFFER|EbaXimum read chunk size in
bytes when reading the body of
a MySQL command packet. Only
valid for mysqgind.

MYSQLI _OPT_ | NT_AND_FLOAT NpTomEert integer and float columns
back to PHP numbers. Only valid
for mysqind.

MYSQLI _OPT_SSL_VERI FY_SERVER CERT

val ue The value for the option.

Return Values

Returns TRUE on success or FALSE on failure.

113

mysqli:: ping,nysqgli_ping

Changelog

Version Description

5.5.0 The MYSQLI SERVER PUBLI C _KEY and
MYSQLI SERVER PUBLI C_KEY options were
added.

5.3.0 The MYSQLI _OPT_| NT_AND_FLQOAT_NATI VE,
MYSQLI _OPT_NET_CMD BUFFER_SI ZE,
MYSQLI _OPT_NET_READ BUFFER_SI ZE, and
MYSQLI _OPT_SSL_VERI FY_SERVER CERT
options were added.

Examples

Seenysqgl i _real connect.

Notes
Note
MySQLnd always assumes the server default charset. This charset is sent during
connection hand-shake/authentication, which mysqind will use.
Libmysgiclient uses the default charset set in the ny. cnf or by an explicit
call to nysql i _opti ons prior to calling nysql i _real connect, but after
nysqli_init.

See Also

nysqli_init

nysql i _real connect

3.9.34 nysqgl i::ping,nysqgli_ping

Copyright 1997-2019 the PHP Documentation Group.
* nysqli::ping
nysql i _ping
Pings a server connection, or tries to reconnect if the connection has gone down
Description
Object oriented style
bool nysqli::ping();
Procedural style

bool nysqli _pi ng(
nysqgli |ink);

Checks whether the connection to the server is working. If it has gone down and global option
mysqli.reconnect is enabled, an automatic reconnection is attempted.

114

mysqli:: ping, nysqli_ping

Note

The php. i ni setting mysgli.reconnect is ignored by the mysqind driver, so
automatic reconnection is never attempted.

This function can be used by clients that remain idle for a long while, to check whether the server has
closed the connection and reconnect if necessary.

Parameters

['ink Procedural style only: A link identifier returned by nysql i _connect or
nysqgli _init

Return Values

Returns TRUE on success or FALSE on failure.
Examples

Example 3.57 nysql i : : pi ng example

Object oriented style

<?php
$nysqli = new nysqli("local host", "nmy_user", "ny_password", "world")

/* check connection */

if ($nysqli->connect_errno) {
printf("Connect failed: %\n", $nysqli->connect_error)
exit();

}

/* check if server is alive */
if ($nysqli->ping()) {
printf ("Qur connection is ok!\n")
} else {
printf ("Error: %\n", $nysqli->error)

/* cl ose connection */
$nysql i - >cl ose()
?>

Procedural style

<?php
$link = nysqli_connect("local host", "my_user", "ny_password", "world")

/* check connection */

if (nysqli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error())
exit();

/* check if server is alive */
if (mysqli_ping($link)) {

printf ("Qur connection is ok!\n")
} else {

115

mysqli::poll,nysqli_poll

printf ("Error: %\n", nysqgli_error($link));
}

/* cl ose connection */
nysql i _cl ose($link);
?>

The above examples will output:

Qur connection is ok!

3.9.35nysqgli::poll,nysqgli_poll

Copyright 1997-2019 the PHP Documentation Group.
e mysqli::poll

nysql i _pol |

Poll connections
Description

Object oriented style

public static int nysqgli::poll(
array read,
array error,
array reject,
int sec,
int usec
= :0);

Procedural style

int nysqgli_poll (
array read,
array error,
array reject,
int sec,
int usec
= :0);

Poll connections. Available only with mysqglnd. The method can be used as static.

Parameters

read List of connections to check for outstanding results that can be read.

error List of connections on which an error occured, for example, query failure
or lost connection.

rej ect List of connections rejected because no asynchronous query has been
run on for which the function could poll results.

sec Maximum number of seconds to wait, must be non-negative.

116

http://www.php.net/language.oop5.static

mysqli:: prepare,nysqli _prepare

usec Maximum number of microseconds to wait, must be non-negative.
Return Values

Returns number of ready connections upon success, FALSE otherwise.

Examples

Example 3.58 A nysql i _pol | example

<?php
$linkl = nysqli_connect();
$li nk1->query("SELECT 'test'", MYSQ.l _ASYNC);

$all _links = array($linkl);
$processed = 0
do {
$links = $errors = $reject = array();

foreach ($all _links as $link) {
$links[] = $errors[] = $reject[] = $link

if (!'nmysqli_poll($links, $errors, $reject, 1)) {
conti nue
}

foreach ($links as $link) {
if ($result = $link->reap_async_query()) {
print_r($result->fetch_row));
if (is_object($result))
nysqli_free_result($result)
} else die(sprintf("MWSQi Error: %", nysqli_error($link)));
$pr ocessed++

}
} while ($processed < count($all _Ilinks));
?>

The above example will output:

Array

[0] => test
)
See Also
nysql i _query

nysql i _reap_async_query
3.9.36 nysqgl i::prepare,nysqgli _prepare
Copyright 1997-2019 the PHP Documentation Group.
e nysqli::prepare
nysql i _prepare

Prepare an SQL statement for execution

117

mysqli:: prepare,nysqli _prepare

Description

Object oriented style

nmysqli _stmt nysqli:: prepare(
string query);

Procedural style

nmysqli_stm nysqli_prepare(
nysqgli |ink,
string query);

Prepares the SQL query, and returns a statement handle to be used for further operations on the
statement. The query must consist of a single SQL statement.

The parameter markers must be bound to application variables using nysql i _st nt _bi nd_par amand/or
nmysqgl i _stnt _bind_result before executing the statement or fetching rows.

Parameters

['ink Procedural style only: A link identifier returned by nysqgl i _connect or
mysqli _init

query The query, as a string.

Note

You should not add a terminating semicolon or
\ g to the statement.

This parameter can include one or more parameter markers in the
SQL statement by embedding question mark (?) characters at the
appropriate positions.

Note

The markers are legal only in certain places in
SQL statements. For example, they are allowed
in the VALUES() list of an | NSERT statement
(to specify column values for a row), or in a
comparison with a column in a WHERE clause to
specify a comparison value.

However, they are not allowed for identifiers
(such as table or column names), in the select
list that names the columns to be returned by a
SELECT statement, or to specify both operands
of a binary operator such as the = equal sign.
The latter restriction is necessary because it
would be impossible to determine the parameter
type. It's not allowed to compare marker with
NULL by ? | S NULL too. In general, parameters
are legal only in Data Manipulation Language
(DML) statements, and not in Data Definition
Language (DDL) statements.

Return Values

118

mysqli:

:prepare,nmysqli_prepare

nysql i _prepar e returns a statement object or FALSE if an error occurred.

Examples

Example 3.59 nysql i : : prepar e example

Object oriented style

<?php
$nysqgli = new nysqli ("l ocal host",

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n",
exit();

}

$city = "Amersfoort”;

/* create a prepared statenent */

"my_user", "my_password", "world");

nmysql i _connect_error());

if ($stnmt = $nysqli->prepare("SELECT District FROM Cty WHERE Name=?")) {

/* bind paraneters for markers */

$st nt - >bi nd_paranm("s", $city);

/* execute query */
$st nt - >execut e() ;

/* bind result variables */
$stnt->bi nd_resul t ($district);

/* fetch value */
$stnt->fetch();

printf("% is in district %\n", $city, $district);

/* cl ose statenment */
$stnt - >cl ose();
}

/* cl ose connection */
$nysql i ->cl ose();
?>

Procedural style

<?php

$link = nmysqgli_connect ("I ocal host"

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n",
exit();

}

$city = "Amersfoort”;

/* create a prepared statenent */
if ($stnt = nysqli_prepare($link,

, "my_user", "ny_password", "world");

nmysql i _connect _error());

"SELECT District FROM Gty WHERE Name=?")) {

119

mysqli::query,nysqli _query

/* bind paranmeters for markers */
nysql i _stnt_bi nd_paran($stnt, "s", $city);

/* execute query */
nysql i _stnt_execut e($stnt)

/* bind result variables */
nysql i _stnt_bind_resul t($stnt, $district);

/* fetch value */
nysqli_stnt_fetch($stnt)

printf("% is in district %\n", $city, $district);
/* close statement */

nysql i _stnt_cl ose($stnt);
}

/* cl ose connection */
nysql i _cl ose($link);
?>

The above examples will output:

Anmersfoort is in district Urecht

See Also

nmysqgli _stm _execute
nmysqgli_stm fetch

nmysql i _stmt _bind_param
nmysqgl i _stm _bind_result
nmysqgli_stmt _cl ose

3.9.37 nysqgli::query,nysqli_query
Copyright 1997-2019 the PHP Documentation Group.
e nysqli::query
nysql i _query
Performs a query on the database
Description

Object oriented style

m xed nysqli::query(
string query,
int resultnode
= =MySQ.l _STORE_RESULT);

Procedural style

m xed nysqli _query(
nysqgli |ink,

120

mysqli::query,nysqli _query

string query,
int resultnode

= =MYSQLI _STORE_RESULT);

Performs a quer y against the database.

For non-DML queries (not INSERT, UPDATE or DELETE), this function is similar to calling
nysql i _real query followed by either nysql i _use result ornmysqgli _store result.

Parameters

i nk

query

resul t node

Return Values

In the case where you pass a statement to mysql i _query that is longer than
max_al | oned packet of the server, the returned error codes are different
depending on whether you are using MySQL Native Driver (nysql nd) or MySQL
Client Library (I i brrysql cl i ent). The behavior is as follows:

¢ nmysql nd on Linux returns an error code of 1153. The error message means “got
a packet bigger than nax_al | owed_packet bytes”.

e nysql nd on Windows returns an error code 2006. This error message means
“server has gone away”.

e |ibnysql client on all platforms returns an error code 2006. This error
message means “server has gone away”.

Procedural style only: A link identifier returned by nmysql i _connect or
nysqli_init

The query string.
Data inside the query should be properly escaped.

Either the constant MYSQLI _USE RESULT or MYSQLI _STORE RESULT
depending on the desired behavior. By default,
MYSQLI STORE_RESULT is used.

If you use M\YSQLI _USE_RESULT all subsequent calls will return error
Conmands out of sync unlessyou callnmysqli_free result

With MYSQLI _ ASYNC (available with mysqglnd), it is possible to perform
query asynchronously. nysql i _pol | is then used to get results from
such queries.

Returns FALSE on failure. For successful SELECT, SHOW DESCRI BE or EXPLAI N queries
nysql i _query will return anysql i _resul t object. For other successful queries nysql i _query will

return TRUE.

Changelog

Version Description

5.3.0 Added the ability of async queries.
Examples

121

mysqli::query,nysqgli_query

Example 3.60 nysql i : : query example

Object oriented style

<?php
$nysqgli = new nysqli("local host", "nmy_user", "ny_password", "world");

/* check connection */

if ($nysqli->connect_errno) {
printf("Connect failed: %\n", $nysqli->connect_error);
exit();

/* Create table doesn't return a resultset */
if ($nysqli->query("CREATE TEMPORARY TABLE nyCity LIKE Cty") === TRUE) {
printf("“Table nmyCty successfully created.\n");

/* Select queries return a resultset */
if ($result = $nysqli->query("SELECT Nane FROM Gty LIMT 10")) {
printf("Select returned %d rows.\n", $result->numrows);

/* free result set */
$resul t->cl ose();

/* If we have to retrieve |arge anobunt of data we use MYSQLI _USE RESULT */
if ($result = $nysqli->query("SELECT * FROM G ty", MYSQ.l _USE RESULT)) {

/* Note, that we can't execute any functions which interact with the
server until result set was closed. Al calls will return an
'out of sync' error */
if (!'$nysqli->query("SET @:="this will not work'")) {
printf("Error: 9%\n", $nysqli->error);
}

$resul t->cl ose();

}

$nysql i ->cl ose();
?>

Procedural style

<?php
$link = nmysqli_connect("local host", "ny_user", "ny_password", "world")

/* check connection */
if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error())

exit();

}

/* Create table doesn't return a resul tset */

if (mysqli_query($link, "CREATE TEMPORARY TABLE nyCity LIKE City") === TRUE) {
printf("Table nmyCity successfully created.\n")

}

/* Select queries return a resultset */
if ($result = nysqgli_query($link, "SELECT Nane FROM Gty LIMT 10")) {
printf("Select returned %d rows.\n", nysqgli_numrows($result))

122

mysqli::real _connect,nysqgli_real connect

/* free result set */
nysqgli_free_result($result);

}

/* If we have to retrieve |arge anount of data we use MYSQLI _USE RESULT */
if ($result = nysqli_query($link, "SELECT * FROMGCity", MYSQLI _USE RESULT)) {
/* Note, that we can't execute any functions which interact with the
server until result set was closed. All calls will return an
'out of sync' error */
if (!'nysqli_query($link, "SET @:="this will not work'")) {
printf("Error: %\n", nysqgli_error($link));
}

nysqgli_free_result($result);

}

nysql i _cl ose($link);
?>

The above examples will output:

Tabl e myCity successfully created.
Sel ect returned 10 rows.
Error: Commands out of sync; You can't run this comand now

See Also

nmysqli _real query
mysqli_multi_query
mysqli _free result

3.9.38 nysqgli::real _connect,nysqli_real connect
Copyright 1997-2019 the PHP Documentation Group.
* nysqli::real _connect
nysqli _real connect
Opens a connection to a mysql server
Description

Object oriented style

bool nysqli::real _connect (
string host,
string usernane,
string passwd,
string dbnane,
int port,
string socket,
int flags);

Procedural style

bool nysqli _real _connect (

123

mysqli::real _connect,nysqgli_real connect

nmysqli |ink,
string host,
string usernane,
string passwd,
string dbnane,
int port,

string socket,
int flags);

Establish a connection to a MySQL database engine.

This function differs from nmysql i _connect :

* nysqgli _real connect needs a valid object which has to be created by function nysqgli _init.
» With the nysql i _opti ons function you can set various options for connection.

» Thereis afl ags parameter.

Parameters
[ink Procedural style only: A link identifier returned by nysql i _connect or
nysqgli _init
host Can be either a host name or an IP address. Passing the NULL value or
the string "localhost" to this parameter, the local host is assumed. When
possible, pipes will be used instead of the TCP/IP protocol.
user name The MySQL user name.
passwd If provided or NULL, the MySQL server will attempt to authenticate the
user against those user records which have no password only. This
allows one username to be used with different permissions (depending
on if a password as provided or not).
dbnane If provided will specify the default database to be used when performing
queries.
port Specifies the port number to attempt to connect to the MySQL server.
socket Specifies the socket or named pipe that should be used.
Note
Specifying the socket parameter will not
explicitly determine the type of connection to
be used when connecting to the MySQL server.
How the connection is made to the MySQL
database is determined by the host parameter.
fl ags With the parameter f | ags you can set different connection options:

Table 3.11 Supported flags

Name Description

MYSQLI _CLI ENT_COVPRESS Use compression protocol

MYSQLI _CLI ENT_FOUND_ROWS |return number of matched rows,
not the number of affected rows

124

mysqli::real _connect,nysqgli_real connect

Name

Description

MYSQLI _CLI ENT_| GNORE_SPACE

Allow spaces after function names.
Makes all function names reserved
words.

MYSQLI _CLI ENT_I NTERACTI VE

Allow i nteractive_ti nmeout
seconds (instead of

wai t _tinmeout seconds) of
inactivity before closing the
connection

MYSQLI _CLI ENT_SSL

Use SSL (encryption)

MYSQLI _CLI ENT_SSL_DONT_VER

lEike SEFRCER _CERENT_SSL, but
disables validation of the provided
SSL certificate. This is only for
installations using MySQL Native
Driver and MySQL 5.6 or later.

Note

For security reasons the MULTI _ STATEMENT
flag is not supported in PHP. If you want
to execute multiple queries use the

mysqgli _nmulti _query function.
Changelog
Version Description
5.6.16 Added the

MYSQLI _CLI ENT_SSL_DONT_VERI FY_SERVER CH
flag for MySQL Native Driver

RT

Return Values

Returns TRUE on success or FALSE on failure.

Examples
Example 3.61 mysql i :

Object oriented style

<?php

$nysqgli = nysqli_init();

if (!'$nysqli) {
die('nmysqli_init failed');

}

if (!$nysqgli->options(MYSQLI I NI T_COMVAND,

:real _connect example

' SET AUTCCOWM T = 0'))

die('Setting MYSQLI _I NI T_COWAND fail ed');

}

if (!$nysqgli->options(MySQLI _OPT_CONNECT_TI MEQUT, 5)) {
die('Setting MYSQLI _OPT_CONNECT_TI MEQUT failed');

}

{

125

mysqli::real _connect,nysqgli_real connect

if (!$nysqli->real _connect('local host', 'ny_user', 'my_password', 'ny_db')) {
di e(' Connect Error (' . mysqli_connect_errno() . ") '
nmysql i _connect _error())

}

echo 'Success... ' . $nysqli->host_info . "\n"

$nysqli->cl ose()
2>

Object oriented style when extending mysqli class

<?php

class foo_nysqgli extends nysqli {
public function __construct ($host, $user, $pass, $db) {
parent::init();

if (!parent::options(MYSQLI | NI T_COWAND, 'SET AUTOCOWM T = 0')) {
die(' Setting MYSQLI _I NI T_COMVAND fail ed'):
}

if (!parent::options(MySQLI _OPT_CONNECT_TI MEQUT, 5)) {
die('Setting MYSQLI _OPT_CONNECT_TI MEQUT fail ed")

}
if (!parent::real _connect($host, $user, $pass, $db)) {
di e(' Connect Error (' . mnysqli_connect_errno() . ")
nmysql i _connect _error())
}

}
$db = new foo_nysqli('local host', 'ny_user', 'ny_password', 'ny_db')
echo 'Success... ' . $db->host_info . "\n"

$db- >cl ose();
2>

Procedural style

<?php

$link = nysqgli_init()

if (!$link) {
die('nmysqli_init failed")

}

if (!mysqgli_options($link, MYSQLI | NIT_COMMAND, 'SET AUTOCOWM T = 0')) {
die(' Setting MYSQLI _I NI T_COMMAND fail ed'):
}

if (!mysqgli_options($link, MYSQLI_OPT CONNECT TI MEQUT, 5)) {
die(' Setting MYSQLI _OPT_CONNECT TI MEQUT fail ed');
}

if (!'nysqli_real _connect($link, 'localhost', 'ny_user', 'ny_password' , 'nmy_db')) {
di e(' Connect Error (' . mnysqli_connect_errno() . ") '

126

mysqli::real _escape_string,nysqgli::escape_string,nysqgli_real escape_string

. nysqli_connect_error());

}
echo 'Success... ' . nysqgli_get_host_info($link) . "\n"

nysql i _cl ose($link);
?>

The above examples will output:

Success... MySQ. host info: |ocal host via TCP/IP

Notes
Note

MySQLnd always assumes the server default charset. This charset is sent during
connection hand-shake/authentication, which mysqind will use.

Libmysqiclient uses the default charset set in the ny. cnf or by an explicit
call to nysql i _opti ons prior to calling nysql i _real connect, but after
nysqli_init.

See Also

nysql i _connect

nysqli_init

nysql i _options

nysql i _ssl _set
nmysqgl i _cl ose

3.9.39nysqgli::real _escape_string,nysqli::escape_string,
nmysqgli _real escape string
Copyright 1997-2019 the PHP Documentation Group.
e mysqli::real escape_string
nysqli::escape_string
nmysqli _real escape_string

Escapes special characters in a string for use in an SQL statement, taking into account the current
charset of the connection

Description

Object oriented style

string nysqli::escape_string(
string escapestr);

string nysqgli::real _escape_string(
string escapestr);

127

mysqli::real _escape_string,nysqgli::escape_string,nysqgli_real escape_string

Procedural style

string nmysqgli_real _escape_string(
nysqgli |ink,
string escapestr);

This function is used to create a legal SQL string that you can use in an SQL statement. The given string is
encoded to an escaped SQL string, taking into account the current character set of the connection.

Security: the default character set

The character set must be set either at the server level, or with the API function
nmysql i _set charset foritto affect mysqli _real escape_string. See the
concepts section on character sets for more information.

Parameters

['ink Procedural style only: A link identifier returned by nysql i _connect or
nysqgli _init

escapestr The string to be escaped.

Characters encoded are NUL (ASCI I 0), \n, \r, \, ", ",
and Control - Z.

Return Values
Returns an escaped string.
Errors/Exceptions

Executing this function without a valid MySQLi connection passed in will return NULL and emit E_\WARNI NG
level errors.

Examples
Example 3.62 nysql i : : real _escape_stri ng example

Object oriented style

<?php
$nysqli = new nysqli ("l ocal host", "ny_user", "ny_password", "world");

/* check connection */
if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqli_connect _error());

exit();
}
$nysql i - >quer y(" CREATE TEMPORARY TABLE nyCity LIKE Gity");
$city = "'s Hertogenbosch";
/* this query will fail, cause we didn't escape $city */

if (!'$nysqli->query("INSERT into nyCity (Nane) VALUES ('$city')")) {
printf("Error: %\n", $nysqli->sqlstate);
}

$city = $nysqli->real _escape_string($city);

128

mysqli::real _escape_string,nysqgli::escape_string,nysqgli_real escape_string

/* this query with escaped $city will work */
if ($nysqli->query("INSERT into nyCGity (Nane) VALUES ('$city')")) {
printf("% Row inserted.\n", $nysqli->affected_rows);

}

$nysqli->cl ose();
2>

Procedural style

<?php

$link = nysqgli_connect ("l ocal host", "my_user", "ny_password", "world");

/* check connection */
if (nysqli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect _error());

exit();
}

nysql i _query($link, "CREATE TEMPORARY TABLE nyCity LIKE Gity");

$city = "'s Hertogenbosch";

/* this query will

fail, cause we didn't escape $city */

if (!'nysqgli_query($link, "INSERT into nyCity (Nane) VALUES ('$city')")) {

printf("Error:
}

%\ n", nysqgli_sqglstate($link));

$city = nysqli_real escape_string($link, $city);

/* this query with escaped $city will work */
if (nysqgli_query($link, "INSERT into nyCity (Nane) VALUES ('$city')")) {
printf ("% Row inserted.\n", nysqgli_affected rows($link));

}

nysqli _cl ose($link);

?>

The above examples will output:

Error: 42000
1 Row i nserted.

Notes

See Also

Note

For those accustomed to using mysql real escape_stri ng, note

that the arguments of mysql i _real _escape_st ri ng differ from what

nysqgl _real _escape_string expects. The | i nk identifier comes first in

nysqgl i _real escape_string, whereas the string to be escaped comes first in
nmysql real escape_string.

129

mysqli::real _query,nysqgli_real query

nmysql i _set _charset
nmysql i _character_set_nane

3.9.40 nysqgli::real _query,nysqli _real query
Copyright 1997-2019 the PHP Documentation Group.
e mysqli::real _query
nysqli _real query
Execute an SQL query
Description

Object oriented style

bool nysqli::real _query(
string query);

Procedural style
bool nysqli _real _query(

nmysqli |ink,
string query);

Executes a single query against the database whose result can then be retrieved or stored using the
mysqli _store_result ornysqgli _use result functions.

In order to determine if a given query should return a result set or not, see nysql i _fiel d _count.

Parameters

['ink Procedural style only: A link identifier returned by nysql i _connect or
nysqgli _init

query The query, as a string.

Data inside the query should be properly escaped.
Return Values
Returns TRUE on success or FALSE on failure.

See Also
nysql i _query

nysqgli _store result
nysqgli _use result

3.9.41nysqgli::reap_async_query, nysqli _reap_async_query
Copyright 1997-2019 the PHP Documentation Group.
e nysqli::reap_async_query

nysqli _reap_async_query

Get result from async query

130

mysqli::refresh,mysqli _refresh

Description

Object oriented style

public nysqli_result mysqli::reap_async_query();

Procedural style

nysqli _result nysqli_reap_async_query(
nysqgli |ink);

Get result from async query. Available only with mysqglnd.
Parameters

[ink Procedural style only: A link identifier returned by nmysql i _connect or
nysqli_init

Return Values
Returns nmysql i _resul t in success, FALSE otherwise.
See Also
nmysql i _pol |
3.9.42nysqgli::refresh,nysqgli _refresh
Copyright 1997-2019 the PHP Documentation Group.
e mysqli::refresh
nysqli _refresh
Refreshes
Description

Object oriented style

public bool nysqli::refresh(
int options);

Procedural style
bool nysqli _refresh(
resource |ink,
int options);

Flushes tables or caches, or resets the replication server information.

Parameters

[ink Procedural style only: A link identifier returned by nmysql i _connect or
nysqli_init

options The options to refresh, using the MYSQLI_REFRESH_* constants as

documented within the MySQLi constants documentation.

See also the official MySQL Refresh documentation.

131

http://dev.mysql.com/doc/mysql/en/mysql-refresh.html

mysqli::rel ease_savepoi nt,mysqli _rel ease_savepoi nt

Return Values
TRUE if the refresh was a success, otherwise FALSE
See Also
nysql i _pol |
3.9.43 nysqgli::rel ease_savepoi nt,nysqgli _rel ease_savepoi nt
Copyright 1997-2019 the PHP Documentation Group.
e nysqli::rel ease_savepoint
nmysql i _rel ease_savepoi nt
Removes the named savepoint from the set of savepoints of the current transaction
Description

Object oriented style (method):

public bool nysqgli::rel ease_savepoi nt (
string nane);

Procedural style:

bool nysqli _rel ease_savepoi nt (
nysqgli |ink,
string name);

Warning
I This function is currently not documented; only its argument list is available.
Parameters
[ink Procedural style only: A link identifier returned by nysql i _connect or
nysqgli _init
name

Return Values
Returns TRUE on success or FALSE on failure.
See Also
nysql i _roll back
3.9.44 nysqgli::rollback, nysqgli _roll back
Copyright 1997-2019 the PHP Documentation Group.
e« mysqli::roll back
nysqli _roll back

Rolls back current transaction

132

mysqli::roll back, nysqgli _roll back

Description

Object oriented style

bool nysqli::roll back(
int flags
= =0,
string nane);

Procedural style

bool nysqli _roll back(
nysqgli |ink,
int flags
= =0,
string nane);

Rollbacks the current transaction for the database.

Parameters

[ink Procedural style only: A link identifier returned by nysql i _connect or
nysqli_init

flags A bitmask of MYSQLI _ TRANS_CCR _* constants.

nanme If provided then ROLLBACK/ * nane*/ is executed.

Return Values

Returns TRUE on success or FALSE on failure.

Changelog

Version Description

5.5.0 Added f | ags and nane parameters.
Examples

Example 3.63 nysql i::rol | back example

Object oriented style

<?php
$nmysqgli = new nysqli ("l ocal host", "my_user", "ny_password", "world");

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

/* disabl e autocommt */
$nysql i - >aut ocomi t (FALSE) ;

$nysql i - >quer y(" CREATE TABLE nyCity LIKE Gity");
$nysql i - >query("ALTER TABLE nyCity Type=I nnoDB");
$nysql i ->query("I NSERT I NTO nyGCity SELECT * FROM City LIMT 50");

133

mysqli::rollback, mysqgli_roll back

/* commt insert */
$nysqli->comit();

/* delete all rows */
$nysql i - >quer y(" DELETE FROM nyGity");

if ($result = $nysqli->query("SELECT COUNT(*) FROM nyCity")) {
$row = $resul t->fetch_row();
printf("% rows in table nyCity.\n", $rowf0]);
/* Free result */
$resul t->cl ose();

}

/* Rol | back */
$nysqli->rol | back();

if ($result = $nysqli->query("SELECT COUNT(*) FROM nyCity")) {
$row = $resul t->fetch_row();
printf("% rows in table nyCity (after rollback).\n", $row 0]);
/* Free result */
$resul t->cl ose();

}

/* Drop table nyCity */
$nysql i - >quer y("DROP TABLE nyGity");

$nysqli->cl ose();
2>

Procedural style

<?php
$link = nmysqli_connect("local host", "ny_user", "ny_password", "world")

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

/* di sabl e autoconmmit */
nysql i _aut ocommi t ($l i nk, FALSE);

nysql i _query($link, "CREATE TABLE nyCity LIKE City");
nysql i _query($link, "ALTER TABLE nyCity Type=I nnoDB");
nysql i _query($link, "INSERT INTO nyCity SELECT * FROMCity LIMT 50");

/* commit insert */
nysql i _commi t ($li nk);

/* delete all rows */
nysql i _query($link, "DELETE FROM nyCity");

if ($result = nysqli_query($link, "SELECT COUNT(*) FROM nyCity")) {
$row = nysqli_fetch_row($result);
printf("% rows in table nyCity.\n", $rowf0]);
/* Free result */
nysqgli_free_result($result);

}

/* Rol | back */
nysql i _rol | back($link);

134

mysqli::rpl_query_type,nysqgli _rpl_query_type

if ($result = nysqli_query($link, "SELECT COUNT(*) FROM nyCity")) {
$row = nysqli_fetch_row($result);
printf("% rows in table nyCity (after rollback).\n", $row0]);
/* Free result */
nysqgli_free_result($result);

}

/* Drop table nyCity */
nysql i _query($link, "DROP TABLE nyGity");

nysql i _cl ose($link);
?>

The above examples will output:

Orows in table myCity.
50 rows in table myCity (after roll back).

See Also

mysql i _begi n_transaction
nmysqli _comm t

nmysql i _aut oconmi t

nmysql i _rel ease_savepoi nt

3.9.45nysqgli::rpl _query type,nysqli _rpl _query type
Copyright 1997-2019 the PHP Documentation Group.
e mysqli::rpl_query_type
nmysqli _rpl _query_type
Returns RPL query type
Description
Object oriented style

int nysqgli::rpl_query_type(
string query);

Procedural style

int nysqgli_rpl_query_type(
nysqgli |ink,
string query);

Returns MYSQLI _RPL_MASTER, MYSQLI _RPL_SLAVE or MYSQLI _RPL_ADM N depending on a query
type. | NSERT, UPDATE and similar are master queries, SELECT is slave, and FLUSH, REPAI R and similar
are admin.

I Warning

This function is currently not documented; only its argument list is available.

135

mysqli::savepoi nt, nmysqli _savepoi nt

Warning
I This function has been DEPRECATED and REMOVED as of PHP 5.3.0.
3.9.46 nysqgl i : : savepoi nt, nysql i _savepoi nt

Copyright 1997-2019 the PHP Documentation Group.
e mysqli::savepoint

nmysql i _savepoi nt

Set a named transaction savepoint
Description

Object oriented style (method):

public bool nysqgli::savepoi nt (
string name);

Procedural style:

bool nysqli _savepoi nt (
nysqgli |ink,
string nane);

Warning
I This function is currently not documented; only its argument list is available.
Parameters
[ink Procedural style only: A link identifier returned by nysql i _connect or
nysqli_init
nane

Return Values
Returns TRUE on success or FALSE on failure.
See Also
nmysql i _conmm t
3.9.47 nysqgl i ::sel ect _db, nysqli_sel ect _db
Copyright 1997-2019 the PHP Documentation Group.
« mysqli::select_db
nmysqli _sel ect _db
Selects the default database for database queries
Description

Object oriented style

136

mysqli::select_db,nmysqli _select_db

bool nysqli::sel ect_db(
string dbnane);

Procedural style

bool nysqli _sel ect _db(
nysqgli |ink,
string dbnane);

Selects the default database to be used when performing queries against the database connection.

Note

This function should only be used to change the default database for the
connection. You can select the default database with 4th parameter in

nysql i _connect.

Parameters

[ink Procedural style only: A link identifier returned by nysql i _connect or
nysqgli_init

dbnane The database name.

Return Values

Returns TRUE on success or FALSE on failure.
Examples

Example 3.64 nysql i :: sel ect _db example

Object oriented style

<?php
$nmysqgli = new nysqli ("l ocal host", "my_user", "ny_password",

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

/* return name of current default database */

if ($result = $nysqli->query("SELECT DATABASE()")) {
$row = $result->fetch_row();
printf("Default database is %.\n", $rowf 0]);
$resul t->cl ose();

}

/* change db to world db */
$nysqli->sel ect _db("world");

/* return name of current default database */

if ($result = $nysqli->query("SELECT DATABASE()")) {
$row = $result->fetch_row();
printf("Default database is %.\n", $rowf0]);
$resul t->cl ose();

}

$nysqli->cl ose();

"test");

137

mysqli::send_query,nysqgli_send_query

3.9.48 nysql i

?>

Procedural style

<?php
$link = nysqli_connect("local host", "ny_user", "ny_password",

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

/* return nane of current default database */

if ($result = nysqli_query($link, "SELECT DATABASE()")) {
$row = nysqli_fetch_row$result);
printf("Default database is %.\n", $row0]);
nysqli_free_result($result);

}

/* change db to world db */
nysql i _sel ect _db($link, "world");

/* return nane of current default database */

if ($result = nysqli_query($link, "SELECT DATABASE()")) ({
$row = nysqli_fetch_row$result);
printf("Default database is %.\n", $row0]);
nysqli_free_result($result);

}

nysql i _cl ose($link);
?>

The above examples will output:

Defaul t database is test.
Defaul t dat abase is world.

See Also

nmysql i _connect
nmysql i _real _connect

Copyright 1997-2019 the PHP Documentation Group.
* nysqli::send_query

nysql i _send_query

Send the query and return

Description

;. send_query, nysqli _send_query

"test");

138

mysqli::set_charset,mysqli _set_charset

Object oriented style

bool nysqli::send_query(
string query);

Procedural style

bool nysqli_send_query(

nmysqli |ink,
string query);
Warning
I This function is currently not documented; only its argument list is available.
Warning
I This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

3.9.49nysqgli::set _charset,nysgli _set charset
Copyright 1997-2019 the PHP Documentation Group.
* nysqli::set_charset
nysql i _set _charset
Sets the default client character set
Description

Object oriented style

bool nysqgli::set_charset (
string charset)

Procedural style
bool nysqli_set_charset (

nysqgli |ink,
string charset);

Sets the default character set to be used when sending data from and to the database server.

Parameters

[ink Procedural style only: A link identifier returned by nysql i _connect or
nysqli_init

char set The charset to be set as default.

Return Values
Returns TRUE on success or FALSE on failure.
Notes

Note

To use this function on a Windows platform you need MySQL client library version
4.1.11 or above (for MySQL 5.0 you need 5.0.6 or above).

139

mysqli::set_charset,mysqli _set_charset

Note

This is the preferred way to change the charset. Using nysql i _query to setit
(such as SET NAMES ut f 8) is not recommended. See the MySQL character set

concepts section for more information.
Examples
Example 3.65 nysql i : : set _char set example

Object oriented style

<?php
$nysqgli = new nysqli("local host", "ny_user", "nmy_password", "test")

/* check connection */

if (nysqli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error())
exit();

}

printf("Initial character set: %\n", $nysqli->character_set_nane())

/* change character set to utf8 */

if (!$nysqli->set_charset("utf8")) {
printf("Error |oading character set utf8: %\n", $nysqli->error)
exit();

} else {
printf("Current character set: %\n", $nysqli->character_set_nane())

$nysql i - >cl ose()
?>

Procedural style

<?php
$link = nysqli_connect('local host', 'ny_user', 'ny_password', 'test')

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error())
exit();

printf("Initial character set: %\n", nysqli_character_set_nanme($link))

/* change character set to utf8 */
if (!'nmysqli_set_charset($link, "utf8")) {
printf("Error |oading character set utf8: %\n", nysqli_error($link))
exit();
} else {
printf("Current character set: %\n", nysqli_character_set_nanme($link))
}

nysql i _cl ose($l i nk)
?>

140

mysqli::set_local _infile_default,nysqli_set local _infile_default

The above examples will output something similar to:

Initial character set: latinl
Current character set: utf8

See Also
nysql i _character_set nane
nysqgli _real escape_string

MySQL character set concepts
List of character sets that MySQL supports

3.9.50nysqgli::set _local _infile_ default,
nmysqgli _set local infile default
Copyright 1997-2019 the PHP Documentation Group.
e mysqli::set_local _infile_default
nysqli _set local _infile_ default
Unsets user defined handler for load local infile command

Description

void nysqli_set_local _infile_default(
nysqgli |ink);

Deactivates a LOAD DATA | NFI LE LOCAL handler previously set with
nysqgli _set | ocal _infile_handler.

Parameters

[ink Procedural style only: A link identifier returned by nysql i _connect or
nysqgli _init

Return Values

No value is returned.

Examples

Seenysqgli_set | ocal _infile_handl er examples

See Also

nysqli_set_l|ocal _infile_handler
3.951nysqgli::set _local infile_ handler,
nysqli _set _local _infile_handler

Copyright 1997-2019 the PHP Documentation Group.

* nysqli::set_local infile_handler

141

http://dev.mysql.com/doc/mysql/en/charset-charsets.html

mysqli::set_local _infile_handler,nysqli_set local _infile_handler

nmysqli _set local _infile_handler
Set callback function for LOAD DATA LOCAL INFILE command
Description

Object oriented style

bool nysqli::set_|local _infile_handl er(
nysqgli |ink,
call abl e read_func);

Procedural style

bool nysqli_set_|ocal _infile_handl er(
nysqgli |ink,
cal |l abl e read_func);

Set callback function for LOAD DATA LOCAL INFILE command

The callbacks task is to read input from the file specified in the LOAD DATA LOCAL | NFI LE and to
reformat it into the format understood by LOAD DATA | NFI LE.

The returned data needs to match the format specified in the LOAD DATA

Parameters
[ink Procedural style only: A link identifier returned by nmysql i _connect or
mysqli _init
read_func A callback function or object method taking the following parameters:
stream A PHP stream associated with the
SQL commands INFILE
&buf f er A string buffer to store the rewritten
input into
bufl en The maximum number of characters
to be stored in the buffer
&errornsg If an error occurs you can store an

error message in here

The callback function should return the number of characters stored in the buf f er or a negative value if
an error occurred.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 3.66 nysqli::set | ocal infile_handl er example

Object oriented style

142

mysqli::set_local _infile_handler,nmysqgli_set_l|ocal _infile_handler

<?php
$db = nysqli_init();
$db->real _connect ("Il ocal host", "root","","test");

function cal | me($stream &S$buffer, $buflen, &$errmsg)
{

$buffer = fgets($strean;
echo $buffer;

/] convert to upper case and replace "," delimter with [TAB]
$buf fer = strtoupper(str_replace(",", "\t", $buffer));

return strlen($buffer);

echo "l nput:\n";

$db- >set _| ocal _i nfile_handl er("call me");
$db- >query("LOAD DATA LOCAL I NFILE "input.txt' |INTO TABLE t1");
$db- >set _| ocal _infile_defaul t();

$res = $db->query("SELECT * FROMt1");

echo "\nResult:\n";

while ($row = $res->fetch_assoc()) {
echo join(",", $row)."\n";

}

?>

Procedural style

<?php
$db = nysqli_init();
nysql i _real _connect ($db, "l ocal host","root","","test");

function cal | me($stream &S$buffer, $buflen, &$errmsg)
{

$buffer = fgets($strean;

echo $buffer;

/] convert to upper case and replace "," delimter with [TAB]
$buf fer = strtoupper(str_replace(",", "\t", $buffer));

return strlen($buffer);

echo "l nput:\n";

nysqgli _set_local _infile_handl er ($db, "callnme");
nysql i _query($db, "LOAD DATA LOCAL I NFILE "input.txt' |NTO TABLE t1");
nysqgli _set_local _infile_default($db);

$res = nysqli_query($db, "SELECT * FROMt1");
echo "\ nResult:\n";

while ($row = nysqli_fetch_assoc($res)) {
echo join(",", $row)."\n";

143

nysqli:: $sqgl state,nysqli_sqlstate

?>

The above examples will output:

I nput :
23, foo
42, bar

Qut put :
23, FOO
42, BAR

See Also
nmysqgli _set _local _infile_default
3.9.52nysqgli::$sqgl state,nysqli _sqgl state

Copyright 1997-2019 the PHP Documentation Group.
e nysqli::$sqglstate

nysqli _sql state

Returns the SQLSTATE error from previous MySQL operation
Description

Object oriented style

string
nysqli->sql state ;

Procedural style

string nysqgli_sql state(
nysqgli |ink);

Returns a string containing the SQLSTATE error code for the last error. The error code consists of five
characters. ' 00000" means no error. The values are specified by ANSI SQL and ODBC. For a list of
possible values, see http://dev.mysqgl.com/doc/mysql/en/error-handling.html.

Note

Note that not all MySQL errors are yet mapped to SQLSTATE's. The value HYO00
(general error) is used for unmapped errors.

Parameters

[ink Procedural style only: A link identifier returned by nysql i _connect or
nysqli_init

Return Values

144

http://dev.mysql.com/doc/mysql/en/error-handling.html

nysqli:: $sql state, nmysqli _sql state

Returns a string containing the SQLSTATE error code for the last error. The error code consists of five
characters. ' 00000" means no error.

Examples
Example 3.67 $nysql i - >sql st at e example

Object oriented style

<?php
$nysqgli = new nysqli ("l ocal host", "ny_user", "ny_password", "world");

/* check connection */

if (nysqli_connect_errno()) {
printf("Connect failed: %\n", nysqli_connect_error());
exit();

}

/* Table City already exists, so we should get an error */

if (!'$nysqli->query("CREATE TABLE City (ID INT, Nane VARCHAR(30))")) {
printf("Error - SQLSTATE %.\n", $nysqli->sqglstate);

}

$nmysql i - >cl ose();
?>

Procedural style

<?php
$link = nmysqli_connect("local host", "ny_user", "ny_password", "world")

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error())
exit();

}

/* Table City already exists, so we should get an error */

if (!'nmysqli_query($link, "CREATE TABLE City (ID INT, Nane VARCHAR(30))")) {
printf("Error - SQSTATE %.\n", nysqli_sqlstate($link))

}

nysql i _cl ose($l i nk)
?>

The above examples will output:

Error - SQLSTATE 42S01

See Also

nysqgl i _errno
nmysqli _error

145

mysqli::ssl_set,nmysqli _ssl _set

3.9.53nysqgli::ssl_set,nysqgli_ssl _ set
Copyright 1997-2019 the PHP Documentation Group.
e nysqli::ssl_set
nysqli _ssl _set
Used for establishing secure connections using SSL
Description

Object oriented style

bool nysqli::ssl_set(
string key,
string cert,
string ca
string capath
string cipher)

Procedural style

bool nysqli _ssl _set(
nysqgli |ink,
string key,
string cert,
string ca
string capath
string cipher);

Used for establishing secure connections using SSL. It must be called before nysql i _real connect.
This function does nothing unless OpenSSL support is enabled.

Note that MySQL Native Driver does not support SSL before PHP 5.3.3, so calling this function when
using MySQL Native Driver will result in an error. MySQL Native Driver is enabled by default on Microsoft
Windows from PHP version 5.3 onwards.

Parameters

[i nk Procedural style only: A link identifier returned by nysql i _connect or
nysqli _init

key The path name to the key file.

cert The path name to the certificate file.

ca The path name to the certificate authority file.

capat h The pathname to a directory that contains trusted SSL CA certificates in
PEM format.

ci pher A list of allowable ciphers to use for SSL encryption.

Any unused SSL parameters may be given as NULL
Return Values

This function always returns TRUE value. If SSL setup is incorrect nysql i _r eal _connect will return an
error when you attempt to connect.

146

mysqli::stat,nysqgli_stat

See Also

nysql i _options
nysql i _real connect

3.9.54 nysqgli::stat,nmysqli _stat
Copyright 1997-2019 the PHP Documentation Group.
* nysqgli::stat
mysql i _stat
Gets the current system status
Description
Object oriented style
string nysqli::stat();

Procedural style

string nmysqli_stat(
nysqgli |ink);

nmysqgl i _st at returns a string containing information similar to that provided by the 'mysgladmin status’
command. This includes uptime in seconds and the number of running threads, questions, reloads, and
open tables.

Parameters

[ink Procedural style only: A link identifier returned by nysql i _connect or
nysqgli _init

Return Values

A string describing the server status. FALSE if an error occurred.
Examples

Example 3.68 nysql i : : st at example

Object oriented style

<?php
$nysqli = new nysqli ("l ocal host", "ny_user", "ny_password", "world");

/* check connection */

if (nmysqli_connect_errno()) {
printf("Connect failed: %\n", nmysqli_connect_error());
exit();

}

printf ("Systemstatus: %\n", $nysqli->stat());

$nmysql i - >cl ose();
2>

147

mysqgli::stnt_init,nmysqli_stnt_init

Procedural style

<?php
$link = nysqli_connect ("l ocal host", "ny_user", "ny_password", "world");
/* check connection */
if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();
}

printf("Systemstatus: %\n", nysqgli_stat($link));

nysql i _cl ose($link);
2>

The above examples will output:

System status: Uptinme: 272 Threads: 1 Questions: 5340 Slow queries: 0
Opens: 13 Flush tables: 1 Open tables: 0 Queries per second avg: 19.632
Menory in use: 8496K Max nenory used: 8560K

See Also

nysqgli _get server_info

3.955nysgli::stnt _init,nysqli_stm _init

Copyright 1997-2019 the PHP Documentation Group.
e nysqgli::stnt_init
nysqli_stmt _init
Initializes a statement and returns an object for use with mysqli_stmt_prepare
Description
Object oriented style
nysqgli_stnt nysqgli::stnt_init();

Procedural style

nysqgli_stnt nysqgli_stnt_init(
nysqgli |ink);

Allocates and initializes a statement object suitable for nysql i _stnt _prepare.
Note

Any subsequent calls to any mysqli_stmt function will fail until
nysqli _stm prepare was called.

Parameters

148

mysql i

c:store_result,nysqli_store_result

[ink

Return Values
Returns an object.
See Also

nysqgli_stm prepare

3.9.56 nysql i

Procedural style only: A link identifier returned by nysql i _connect or

mysqli _init

Copyright 1997-2019 the PHP Documentation Group.

e mysqli::store_result

nysqli _store result

Transfers a result set from the last query

Description

Object oriented style

nysqli_result nysqli::store_result/(

int option);

Procedural style

nysqgli _result nysqli_store_result(

nysqgli |ink,
int option);

c.store_result,mysqgli _store_ result

Transfers the result set from the last query on the database connection represented by the | i nk
parameter to be used with the nysql i _dat a_seek function.

Parameters

[ink

option

Procedural style only: A link identifier returned by nmysql i _connect or

nysqli_init

The option that you want to set. It can be one of the following values:

Table 3.12 Valid options

Name

Description

MYSQLI _STORE_RESULT_COPY_D

(Tdépy results from the internal
mysqlnd buffer into the PHP
variables fetched. By default,
mysqlnd will use a reference logic
to avoid copying and duplicating
results held in memory. For certain
result sets, for example, result
sets with many small rows, the
copy approach can reduce the
overall memory usage because

PHP variables holding results may

149

mysqli:

:$thread_id, nmysqli_thread_id

Return Values

Name

Description

be released earlier (available with
mysgind only, since PHP 5.6.0)

Returns a buffered result object or FALSE if an error occurred.

Notes

Examples

Note

nysql i _store_ result returns FALSE in case the query didn't return a result set
(if the query was, for example an INSERT statement). This function also returns
FALSE if the reading of the result set failed. You can check if you have got an error
by checking if mysql i _error doesn't return an empty string, if mysql i _errno
returns a non zero value, or if mysql i _fi el d_count returns a non zero value.
Also possible reason for this function returning FALSE after successful call to
nysql i _query can be too large result set (memory for it cannot be allocated).
Ifmysqgli _field_count returns a non-zero value, the statement should have
produced a non-empty result set.

Note

Although it is always good practice to free the memory used by the result of a query
using the nysql i _free_result function, when transferring large result sets
using the mysql i _store_resul t this becomes particularly important.

Seenysqli_nulti _query.

See Also

nysqgl i _real query
nysqgli _use result

3.9.57 nysql i

::$thread _id,nysqli _thread id

Copyright 1997-2019 the PHP Documentation Group.

e nysqli:

:$thread_ id

nysqli _thread_id

Returns the thread ID for the current connection

Description

Object oriented style

int

mysqli -

>thread_id ;

Procedural style

int nysqgli_thread_id(

nysql i

17 nk);

150

nysqli::$thread_id,nysqli_thread_ id

The nysql i _thread_i d function returns the thread ID for the current connection which can then be killed

using the mysql i _ki | | function. If the connection is lost and you reconnect with nysql i _pi ng, the
thread ID will be other. Therefore you should get the thread ID only when you need it.

Note

The thread ID is assigned on a connection-by-connection basis. Hence, if the
connection is broken and then re-established a new thread ID will be assigned.

To kill a running query you can use the SQL command KI LL QUERY processi d.

Parameters

[ink Procedural style only: A link identifier returned by nysql i _connect or

mysqli _init
Return Values
Returns the Thread ID for the current connection.
Examples
Example 3.69 $nysql i - >t hread_i d example

Object oriented style

<?php
$nysqgli = new nysqli ("l ocal host", "nmy_user", "ny_password", "world")

/* check connection */

if (nysqli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error())
exit();

}

/* determine our thread id */
$thread_id = $nysqli->thread_id

/* Kill connection */
$nysqli->kill ($thread_id)

/* This should produce an error */

if (!$nysqli->query("CREATE TABLE nyCity LIKE Gty")) {
printf("Error: 9%\n", $nysqli->error)
exit;

}

/* cl ose connection */
$nysqli->cl ose()
?>

Procedural style

<?php

$link = nysqli_connect ("l ocal host", "ny_user", "ny_password", "world")

/* check connection */

151

mysqli::thread_safe,nysqli _thread_safe

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

/* determine our thread id */
$thread_id = nysqli_thread_id($link);

/* Kill connection */

nysqli_Kkill ($link, $thread_id);

/* This should produce an error */

if (!'nysqli_query($link, "CREATE TABLE nyCity LIKE City")) {
printf("Error: %\n", nysqgli_error($link));
exit;

}

/* cl ose connection */
nysql i _cl ose($link);
?>

The above examples will output:

Error: MySQL server has gone away

See Also
nmysql i _Kkill
3.9.58 nysqgli::thread _safe,nysqgli _thread safe
Copyright 1997-2019 the PHP Documentation Group.
e nysqli::thread safe
nysqli _thread_safe
Returns whether thread safety is given or not
Description

Procedural style

bool nysqli_thread_safe();
Tells whether the client library is compiled as thread-safe.
Return Values

TRUE if the client library is thread-safe, otherwise FALSE.
3.959nysqgli::use result,nysqli _use result
Copyright 1997-2019 the PHP Documentation Group.

e mysqli::use_ result

152

mysqli::use_result,nysqgli _use_result

nmysqli _use_result
Initiate a result set retrieval
Description

Object oriented style

nysqgli_result nysqgli::use_result()

Procedural style

nysqli _result nysqli_use_result(
nysqgli |ink);

Used to initiate the retrieval of a result set from the last query executed using the nysql i _real query

function on the database connection.

Either this or the mysql i _store_resul t function must be called before the results of a query can be

retrieved, and one or the other must be called to prevent the next query on that database connection from

failing.

Note

The nysql i _use_resul t function does not transfer the entire result set from

the database and

hence cannot be used functions such as nysql i _data_seek

to move to a particular row within the set. To use this functionality, the result

set must be stored using nysql i _store_result.One should not use

nysql i _use_result if alot of processing on the client side is performed, since
this will tie up the server and prevent other threads from updating any tables from
which the data is being fetched.

Return Values

Returns an unbuffered result object or FALSE if an error occurred.

Examples

Example 3.70 nysql i : : use_resul t example

Object oriented style

<?php
$nmysqgli = new nysqli ("l ocal host"

/* check connection */
if (nysqgli_connect_errno()) {
printf("Connect failed: %\n"
exit();
}
$query = "SELECT CURRENT_USER();"
$query . =
/* execute multi query */
if ($nysqli->multi_query($query))
do {
/* store first result set

"my_user", "my_password", "world");

nmysql i _connect _error());

"SELECT Name FROM City ORDER BY ID LIMT 20, 5";

{

*/

153

mysqli::use_result,nysqgli _use_result

if ($result = $nysqli->use_result()) {

while ($row = $result->fetch_row()) {
printf("9%\n", $row0]);

}
$resul t->cl ose();

}

/[* print divider */

if ($nysqli->nore_results()) {
printf("----------------- \n");

}
} while ($nysqli->next_result())
}

/* cl ose connection */
$nysqli->cl ose()
2>

Procedural style

<?php

$link = nmysqgli_connect("local host", "ny_user", "ny_password"

/* check connection */
if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error())

exit();
}
$query = "SELECT CURRENT_USER();";
$query .= "SELECT Nanme FROM City ORDER BY ID LIMT 20, 5";

/* execute multi query */
if (mysqgli_multi_query($link, $query)) {
do {
/* store first result set */
if ($result = nysqgli_use_result($link)) {
while ($row = nysqgli_fetch rowm$result)) {
printf("9%s\n", $row 0]);
}
nysqli_free_resul t($result)
}
[* print divider */
if (mysqgli_nore_results($link)) {
printf("----------------- \n")

} while (nysqli_next_resul t($link))
}

/* cl ose connection */
nysql i _cl ose($l i nk)
2>

The above examples will output:

my_user @ ocal host
Aner sf oor t
Maastri cht
Dor dr echt

“wor | d")

154

nysqli:: $warni ng_count, mysql i _war ni ng_count

Lei den
Haar | emmer neer

See Also

nysqgl i _real query
nysqgli _store result

3.9.60 nysql i :: $war ni ng_count, mysqgl i _war ni ng_count
Copyright 1997-2019 the PHP Documentation Group.
* nysqli:: $war ni ng_count
mysql i _war ni ng_count
Returns the number of warnings from the last query for the given link
Description

Object oriented style

int
nmysql i - >war ni ng_count

Procedural style

int nmysqli_warning_count (
nysqgli |ink);

Returns the number of warnings from the last query in the connection.
Note

For retrieving warning messages you can use the SQL command SHON WARNI NGS
[limt row count].

Parameters

[ink Procedural style only: A link identifier returned by nysql i _connect or
mysqli _init

Return Values

Number of warnings or zero if there are no warnings.
Examples

Example 3.71 $nysql i - >war ni ng_count example

Object oriented style

<?php
$nmysqgli = new nysqli ("l ocal host", "my_user", "ny_password", "world");

/* check connection */
if (nysqgli_connect_errno()) {

155

nysqli:: $warni ng_count, mysql i _war ni ng_count

printf("Connect failed: %\n", nysqgli_connect_error());

exit();
}

$nysql i - >quer y(" CREATE TABLE nyCity LIKE Gity");

/* a remarkable city in Wales */
$query = "I NSERT I NTO nyCity (CountryCode, Nane) VALUES(' GBR ,
"Ll anf ai r pwl | gwyngyl | goger ychwyr ndrobwl | | | ant ysi | i ogogogoch') ";

$nysql i - >query($query);

if ($nysqli->warning_count) {

if ($result

= $nysql i - >query(" SHON WARNI NGS")) {

$row = $resul t->fetch_row();
printf("% (%): %\n", $rowf 0], $rowf 1], $row 2]);

$resul t -

}

>cl ose();

/* cl ose connection */
$nysqli->cl ose();

?>

Procedural style

<?php

$link = nmysqli_connect("local host", "ny_user", "ny_password", "world");

/* check connection */
if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());

exit();
}

nysql i _query($link, "CREATE TABLE nyCity LIKE City");

/* a remarkable long city name in Wal es */
$query = "I NSERT I NTO nyCity (CountryCode, Nane) VALUES(' GBR ,
"Ll anf ai r pwl | gwyngyl | goger ychwyr ndrobwl | | | ant ysi | i ogogogoch') ";

nysql i _query($link, $query);

if (nysqgli_warning_count($link)) {

if ($result

= nysqli _query($link, "SHOWNWARNINGS"')) {

$row = nysqli_fetch_row($result);
printf("% (%): %\n", $rowf 0], $rowf 1], $row 2]);
nysqgli_free_result($result);

}

/* cl ose connection */
nysql i _cl ose($link);

?>

The above examples will output:

Warni ng (1264):

Data truncated for colum 'Nanme' at row 1

156

The mysqli_stmt class

See Also

nmysqgl i _errno
nysqli _error
nysqgl i _sql state

3.10 The mysqli_stmt class

Copyright 1997-2019 the PHP Documentation Group.

Represents a prepared statement.

nysqgli_stnt {
nysqli_stnt

Properties

int
nmysql i _stnt->affected_rows ;

i nt
nmysqli_stnt->errno ;

array
nmysqli_stm->error_|ist ;

string
nysqli_stnt->error ;

int
nmysqli_stm->field_count ;

i nt
nmysqli_stnm->insert_id ;

int
nmysqli _stm->numrows ;

i nt
nmysql i _stnt->param count ;

string
nysqgli_stnt->sqglstate ;

Met hods

nmysqli_stnt:: construct(
nysqgli |ink,
string query);

int nysqgli_stnt::attr_get(
int attr);

bool nysqgli_stnt::attr_set(
int attr,
i nt node);

bool nysqli_stnt:: bi nd_param
string types,
m xed var 1,
mxed ...);

157

nysqgli_stm::$affected rows, nysqli _stnt_affected rows

bool nysqli_stnt::bind_result(
m xed var 1,
mxed ...);

bool nysqli_stnt::close();

voi d nysqli_stnt::data_seek(
int offset);

bool nysqli_stnt::execute();

bool nysqgli_stnt::fetch();

void nysqgli_stnt::free_result();
nysqgli_result nysqgli_stnt::get_result();

obj ect nysqli_stnt::get_warni ngs(
nysqli_stnt stnt);

int nysqgli_stnt::numrows();

m xed nysqli_stnt:: prepare(
string query);

bool nysqli_stnt::reset();
nysqgli_result nysqgli_stnt::result_netadata();
bool nysqli_stnt::send_| ong_dat a(

int paramnr,

string data);

bool nysqli_stnt::store_result();

}
3.10.1 nysqgli _stnt:: $affected rows, nysqgli _stnt _affected rows
Copyright 1997-2019 the PHP Documentation Group.
e nysqgli_stnt::$affected_rows
nmysqli_stnt_affected _rows
Returns the total number of rows changed, deleted, or inserted by the last executed statement
Description

Object oriented style

i nt
nysqli_stnt->affected_rows ;

Procedural style

int nysqgli_stnt_affected_rows(
nmysqli_stmt stnt);

Returns the number of rows affected by | NSERT, UPDATE, or DELETE query.

This function only works with queries which update a table. In order to get the number of rows from a
SELECT query, use mysql i _stnt_num r ows instead.

158

nysqgli_stm::$affected rows, nysqli _stnt_affected rows

Parameters

st mt Procedural style only: A statement identifier returned by
nysqli_stm _init.

Return Values

An integer greater than zero indicates the number of rows affected or retrieved. Zero indicates that no
records where updated for an UPDATE/DELETE statement, no rows matched the WHERE clause in the
query or that no query has yet been executed. -1 indicates that the query has returned an error. NULL
indicates an invalid argument was supplied to the function.

Note

If the number of affected rows is greater than maximal PHP int value, the number of
affected rows will be returned as a string value.

Examples

Example 3.72 Object oriented style

<?php
$nmysqgli = new nysqli ("l ocal host", "my_user", "ny_password", "world");

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

/* create tenp table */
$nysql i - >quer y(" CREATE TEMPORARY TABLE nyCountry LIKE Country");

$query = "I NSERT | NTO nmyCountry SELECT * FROM Country WHERE Code LIKE ?";

/* prepare statenment */

if ($stnt = $nysqli->prepare($query)) {
/* Bind variable for placehol der */
$code = ' A% ;
$st nt - >bi nd_paran("s", $code);

/* execute statenent */
$st nt - >execut e();

printf("rows inserted: %\ n", $stnt->affected_rows);

/* cl ose statenent */
$st nt - >cl ose();
}

/* cl ose connection */
$nysqli->cl ose();
2>

Example 3.73 Procedural style

<?php

159

mysqli _stnt::attr_get,mysqgli_stnt_attr_get

$link = mysqli_connect("local host", "ny_user", "ny_password", "world");
/* check connection */
if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();
}

/* create tenp table */
nysql i _query($link, "CREATE TEMPORARY TABLE nyCountry LIKE Country");

$query = "I NSERT | NTO nmyCountry SELECT * FROM Country WHERE Code LI KE ?";

/* prepare statenment */
if ($stm = nysqli_prepare($link, $query)) {

/* Bind variable for placehol der */
$code = ' A% ;
nysql i _stnt _bi nd_paran($stnt, "s", $code);

/* execute statenent */
nysql i _stnt_execute($stnt);

printf("rows inserted: %\n", nysqgli_stnt_affected rows($stnt));

/* cl ose statenent */
nysql i _stnt_cl ose($stnt);
}

/* cl ose connection */
nysql i _cl ose($link);
?>

The above examples will output:

rows inserted: 17

See Also

mysqli _stnt_numrows
nmysqli _prepare

3.10.2nysqgli _stnt::attr_get,nysqgli _stnm _attr _get
Copyright 1997-2019 the PHP Documentation Group.
e nysqli _stnt::attr_get
mysqli_stnt_attr_get
Used to get the current value of a statement attribute
Description

Object oriented style

int nysqgli_stnt::attr_get(
int attr);

160

mysqli_stnt::attr_set,mysqli_stnt_attr_set

Procedural style
int nysqgli_stnt_attr_get(

nysqli_stnt stnt,
int attr);

Gets the current value of a statement attribute.

Parameters

st nt Procedural style only: A statement identifier returned by
nysqgli_stmt _init.

attr The attribute that you want to get.

Return Values
Returns FALSE if the attribute is not found, otherwise returns the value of the attribute.
3.10.3nysqgli _stnt::attr_set,nysqgli _stm _attr_set
Copyright 1997-2019 the PHP Documentation Group.
e nysqli _stnt::attr_set
nysqgli _stnt _attr_set
Used to modify the behavior of a prepared statement
Description

Object oriented style

bool nysqli_stnt::attr_set(
int attr,
i nt node);

Procedural style

bool nysqli_stnt_attr_set (
nysqli_stnt stnt,
int attr,
i nt node);

Used to modify the behavior of a prepared statement. This function may be called multiple times to set
several attributes.

Parameters

st mt Procedural style only: A statement identifier returned by
nysqgli_stmt _init.

attr The attribute that you want to set. It can have one of the following

values:

Table 3.13 Attribute values

Character Description

MYSQLI_STMT_ATTR_UPDATE_NReftihd MGTRYE causes
mysqli_stnt_store_result

161

mysqli _stnt:: bind_parammnysqli _stnt_bi nd_param

node

See Also

Character

Description

to update the metadata

MYSQ._FI ELD- >nmax_| engt h

value.

MYSQLI_STMT_ATTR_CURSOR_[TT¥E of cursor to open

for statement when

nysqli_stnt_execute

is invoked. node can be

MYSQLI _CURSCR TYPE _NO CURS
(the default) or

MYSQLI _CURSOR_TYPE_READ ON

OR

LY.

MYSQLI_STMT_ATTR_PREFETCHNROWES0f rows to fetch from

server at a time when using a
cursor. node can be in the range
from 1 to the maximum value of
unsigned long. The default is 1.

If you use the MYSQLI _STMI_ATTR_CURSOR_TYPE option with

MYSQLI _CURSOR_TYPE_READ_ ONL

Y, a cursor is opened for the

statement when you invoke nmysql i _stnt _execut e. If there is
already an open cursor from a previous nysql i _stnt _execut e call,

it closes the cursor before opening a

new one. nysql i _stnt_reset

also closes any open cursor before preparing the statement for re-

execution. nysqli _stnt _free re

If you open a cursor for a prepared s
nysqli _stm _store_ result isu

The value to assign to the attribute.

Connector/MySQL mysqgl_stmt_attr_set()

sul t closes any open cursor.

tatement,
nnecessary.

3.10.4 nysqgli _stnt::bind paramnysqli_stnt_bi nd_param

Copyright 1997-2019 the PHP Documentation Group.

e nysqgli_stnt::bind_param

nysql i _stmt _bind_param

Binds variables to a prepared statement as parameters

Description

Object oriented style
bool nysqli _stnt:: bi nd_paran(
string types,

m xed var1,
mxed ...);

Procedural style

bool nysqli _stnt_bind_paran

162

http://dev.mysql.com/doc/en/mysql-stmt-attr-set.html

mysqli _stnt:: bind_parammnysqli _stnt _bi nd_param

nmysqli_stmt stnt,
string types

m xed var 1,

mxed ...);

Bind variables for the parameter markers in the SQL statement that was passed to mysql i _pr epar e.
Note

If data size of a variable exceeds max. allowed packet size (max_allowed_packet),
you have to specify b int ypes and use nysql i _stnt _send_| ong_dat a to send
the data in packets.

Note

Care must be taken when using nysql i _stnt _bi nd_par amin conjunction with
cal | _user func_array. Notethat nysqgl i _stnt bi nd_paramrequires
parameters to be passed by reference, whereas cal | _user func_array can
accept as a parameter a list of variables that can represent references or values.

Parameters
st nt Procedural style only: A statement identifier returned by
mysqli_stnt_init.
types A string that contains one or more characters which specify the types for
the corresponding bind variables:
Table 3.14 Type specification chars
Character Description
i corresponding variable has type
integer
d corresponding variable has type
double
S corresponding variable has type
string
b corresponding variable is a blob
and will be sent in packets
var 1l The number of variables and length of string t ypes must match the

parameters in the statement.
Return Values
Returns TRUE on success or FALSE on failure.
Examples

Example 3.74 Object oriented style

<?php
$nmysqgli = new nysqli('local host', 'nmy_user', 'ny_password', 'world')

/* check connection */
if (nysqgli_connect_errno()) {

163

http://www.php.net/call_user_func_array
http://www.php.net/call_user_func_array

mysqli _stnt:: bind_parammnysqli _stnt_bi nd_param

printf("Connect failed: %\n", nysqgli_connect_error());
exit();
}

$stnt = $nysqli->prepare("| NSERT | NTO Count rylLanguage VALUES (?, ?, 2, ?2)");
$st nt - >bi nd_par an(' sssd', $code, $l anguage, $official, $percent);

$code = ' DEU ;

$l anguage = 'Bavarian';
$of fi ci al "F
$percent = 11.2;

/* execute prepared statenent */
$st nt - >execut e();

printf("% Row inserted.\n", $stnt->affected_rows);

/* cl ose statenent and connection */
$st nt - >cl ose();

/* Clean up tabl e CountrylLanguage */
$nysql i - >quer y(" DELETE FROM Count rylLanguage WHERE Language=' Bavarian'");
printf ("% Row del eted.\n", $nysqli->affected_rows);

/* cl ose connection */
$nysqli->cl ose();
2>

Example 3.75 Procedural style

<?php
$link = nmysqli_connect('local host', 'ny_user', 'ny_password', 'world")

/* check connection */

if (!$link) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

$stnt = nmysqli_prepare($link, "INSERT | NTO CountrylLanguage VALUES (?, 2, 2?2, ?2)");
nysqli_stnt_bind_paran($stnt, 'sssd', $code, $language, $official, $percent);

$code = ' DEU ;

$l anguage ' Bavari an' ;
$of fici al "F
$percent = 11.2;

/* execute prepared statenent */
nysql i _stnt_execute($stnt);

printf ("% Row inserted.\n", nysqli_stnt_affected_rows($stnt));

/* cl ose statenent and connection */
nysql i _stnt_cl ose($stnt);

/* Clean up tabl e CountrylLanguage */
nysql i _query($link, "DELETE FROM CountrylLanguage WHERE Language=' Bavarian'");
printf ("% Row deleted.\n", nysqli_affected_rows($link));

/* cl ose connection */
nysql i _cl ose($link);
2>

164

mysqli _stnt::bind result,nysqgli_stm _bind result

The above examples will output:

1 Row i nserted.
1 Row del et ed.

See Also

mysqli _stnt_bind result
mysqli _stnt_execute

mysqli _stnt_fetch

nmysql i _prepare

nmysqli _stnt_send_| ong_data
mysqli _stnt_errno

mysqli _stnt_error

3.10.5nysqgli _stnt::bind result,nysqgli_stnt bind result
Copyright 1997-2019 the PHP Documentation Group.
e nysqgli _stnt::bind result
nmysqgli_stm _bind result
Binds variables to a prepared statement for result storage
Description

Object oriented style

bool nysqli_stnt::bind_result(
m xed var1,
mxed ...);

Procedural style

bool nysqli _stnt_bind_result(
nmysqli_stmt stnt,
m xed var 1,
mxed ...);

Binds columns in the result set to variables.

When nysql i _stnt_fetch is called to fetch data, the MySQL client/server protocol places the data for

the bound columns into the specified variables var 1,
Note

Note that all columns must be bound after nysql i st nt _execut e and prior to
calling nysql i _stnt fetch. Depending on column types bound variables can
silently change to the corresponding PHP type.

A column can be bound or rebound at any time, even after a result set
has been partially retrieved. The new binding takes effect the next time
nysqgli _stm fetchiscalled.

165

mysqgli_stnt::

bind result,nysqli_stnt_bind result

Parameters

st nt

Procedural style only: A statement identifier returned by

nysqli_stm _init.

varl

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 3.76 Object oriented style

<?php

$nmysqgli = new nysqli ("l ocal host",

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n",
exit();

}

/* prepare statenment */
if ($stnt = $nysqli->prepare(" SELECT Code,
$st nt - >execut e();

/* bind variables to prepared statenent
$stnt - >bi nd_resul t ($col 1, $col 2);

/* fetch val ues */
while ($stnt->fetch()) {

printf("% %\n", $coll, $col 2);
}

/* cl ose statenent */
$stnt - >cl ose();
}

/* cl ose connection */
$nysqli->cl ose();

?>

Example 3.77 Procedural style

<?php

$link = nysqgli_connect ("l ocal host",

/* check connection */

if (!$link) {
printf("Connect failed:
exit();

%S\ n",

}

/* prepare statement */

if ($stnt = nysqli_prepare($link,
nysql i _stnt_execute($stnt);

/* bind variables to prepared statenent

" ny_user N

"my_password"”,

*/

"ny_user",

" SELECT Code,

*/

The variable to be bound.

“worl d");

nmysql i _connect_error());

Name FROM Country ORDER BY Name LIMT 5")) {

"my_password", "world");

nmysql i _connect _error());

Name FROM Country ORDER BY Name LIMT 5")) {

166

mysqli _stnt::close, nysqgli_stnt _close

nysqli_stnt_bind_result($stnt, $col 1, $col 2);

/* fetch val ues */

while (nmysqgli_stnt _fetch($stnt)) {
printf("% %\n", $coll, $col 2);

}

/* cl ose statenent */
nysql i _stnt_cl ose($stnt);
}

/* cl ose connection */

nysql i _cl ose($link);
?>

The above examples will output:

AFG Af ghani st an
ALB Al bani a

DZA Al geri a

ASM Aneri can Sanpa
AND Andorra

See Also

mysqli _stnt_get _result
mysqli _stnt_bind_param
mysqli _stnt_execute
mysqli _stnt _fetch

nmysql i _prepare

mysqli _stnt_prepare
mysqli_stnt_init

mysqli _stnt_errno
mysqli _stnt_error

3.10.6 nysqgli _stnt::close,nysqgli_stnt _cl ose
Copyright 1997-2019 the PHP Documentation Group.
* nysqli_stmnt::close
nmysqli _stnt_cl ose
Closes a prepared statement
Description
Object oriented style
bool nysqli_stnt::close();
Procedural style

bool nysqli_stnt _cl ose(
nmysqli_stm stnt);

167

mysqli _stnt:: construct

Closes a prepared statement. nysql i _stnt _cl ose also deallocates the statement handle. If the
current statement has pending or unread results, this function cancels them so that the next query can be
executed.

Parameters

st nt Procedural style only: A statement identifier returned by
nysqli _stmt _init.

Return Values
Returns TRUE on success or FALSE on failure.
See Also
nmysql i _prepare
3.10.7nysqgli _stnt:: construct
Copyright 1997-2019 the PHP Documentation Group.
e nysqgli_stnt:: _construct
Constructs a new mysql i _st nt object

Description

nmysqli_stnt:: __construct(
nysqgli |ink,
string query);

This method constructs a new nysql i _st nt object.
Note

In general, you should use either nysql i _prepare ornysqgli _stnt _init to
create anysql i _st nt object, rather than directly instantiating the object with new
nysql i _st nt . This method (and the ability to directly instantiate nysql i _st nt
objects) may be deprecated and removed in the future.

Parameters

[ink Procedural style only: A link identifier returned by nysql i _connect or
nysqli_init

query The query, as a string. If this parameter is omitted, then the constructor
behaves identically to nysql i _st nt _i ni t, if provided, then it behaves
as pernysql i _prepare.

See Also

nysql i _prepare
nysqli_stnt_init

3.10.8 nysqgli _stnt::data _seek,nmysqgli _stnt data seek

Copyright 1997-2019 the PHP Documentation Group.

168

mysqli _stnt::data_seek,nysqgli_stm _data_seek

e mysqli _stnt::data_seek

nmysqli _stnt_data seek

Seeks to an arbitrary row in statement result set
Description

Object oriented style

voi d nysqli_stnt::data_seek(
int offset);

Procedural style

voi d nysqli_stnt_data_seek(
nysqgli_stnt stnt,
int offset);

Seeks to an arbitrary result pointer in the statement result set.

nmysqgli _stmt _store_ result mustbe called priorto nysql i _stnt data_seek.

Parameters

st nt Procedural style only: A statement identifier returned by
nysqgli_stm _init.

of f set Must be between zero and the total number of rows minus one (O..

mysqli _stnt_numrows - 1).
Return Values
No value is returned.

Examples

Example 3.78 Object oriented style

<?php
/* Open a connection */
$nysqli = new nysqli ("l ocal host", "ny_user", "ny_password", "world");

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

$query = "SELECT Nanme, CountryCode FROM City ORDER BY Nane";
if ($stnt = $nysqli->prepare($query)) {

/* execute query */
$st nt - >execut e() ;

/* bind result variables */
$st nt - >bi nd_resul t ($nane, $code);

/* store result */
$stnt->store_result();

169

mysqli _stnt::data_seek,nysqgli_stnm data_seek

/* seek to row no. 400 */
$st nt - >dat a_seek(399) ;

/* fetch val ues */
$stnt->fetch();

printf ("City: % Countrycode: %\n", $nane, $code);

/* cl ose statenent */
$st nt - >cl ose();

}

/* cl ose connection */
$nysqli->cl ose();
2>

Example 3.79 Procedural style

<?php
/* Open a connection */
$link = nmysqli_connect("local host", "ny_user", "ny_password", "world");

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

$query = "SELECT Nane, CountryCode FROM City ORDER BY Nane";
if ($stm = nysqli_prepare($link, $query)) {

/* execute query */
nysql i _stnt_execute($stnt);

/* bind result variables */
nysql i _stnt_bind_result($stnt, $nane, $code);

/* store result */
nysqgli_stnt_store_result($stnt);

/* seek to row no. 400 */
nysql i _stnt_data_seek($stnt, 399);

/* fetch val ues */
nysqli_stnt_fetch($stnt);

printf ("City: % Countrycode: %\n", $nane, $code);
/* cl ose statenent */
nysql i _stnt_cl ose($stnt);

}

/* cl ose connection */

nysql i _cl ose($link);
2>

The above examples will output:

170

nysqli_stnt::$errno, mysqgli_stnt_errno

City: Benin City Countrycode: NGA

See Also
nmysql i _prepare
3.10.9nysqgli _stmnt::$errno,nmysqgli _stnt_errno
Copyright 1997-2019 the PHP Documentation Group.
 nmysqli _stnt::$errno
nysqli _stmt _errno
Returns the error code for the most recent statement call
Description

Object oriented style

int
nysqli_stnt->errno ;

Procedural style

int nysqgli_stnt_errno(
mysqli_stm stnt);

Returns the error code for the most recently invoked statement function that can succeed or fail.

Client error message numbers are listed in the MySQL er r nsg. h header file, server error message
numbers are listed in nysql d_error. h. In the MySQL source distribution you can find a complete list of
error messages and error numbers in the file Docs/ nysqgl d_error. t xt.

Parameters

st nt Procedural style only: A statement identifier returned by
nysqgli _stnt _init.

Return Values
An error code value. Zero means no error occurred.
Examples

Example 3.80 Object oriented style

<?php
/* Qpen a connection */
$nysqli = new nysqli ("l ocal host", "ny_user", "ny_password", "world");

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

171

nysqgli_stm::$errno, nysqgli_stnt_errno

$nmysql i - >quer y(" CREATE TABLE nyCountry LIKE Country");
$nmysql i - >query(" | NSERT | NTO nyCountry SELECT * FROM Country");

$query = "SELECT Nane, Code FROM nyCountry ORDER BY Nane";
if ($stnt = $nysqli->prepare($query)) {

/* drop table */
$nmysql i - >quer y(" DROP TABLE nyCountry");

/* execute query */
$st nt - >execut e();

printf("Error: %l.\n", $stnt->errno);

/* cl ose statenent */
$st nt - >cl ose();
}

/* cl ose connection */
$nysqli->cl ose();
2>

Example 3.81 Procedural style

<?php
/* Open a connection */
$link = nmysqli_connect("local host", "ny_user", "ny_password", "world")

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

nysql i _query($link, "CREATE TABLE nyCountry LIKE Country");
nysql i _query($link, "INSERT I NTO nyCountry SELECT * FROM Country");

$query = "SELECT Nane, Code FROM nyCountry ORDER BY Nane";
if ($stm = nysqli_prepare($link, $query)) {

/* drop table */
nysql i _query($link, "DROP TABLE myCountry");

/* execute query */
nysql i _stnt_execute($stnt);

printf("Error: %.\n", nysqgli_stnt_errno($stnt));
/* cl ose statenent */
nysql i _stnt_cl ose($stnt);

}

/* cl ose connection */

nysql i _cl ose($link);
2>

The above examples will output:

172

nysqli_stnt::$error_list,nysqgli_stnt_error_Iist

Error: 1146.

See Also

nmysqli _stnt_error
mysqli _stnt_sqgl state

3.10.10 nysqgli _stmt::$error _list,nysqli _stm _error_I|ist
Copyright 1997-2019 the PHP Documentation Group.
e nysqli_stnt::$error_list
nysqli_stmt _error_|ist
Returns a list of errors from the last statement executed
Description

Object oriented style

array
nmysqgli_stnt->error_|ist ;

Procedural style

array mysqli_stnt_error_list(
mysqli_stm stnt);

Returns an array of errors for the most recently invoked statement function that can succeed or fail.

Parameters

st nt Procedural style only: A statement identifier returned by
nysqli _stnmt _init.

Return Values
A list of errors, each as an associative array containing the errno, error, and sqlstate.
Examples

Example 3.82 Object oriented style

<?php
/* Open a connection */
$nysqgli = new nysqli ("l ocal host", "my_user", "ny_password", "world");

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

$nysql i - >quer y(" CREATE TABLE nyCountry LIKE Country");
$nysql i - >query(" | NSERT | NTO nyCountry SELECT * FROM Country");

173

nysqgli_stm::$error _list,nmysqgli_stnt _error_|ist

$query = "SELECT Nane, Code FROM nyCountry ORDER BY Nane";
if ($stnt = $nysqli->prepare($query)) {

/* drop table */
$nmysql i - >quer y("DROP TABLE nyCountry");

/* execute query */
$st nt - >execut e();

echo "Error:\n";
print_r($stnt->error_|list);

/* cl ose statenent */
$st nt - >cl ose();
}

/* cl ose connection */
$nysqli->cl ose();
2>

Example 3.83 Procedural style

<?php
/* Open a connection */
$link = nmysqli_connect("local host", "ny_user", "ny_password", "world")

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

nysql i _query($link, "CREATE TABLE nyCountry LIKE Country");
nysql i _query($link, "INSERT I NTO nyCountry SELECT * FROM Country");

$query = "SELECT Nane, Code FROM nyCountry ORDER BY Nane";
if ($stm = nysqli_prepare($link, $query)) {

/* drop table */
nysql i _query($link, "DROP TABLE myCountry");

/* execute query */
nysql i _stnt_execute($stnt);

echo "Error:\n";
print_r(nysqgl _stnt_error_list($stnt));

/* cl ose statenent */
nysql i _stnt_cl ose($stnt);
}

/* cl ose connection */
nysql i _cl ose($link);
2>

The above examples will output:

174

nysqli_stnt::$error,mysqgli_stnt_error

Array
[0] => Array
[errno] => 1146
[sql state] => 42S02
[error] => Table 'world.nyCountry' doesn't exist
)
)
See Also

nmysqgli_stnt _error
nmysqgli_stmt _errno
nmysqgli_stm _sql state

3.10.11 nysqgli _stnt::$error,nysqgli_stnt_error
Copyright 1997-2019 the PHP Documentation Group.
e nmysqli _stnt::$error
nysqli_stnt_error
Returns a string description for last statement error
Description

Object oriented style

string
nysqli_stnt->error ;

Procedural style

string nmysqgli_stnt_error(
mysqli_stm stnt);

Returns a string containing the error message for the most recently invoked statement function that can
succeed or fail.

Parameters

st nt Procedural style only: A statement identifier returned by
nysqli _stnt _init.

Return Values
A string that describes the error. An empty string if no error occurred.

Examples

Example 3.84 Object oriented style

175

nysqgli_stm::$error,nysqli_stnt_error

<?php
/* Open a connection */
$nmysqgli = new nysqli ("l ocal host", "my_user", "ny_password", "world");

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

$nmysql i - >quer y(" CREATE TABLE nyCountry LIKE Country");
$nmysql i - >query(" | NSERT | NTO nyCountry SELECT * FROM Country");

$query = "SELECT Nane, Code FROM nyCountry ORDER BY Nane";
if ($stnt = $nysqli->prepare($query)) {

/* drop table */
$nmysql i - >quer y("DROP TABLE nyCountry");

/* execute query */
$st nt - >execut e();

printf("Error: %.\n", $stnt->error);

/* cl ose statenent */
$st nt - >cl ose();

}

/* cl ose connection */
$nysqli->cl ose();
2>

Example 3.85 Procedural style

<?php
/* Open a connection */
$link = nmysqli_connect("local host", "ny_user", "ny_password", "world")

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

nysql i _query($link, "CREATE TABLE nyCountry LIKE Country");
nysql i _query($link, "INSERT | NTO nyCountry SELECT * FROM Country");

$query = "SELECT Nane, Code FROM nyCountry ORDER BY Nane";
if ($stm = nysqli_prepare($link, $query)) {

/* drop table */
nysql i _query($link, "DROP TABLE myCountry");

/* execute query */
nysql i _stnt_execute($stnt);

printf("Error: %.\n", nysqgli_stnt_error($stnt));

/* cl ose statenent */
nysql i _stnmt_cl ose($stnt);

176

mysqli _stnt::execute,nysqgli_stm _execute

/* cl ose connection */
nysql i _cl ose($link);
?>

The above examples will output:

Error: Table 'world.nyCountry' doesn't exist.

See Also

nysqgli_stmt _errno
nysqgli_stm _sqlstate

3.10.12 nysqgl i _stnt::execute,nysgli _stnt _execute
Copyright 1997-2019 the PHP Documentation Group.
e mysqli _stnt::execute
nysql i _stm _execute
Executes a prepared Query
Description

Object oriented style

bool nysqgli_stnt::execute();

Procedural style

bool nysqli_stnt_execute(
nysqgli_stnt stnt);

Executes a query that has been previously prepared using the nmysql i _pr epar e function. When
executed any parameter markers which exist will automatically be replaced with the appropriate data.

If the statement is UPDATE, DELETE, or | NSERT, the total number of affected rows can be determined
by using the nysql i _stnt _affected rows function. Likewise, if the query yields a result set the
nysql i _stmt fetch function is used.

Note

When using nysql i _stnt _execut e, the nysqli _stnt _fetch function must be
used to fetch the data prior to performing any additional queries.

Parameters

st Procedural style only: A statement identifier returned by
nysqli_stnt_init.

Return Values

177

mysqli _stnt::execute,nysqgli_stm _execute

Returns TRUE on success or FALSE on failure.
Examples

Example 3.86 Object oriented style

<?php
$nysqgli = new nysqli ("l ocal host", "nmy_user", "ny_password", "world");

/* check connection */

if (nmysqli_connect_errno()) {
printf("Connect failed: %\n", nysqli_connect_error());
exit();

}

$nysql i - >quer y(" CREATE TABLE nyCity LIKE Gity");

/* Prepare an insert statenent */

$query = "I NSERT | NTO nyCity (Nane, CountryCode, District) VALUES (?,?,?)";
$stnt = $nysqli->prepare($query);

$st nt - >bi nd_par an("sss", $val 1, $val 2, $val 3);

$vall = 'Stuttgart';
$val 2 = ' DEU ;
$val 3 = ' Baden- Wiert t enberg' ;

/* Execute the statenent */
$st nt - >execut e() ;

$val 1 = ' Bordeaux' ;
$val 2 = ' FRA' ;
$val 3 = ' Aqui tai ne';

/* Execute the statenent */
$st nt - >execut e() ;

/* cl ose statenent */
$st nt - >cl ose();

/* retrieve all rows fromnyCity */
$query = "SELECT Nane, CountryCode, District FROM nyGity";
if ($result = $nysqli->query($query)) {
while ($row = $result->fetch_row)) {
printf("% (%, %)\n", $rowf 0], $rowf 1], $row 2]);
}

/* free result set */
$resul t->cl ose();

}

/* renove table */
$nysql i - >query(" DROP TABLE nyCity")

/* cl ose connection */

$nmysql i - >cl ose();
2>

Example 3.87 Procedural style

<?php

178

mysqli _stnt::execute,nysqgli_stm _execute

$link = mysqli_connect("local host", "ny_user", "ny_password", "world");

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

nysql i _query($link, "CREATE TABLE nyCity LIKE City");

/* Prepare an insert statenent */

$query = "INSERT INTO nyCity (Nane, CountryCode, District) VALUES (?,?2,?)";
$stnt = nysqli_prepare($link, $query);

nysql i _stnt _bi nd_paran($stnt, "sss", $vall, $val 2, $val 3);

$vall = 'Stuttgart';
$val 2 = ' DEU ;
$val 3 = ' Baden- Wierttenberg';

/* Execute the statenent */
nysql i _stnt_execute($stnt);

$val 1 = ' Bordeaux';
$val 2 = ' FRA';
$val 3 = ' Aqui t ai ne';

/* Execute the statenent */
nysql i _stnt_execute($stnt);

/* cl ose statenent */
nysql i _stnt_cl ose($stnt);

/* retrieve all rows fromnyCity */
$query = "SELECT Nane, CountryCode, District FROM nyGCity";
if ($result = nysqgli_query($link, $query)) {

while ($row = nysqgli_fetch rowm$result)) {

printf("% (%,%)\n", $ronf 0], $rowf 1], $row 2]);

}

/* free result set */

nysqgli_free_result($result);

}

/* renove table */
nysql i _query($link, "DROP TABLE nyCity");

/* cl ose connection */

nysql i _cl ose($link);
2>

The above examples will output:

Stuttgart (DEU, Baden-Wierttemnber g)
Bor deaux (FRA, Aquit ai ne)

See Also

mysqli _prepare
mysql i _stnt_bind_param
mysqli _stnt_get _result

179

mysqli_stnt::fetch,nysqgli_stm _fetch

3.10.13 nysqli _stm::fetch,nysqli_stnt_fetch

Copyright 1997-2019 the PHP Documentation Group.
e mysqli _stnt::fetch
nysqgli_stm fetch
Fetch results from a prepared statement into the bound variables
Description
Object oriented style
bool nysqgli_stnt::fetch();

Procedural style

bool nysqli_stnt_fetch(
nysqli_stnt stnt);

Fetch the result from a prepared statement into the variables bound by nysql i _stnt _bind result.
Note

Note that all columns must be bound by the application before calling
nysqli _stnmt fetch.

Note

Data are transferred unbuffered without calling nysql i _stnt _store_result
which can decrease performance (but reduces memory cost).

Parameters

st mt Procedural style only: A statement identifier returned by
nysqli_stmt _init.

Return Values

Table 3.15 Return Values

Value Description

TRUE Success. Data has been fetched

FALSE Error occurred

NULL No more rows/data exists or data truncation
occurred

Examples

Example 3.88 Object oriented style

<?php
$nmysqgli = new nysqli ("l ocal host", "my_user", "ny_password", "world");

180

mysqli_stnt::fetch,nysqgli_stm _fetch

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

$query = "SELECT Nane, CountryCode FROM City ORDER by ID DESC LIMT 150, 5";
if ($stnt = $nysqli->prepare($query)) {

/* execute statenent */
$st nt - >execut e();

/* bind result variables */
$st nt - >bi nd_resul t ($nanme, $code);

/* fetch val ues */
while ($stnt->fetch()) {

printf ("% (%)\n", $nanme, $code);
}

/* cl ose statenent */
$st nt - >cl ose();
}

/* cl ose connection */
$nysqli->cl ose();
2>

Example 3.89 Procedural style

<?php
$link = nmysqli_connect("local host", "ny_user", "ny_password", "world")

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

$query = "SELECT Nane, CountryCode FROM City ORDER by ID DESC LIMT 150, 5";
if ($stm = nysqli_prepare($link, $query)) {

/* execute statenent */
nysql i _stnt_execute($stnt);

/* bind result variables */
nysqli_stnt_bind_result($stnt, $nane, $code);

/* fetch val ues */

while (mysqgli_stnt _fetch($stnt)) {
printf ("% (%)\n", $nane, $code);

}

/* cl ose statenent */
nysql i _stnt_cl ose($stnt);
}

/* cl ose connection */
nysql i _cl ose($link);
2>

181

nysqli_stnt::$field_count,nysqli_stnt _field_count

The above examples will output:

Rockf ord (USA)

Tal | ahassee (USA)
Sal i nas (USA)

Santa Clarita (USA)
Springfield (USA)

See Also

nmysqli _prepare

mysqli _stnt_errno
mysqli _stnt_error

mysqli _stnt_bind result

3.10.14 nysqli _stm::$field count,nmysgli _stnt field count
Copyright 1997-2019 the PHP Documentation Group.
e nysqgli_stnt::$field_count
nysqgli_stm field count
Returns the number of field in the given statement
Description

Object oriented style

i nt
nysqli_stnt->field_count ;

Procedural style

int nysqgli_stnt_field_count(
nysqgli_stnt stnt);

Warning
I This function is currently not documented; only its argument list is available.
3.10.15nysqli _stm::free result,nysqli _stm free result

Copyright 1997-2019 the PHP Documentation Group.
e nysqli _stm::free result

nysqli_stm free result

Frees stored result memory for the given statement handle
Description

Object oriented style

182

mysqli _stnt::get_result,mysqgli_stnt_get_result

void nysqli_stnt::free_result();

Procedural style

void nysqli_stnt_free_resul t(
nmysqli_stmt stnt);

Frees the result memory associated with the statement, which was allocated by
mysqli _stnt_store_result.

Parameters

stmt Procedural style only: A statement identifier returned by
nysqgli_stmt _init.

Return Values
No value is returned.
See Also

nysqgli_stm store result

3.10.16 nysqli _stnt::get result,nysqli_stnt get result
Copyright 1997-2019 the PHP Documentation Group.
e nysqli _stnt::get _result
mysqli _stnt_get _result
Gets a result set from a prepared statement
Description

Object oriented style

nmysqli _result nmysqli_stnt::get_result();

Procedural style

nysqgli_result nysqli_stnt_get_result(
nysqli_stnt stnt);

Call to return a result set from a prepared statement query.
Parameters

st Procedural style only: A statement identifier returned by
nysqgli_stmt _init.

Return Values

Returns a resultset for successful SELECT queries, or FALSE for other DML queries or on failure. The
nmysql i _errno function can be used to distinguish between the two types of failure.

MySQL Native Driver Only

Available only with mysqlnd.

183

mysqli _stnt::get_result,mysqgli_stnt_get_result

Examples

Example 3.90 Object oriented style

<?php
$nysqgli = new nysqli("127.0.0.1", "user", "password", "world");
i f($mysqli->connect_error)

di e("$nmysql i - >connect _errno: $nysqli->connect _error");

}

$query = "SELECT Name, Popul ation, Continent FROM Country WHERE Conti nent=? ORDER BY Name LIMT 1";

$stnt = $nysqli->stnt_init();
i f(!$stnt->prepare(Squery))

{ print "Failed to prepare statenent\n";
}
el se
{
$st nt - >bi nd_paran("s", $continent);
$continent _array = array(' Europe',' Africa','Asia','North America');
foreach($continent _array as $continent)
{ $st nt - >execut e() ;
$result = $stnt->get_resul t();
while ($row = $resul t->fetch_array(MYSQI _NUM)
{ foreach ($row as $r)
{
print "$r ";
}
print "\n";
}
}
}

$stnt - >cl ose();
$nysql i ->cl ose();
?>

Example 3.91 Procedural style

<?php

$link = nysqgli_connect("127.0.0.1", "user", "password", "world");

if (!$link)

{
$error = nysqli_connect_error();
$errno = nysqli_connect_errno();
print "$errno: $error\n";
exit();

}

$query = "SELECT Nane, Popul ation, Continent FROM Country WHERE Conti nent=? ORDER BY Nane LIMT 1";

184

mysqli _stnt::get_warnings, nysqli_stnt _get_ warnings

$stnt = nysqgli_stnt_init($link);
if(!nmysqli_stnt_prepare($stnt, $query))
{

print "Failed to prepare statenent\n";

}
el se
{
nysql i _stnt_bind_paran($stnt, "s", $continent);
$continent_array = array(' Europe',' Africa','Asia',' North Anerica');
foreach($continent _array as $continent)
{
nysql i _stnt_execute($stnt);
$result = nysqli_stnt_get_result($stnt);
while ($row = nysqli_fetch_array($result, MYSQI _NUM)
{
foreach ($row as $r)
{
print "$r "
}
print "\n";
}
}
}

nysql i _stnt_cl ose($stnt);
nysql i _cl ose($link);
?>

The above examples will output:

Al bani a 3401200 Eur ope

Al geria 31471000 Africa

Af ghani st an 22720000 Asi a
Angui | | a 8000 North America

See Also

nysql i _prepare

nmysqgli_stm _result_nmnetadata
nmysqgli_stm fetch

nysqgli _fetch_array

nysqgli_stm _store result
nmysqgli _errno

3.10.17 nysql i _stnt::get_warnings, nysqgli_stnt _get_warni ngs
Copyright 1997-2019 the PHP Documentation Group.
e« mysqli _stnt::get_warnings
nysqli _stmt _get warni ngs
Get result of SHOW WARNINGS

Description

185

186

nysqli_stnt::$insert_id, nmysqgli_stm _insert_id

Object oriented style

obj ect nysqli_stnt::get_warni ngs(
nmysqli_stm stnt);

Procedural style

obj ect nysqli_stnt_get_warni ngs(
nysqli_stnt stnt);

I Warning

This function is currently not documented; only its argument list is available.
3.10.18 nysqgli _stnt::$insert _id,nysqli_stnt _insert _id
Copyright 1997-2019 the PHP Documentation Group.
e nysqgli _stnt::$insert _id
nysqli _stnmt _insert_id

Get the ID generated from the previous INSERT operation
Description

Object oriented style
i nt
nmysqli_stm->insert_id

Procedural style

m xed nysqli_stnt _insert _id(
nmysqli_stm stnt);

I Warning

This function is currently not documented; only its argument list is available.
3.10.19nysqgli _stm::nore results,nysqgli _stnm _nore results
Copyright 1997-2019 the PHP Documentation Group.

e nysqgli_stnt::nore_results

nysqgli_stm _nore results

Check if there are more query results from a multiple query
Description

Object oriented style (method):

public bool nysqgli_stnt::nore_results();

Procedural style:

bool nysqli_stnt_nore_results(
nysqgl _stnt stnt);

mysqli _stnt::next_result,nysqgli_stm _next_result

Checks if there are more query results from a multiple query.
Parameters

st mt Procedural style only: A statement identifier returned by
nysqli_stnt_init.

Return Values

Returns TRUE if more results exist, otherwise FALSE.
MySQL Native Driver Only

Available only with mysgind.

See Also

nmysqgli_stm::next_result
nmysqgli::multi_query

3.10.20 nysql i _stnt::next _result,nmysqgli_stnt next result
Copyright 1997-2019 the PHP Documentation Group.
e nysqgli _stnt::next _result
nysqgli _stm next _result
Reads the next result from a multiple query
Description

Object oriented style (method):

public bool nysqli_stnt::next_result();

Procedural style:

bool nysqli_stmt _next_result(
nmysql _stmt stnt);

Reads the next result from a multiple query.
Parameters

st Procedural style only: A statement identifier returned by
nysqli_stmt_init.

Return Values
Returns TRUE on success or FALSE on failure.
Errors/Exceptions

Emits an E_STRI CT level error if a result set does not exist, and suggests using
nmysqgl i _stmt::nore_results inthese cases, before calling nysqli _stnt::next result.

MySQL Native Driver Only

187

nysqli_stnt::$numrows, mysqgli_stnt::numrows, mysqgli_stmt_numrows

Available only with mysqind.
See Also

nysqgli_stm::nore results
nysqli::multi_query

3.10.21 nysqgli _stnt::$numrows, mysqgli _stmt::numrows,
nysqgli _stnt_numrows

Copyright 1997-2019 the PHP Documentation Group.
e nysqli _stnt::$numrows

mysqli _stnt::numrows

nysqli _stnmt_numrows

Return the number of rows in statements result set
Description

Object oriented style

int
nmysqli _stmt->numrows ;

int nysqgli_stnt::numrows();
Procedural style

int nmysqgli_stnt_numrows(
nmysqli_stm stnt);

Returns the number of rows in the result set. The use of nysql i _stnt _num r ows depends on whether
or notyou used nysql i _stnt_store_result to buffer the entire result set in the statement handle.

If youuse nysqli _stnt_store_result,nysqgli_stnmt _numrows may be called immediately.
Parameters

st Procedural style only: A statement identifier returned by
nysqli_stnt_init.

Return Values
An integer representing the number of rows in result set.
Examples

Example 3.92 Object oriented style

<?php
/* Open a connection */
$nysqgli = new nysqli("local host", "my_user", "ny_password", "world");

/* check connection */

188

nysqgli _stmt::$numrows, nysqli_stnt::numrows, nysqli_stnt_numrows

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

$query = "SELECT Nane, CountryCode FROM City ORDER BY Nane LIMT 20";
if ($stnt = $nysqli->prepare($query)) {

/* execute query */
$st nt - >execut e();

/* store result */
$stnt->store_result();

printf("Nunmber of rows: %.\n", $stnt->numrows);

/* cl ose statenent */
$st nt - >cl ose();

}

/* cl ose connection */
$nysqli->cl ose();
2>

Example 3.93 Procedural style

<?php
/* Open a connection */
$link = nmysqli_connect("local host", "ny_user", "ny_password", "world");

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

$query = "SELECT Nane, CountryCode FROM City ORDER BY Nane LIMT 20";
if ($stm = nysqli_prepare($link, $query)) {

/* execute query */
nysql i _stnt_execute($stnt);

/* store result */
nysqli_stnt_store_result($stnt);

printf("Nunber of rows: %.\n", nysqgli_stnt_numrows($stnt));
/* close statement */

nysql i _stnt_cl ose($stnt);
}

/* cl ose connection */
nysql i _cl ose($link);
2>

The above examples will output:

Nunmber of rows: 20.

189

nysqli_stnt:: $param count, nysqli_stnt _param count

See Also
nysqgli_stm _affected rows

nysql i _prepare
nysqgli_stm _store result

3.10.22 nysql i _stnt:: $param count, nysqli _stnt_param count
Copyright 1997-2019 the PHP Documentation Group.
e nysqli _stnt::$param count
nysql i _stm _param count
Returns the number of parameter for the given statement
Description

Object oriented style

i nt
nmysql i _stnt->param count ;

Procedural style

int nysqli_stnt_param count (
nysqli_stnt stnt);

Returns the number of parameter markers present in the prepared statement.
Parameters

st nt Procedural style only: A statement identifier returned by
nysqgli_stmt _init.

Return Values
Returns an integer representing the number of parameters.
Examples

Example 3.94 Object oriented style

<?php
$nysqli = new nysqli ("l ocal host", "ny_user", "ny_password", "world");

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect _error());
exit();

}

if ($stnt = $nysqli->prepare("SELECT Nane FROM Country WHERE Nane=? OR Code=?")) {

$nmar ker = $st nt - >param count ;
printf("Statement has % nmarkers.\n", $marker);

/* cl ose statenent */

190

mysqli _stnt::prepare,nysqgli_stnm _prepare

$st nt - >cl ose();
}

/* cl ose connection */
$nysqli->cl ose();
?>

Example 3.95 Procedural style

<?php
$link = nmysqli_connect("local host", "ny_user", "ny_password", "world");
/* check connection */
if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();
}

if ($stnt = nysqli_prepare($link, "SELECT Name FROM Country WHERE Nane=? OR Code=?")) {

$marker = nysqli_stnt_param count ($stnt);
printf("Statenment has % markers.\n", $marker);

/* cl ose statenent */
nysql i _stmt_cl ose($stnt);
}

/* cl ose connection */
nysql i _cl ose($link);
?>

The above examples will output:

St at enent has 2 narkers.

See Also
nysql i _prepare
3.10.23 nysql i _stnt::prepare,nysgli _stnt _prepare
Copyright 1997-2019 the PHP Documentation Group.
e nysqli _stnt::prepare
nysqgli_stm _prepare
Prepare an SQL statement for execution
Description

Object oriented style

m xed nysqli_stnt:: prepare(

191

mysqli _stnt::prepare,nysqgli_stnm _prepare

string query);

Procedural style

bool nysqli_stnt_prepare(
nmysqli_stm stnt,
string query);

Prepares the SQL query pointed to by the null-terminated string query.

The parameter markers must be bound to application variables using nysql i _stnt _bi nd_par amand/or
nysqgli _stmt bind result before executing the statement or fetching rows.

Note

In the case where you pass a statement to nysql i _stnt _prepar e that is longer
than mex_al | owed_packet of the server, the returned error codes are different
depending on whether you are using MySQL Native Driver (mysql nd) or MySQL
Client Library (I i brrysqgl cl i ent). The behavior is as follows:

* nysql nd on Linux returns an error code of 1153. The error message means “got
a packet bigger than max_al | owed_packet bytes”.

e mysqgl nd on Windows returns an error code 2006. This error message means

“server has gone away".

e |ibmmysql cl i ent on all platforms returns an error code 2006. This error
message means “server has gone away”.

Parameters

stnt

query

Procedural style only: A statement identifier returned by
nmysqli_stmt _init.

The query, as a string. It must consist of a single SQL statement.

You can include one or more parameter markers in the SQL statement
by embedding question mark (?) characters at the appropriate positions.

Note

You should not add a terminating semicolon or
\ g to the statement.

Note

The markers are legal only in certain places in
SQL statements. For example, they are allowed
in the VALUES() list of an INSERT statement

(to specify column values for a row), orin a
comparison with a column in a WHERE clause to
specify a comparison value.

However, they are not allowed for identifiers
(such as table or column names), in the select
list that names the columns to be returned by a
SELECT statement), or to specify both operands
of a binary operator such as the = equal sign.

192

mysqli _stnt::prepare,nysqgli_stnm _prepare

Return Values
Returns TRUE on success or FALSE on failure.
Examples

Example 3.96 Object oriented style

<?php

The latter restriction is necessary because it
would be impossible to determine the parameter
type. In general, parameters are legal only in
Data Manipulation Language (DML) statements,
and not in Data Definition Language (DDL)
statements.

$nysqli = new nysqli("local host", "my_user", "ny_password", "world")

/* check connection */
if (nysqli_connect_errno()) {

printf("Connect failed: %\n", nysqgli_connect_error())

exit();
}

$city = "Amersfoort”;

/* create a prepared statenent */
$stmt = $nysqli->stnt_init()

if ($stnt->prepare("SELECT District FROM Gty WHERE Nanme=?")) {

/* bind paraneters for markers */
$st nt - >bi nd_paran("s", $city)

/* execute query */
$st nt - >execut e() ;

/* bind result variables */
$stnt->bi nd_resul t ($district)

/* fetch value */
$stmt ->f et ch()

printf("% is in district %\n", $city, $district)

/* cl ose statenent */
$stnt - >cl ose();
}

/* cl ose connection */

$nysql i - >cl ose()
?>

Example 3.97 Procedural style

<?php
$link = nmysqli_connect("local host", "my_user",

/* check connection */
if (nysqgli_connect_errno()) {

"my_password", "world")

193

mysqli_stnt::reset,nysqgli_stnm _reset

printf("Connect failed: %\n", nysqgli_connect_error());
exit();
}
$city = "Amersfoort”;
/* create a prepared statenent */
$stnt = nysqgli_stnt_init($link);
if (mysqli_stnt_prepare($stnt, 'SELECT District FROM City WHERE Nane=?')) {

/* bind paranmeters for markers */
nysql i _stnt_bi nd_paran($stnt, "s", $city);

/* execute query */
nysql i _stnt_execute($stnt);

/* bind result variables */
nysql i _stnt_bind_result($stnt, $district);

/* fetch value */
nysqli_stnt_fetch($stnt);

printf("% is in district %\n", $city, $district);
/* close statement */

nysql i _stnt_cl ose($stnt);
}

/* cl ose connection */
nysql i _cl ose($link);
?>

The above examples will output:

Anersfoort is in district Utrecht

See Also
nysqli_stnt_init

nmysqgli _stm _execute
nysqli_stnt _fetch

nmysql i _stmt _bind_param
nysqli_stmt _bind_result
nmysqgli _stmt _get result
nysqgli _stmt _cl ose

3.10.24 nysqgl i _stnt::reset,nysqli_stnt _reset
Copyright 1997-2019 the PHP Documentation Group.
e nysqgli_stnt::reset
nysqli _stm reset
Resets a prepared statement

Description

194

mysqli _stnt::result_netadata,nysqli_stm _result_netadata

Object oriented style

bool nysqgli_stnt::reset();

Procedural style

bool nysqli_stnt_reset (
nysqli_stnt stnt);

Resets a prepared statement on client and server to state after prepare.

It resets the statement on the server, data sent using nysql i _stnt _send_| ong_dat a, unbuffered result
sets and current errors. It does not clear bindings or stored result sets. Stored result sets will be cleared
when executing the prepared statement (or closing it).

To prepare a statement with another query use function nysql i _stnt _prepare.
Parameters

st Procedural style only: A statement identifier returned by
nysqli_stmt_init.

Return Values
Returns TRUE on success or FALSE on failure.
See Also
nmysql i _prepare
3.10.25nysqgli _stm::result_netadata,nysgli_stnt result netadata
Copyright 1997-2019 the PHP Documentation Group.
e nysqli _stnt::result_netadata
nysqli _stmt _result_netadata
Returns result set metadata from a prepared statement
Description
Object oriented style
nysqgli_result nysqgli_stnt::result_netadata();

Procedural style

nysqgli_result nysqli_stnt_result_netadata(
nysqgli_stnt stnt);

If a statement passed to nysql i _pr epar e is one that produces a result set,
nmysqgli _stm result netadat a returns the result object that can be used to process the meta
information such as total number of fields and individual field information.

Note

This result set pointer can be passed as an argument to any of the field-based
functions that process result set metadata, such as:

195

mysqli _stnt::result_netadata,nysqli_stm _result_netadata

e nysqli_numfields

e nysqli_fetch field

e nmysqli_fetch field direct
e mysqgli_fetch_fields

e nmysqgli _field_count

e mysqgli _field seek

e mysqgli _field tell

e nmysqgli_free result

The result set structure should be freed when you are done with it, which you can do by passing it to
mysqli _free_ result

Note

The result set returned by nysql i _stnt _resul t _net adat a contains only
metadata. It does not contain any row results. The rows are obtained by using the
statement handle with nysql i _stnt _fetch.

Parameters

st Procedural style only: A statement identifier returned by
nysqli_stnt_init.

Return Values
Returns a result object or FALSE if an error occurred.
Examples

Example 3.98 Object oriented style

<?php
$nysqgli = new nysqli ("l ocal host", "my_user", "ny_password", "test");

$nysql i - >query("DROP TABLE | F EXI STS friends");
$nmysql i - >quer y(" CREATE TABLE friends (id int, name varchar(20))");

$nmysql i - >query(" I NSERT | NTO friends VALUES (1,'Hartmut'), (2, 'Uf')");

$stnt = $nysqli->prepare("SELECT id, nane FROM friends");
$st nt - >execut e();

/* get resultset for netadata */
$result = $stnt->resul t_netadata();

/* retrieve field informati on from netadata result set */
$field = $result->fetch_field();

printf("Fieldname: %\n", $field->nane);

/* close resultset */
$resul t->cl ose();

196

mysqli _stnt::send_| ong_data, nysqli_stnt_send_| ong_data

/* cl ose connection */
$nysqli->cl ose();
?>

Example 3.99 Procedural style

<?php
$link = nysqli_connect ("l ocal host", "ny_user", "ny_password", "test");

mysqli _query($link, "DROP TABLE | F EXISTS friends");
nysql i _query($link, "CREATE TABLE friends (id int, name varchar(20))");

nysql i _query($link, "INSERT INTO friends VALUES (1,'Hartnut'), (2, "Uf"')");

$stnt = nmysqli_prepare($link, "SELECT id, name FROM friends");
nysqli_stnt_execute($stnt);

/* get resultset for netadata */
$result = nysqli_stnt _result_netadata($stnt);

/* retrieve field information from netadata result set */
$field = nysqli _fetch field($result);

printf("Fieldname: %\n", $field->nane);

/* close resul tset */
nysqli_free_result($result);

/* cl ose connection */
nysqli _cl ose($link);
?>

See Also

nysql i _prepare
nysqgli _free result

3.10.26 nysqli _stm::send | ong_data,nysqli_stnt_send | ong data
Copyright 1997-2019 the PHP Documentation Group.
e mysqli_stnt::send_| ong_data
nysqli _stnmt _send | ong_data
Send data in blocks
Description

Object oriented style
bool nysqli_stnt::send_| ong_dat a(

int paramnr,
string data);

Procedural style

197

nysqli_stnt::$sqlstate, mysqli_stm _sqglstate

bool nysqli_stnt_send_| ong_dat a(
nysqgli_stnt stnt,
int paramnr,
string data);

Allows to send parameter data to the server in pieces (or chunks), e.qg. if the size of a blob exceeds the
size of max_al | owed_packet . This function can be called multiple times to send the parts of a character
or binary data value for a column, which must be one of the TEXT or BLOB datatypes.

Parameters

st nt Procedural style only: A statement identifier returned by
nysqli_stmt _init.

par am nr Indicates which parameter to associate the data with. Parameters are
numbered beginning with 0.

dat a A string containing data to be sent.

Return Values
Returns TRUE on success or FALSE on failure.
Examples

Example 3.100 Object oriented style

<?php

$stmt = $nysqli->prepare(”| NSERT | NTO nessages (nessage) VALUES (?)");
$nul | = NULL;

$st nt - >bi nd_paran("b", $null);

$fp = fopen("nessages.txt", "r");

while (!feof ($fp)) {
$stnt->send_| ong_data(0, fread($fp, 8192));

}
fcl ose($f p);

$st nt - >execut e() ;
2>

See Also

nysql i _prepare
nysql i _stmt _bind_param

3.10.27 mysql i _stnt:: $sql state, mysqli _stnt _sql state

Copyright 1997-2019 the PHP Documentation Group.
e nysqgli _stnt::$sql state

nysqli_stm _sqlstate

Returns SQLSTATE error from previous statement operation
Description

Object oriented style

198

nysqgli_stm::$sqlstate, mysqli_stnt_sql state

string
nmysqli_stnmt->sqglstate ;

Procedural style

string nysqgli_stnt_sql state(
nmysqli_stmt stnt);

Returns a string containing the SQLSTATE error code for the most recently invoked prepared statement
function that can succeed or fail. The error code consists of five characters. ' 00000' means no error. The
values are specified by ANSI SQL and ODBC. For a list of possible values, see http://dev.mysqgl.com/doc/
mysql/en/error-handling.html.

Parameters

st nt Procedural style only: A statement identifier returned by
mysqli_stnt_init.

Return Values

Returns a string containing the SQLSTATE error code for the last error. The error code consists of five
characters. ' 00000" means no error.

Notes
Note
Note that not all MySQL errors are yet mapped to SQLSTATE's. The value HYO00
(general error) is used for unmapped errors.

Examples

Example 3.101 Object oriented style

<?php
/* Qpen a connection */
$nysqli = new nysqli ("l ocal host", "ny_user", "ny_password", "world");

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect _error());
exit();

}

$nysql i - >quer y(" CREATE TABLE nyCountry LIKE Country");
$nysql i ->query(" | NSERT | NTO nyCountry SELECT * FROM Country");

$query = "SELECT Nane, Code FROM nyCountry ORDER BY Nane";
if ($stnt = $nysqli->prepare($query)) {

/* drop table */
$nysql i - >query(" DROP TABLE nyCountry");

/* execute query */
$st nt - >execut e() ;

printf("Error: %.\n", $stnt->sqlstate);

/* cl ose statenent */

199

http://dev.mysql.com/doc/mysql/en/error-handling.html
http://dev.mysql.com/doc/mysql/en/error-handling.html

mysqli _stnt::store_result,mysqli_stnt_store_result

$st nt - >cl ose();
}

/* cl ose connection */
$nysqli->cl ose();
?>

Example 3.102 Procedural style

<?php
/* Open a connection */
$link = nysqli_connect("local host", "nmy_user", "ny_password", "world");

/* check connection */

if (nysqli_connect_errno()) {
printf("Connect failed: %\n", nysqli_connect_error());
exit();

}

nysql i _query($link, "CREATE TABLE nyCountry LIKE Country");

nysql i _query($link, "INSERT | NTO nmyCountry SELECT * FROM Country");
$query = "SELECT Name, Code FROM nyCountry ORDER BY Nane'";

if ($stmt = nysqli_prepare($link, $query)) {

/* drop table */
nysql i _query($link, "DROP TABLE nmyCountry");

/* execute query */
nysql i _stnt_execute($stnt);

printf("Error: %.\n", nysqgli_stnt_sqlstate($stnt));

/* cl ose statenent */
nysql i _stnt_cl ose($stnt);
}

/* cl ose connection */
nysql i _cl ose($link);
2>

The above examples will output:

Error: 42S02

See Also

mysqli _stnt_errno
mysqli _stnt_error

3.10.28 nysqli _stnt::store result,nysqgli _stnt _store result

Copyright 1997-2019 the PHP Documentation Group.

200

mysqli _stnt::store_result,mysqli_stnt_store_result

e mysqli_stnt::store_result

nmysqli _stnt_store result

Transfers a result set from a prepared statement
Description

Object oriented style

bool nysqli_stnt::store_result();

Procedural style

bool nysqli_stnt_store_result(
nysqgli_stnt stnt);

You must call mysql i _stnt_store_result for every query that successfully produces a result set
(SELECT, SHOW DESCRI BE, EXPLAI N), if and only if you want to buffer the complete result set by the
client, so that the subsequent nysql i _stnt _f et ch call returns buffered data.

Note

It is unnecessary to call mysql i _stnt _store result for other queries,
but if you do, it will not harm or cause any notable performance loss in all
cases. You can detect whether the query produced a result set by checking if
nysqgli _stnmt _result_ netadatareturns NULL.

Parameters

st Procedural style only: A statement identifier returned by
nysqli_stnt_init.

Return Values
Returns TRUE on success or FALSE on failure.
Examples

Example 3.103 Object oriented style

<?php
/* Open a connection */
$nysqgli = new nysqli ("l ocal host", "my_user", "ny_password", "world");

/* check connection */

if (nysqli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

$query = "SELECT Nane, CountryCode FROM City ORDER BY Nane LIMT 20";
if ($stnmt = $nysqli->prepare($query)) {

/* execute query */
$st nt - >execut e();

/* store result */
$stnt->store_result();

201

mysqli _stnt::store_result,mysqli_stnt_store_result

printf("Nunber of rows: %.\n", $stnt->numrows);

/* free result */
$stnt->free_result();

/* cl ose statenent */
$st nt - >cl ose();

}

/* cl ose connection */
$nysqli->cl ose();
2>

Example 3.104 Procedural style

<?php
/* QOpen a connection */
$link = nysqgli_connect ("l ocal host", "my_user", "ny_password", "world");

/* check connection */

if (nysqli_connect_errno()) {
printf("Connect failed: %\n", nysqli_connect_error());
exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER BY Name LIM T 20";
if ($stnt = nysqli_prepare($link, $query)) {

/* execute query */
nysql i _stnt_execute($stnt);

/* store result */
nysqli_stnt_store result($stnt);

printf("Nunber of rows: %.\n", nysqli_stm _numrows($stnt));

/* free result */
nysqgli_stnt_free result($stnt);

/* cl ose statenent */

nysqli_stnt_cl ose($stnt);
}

/* cl ose connection */
nysqli _cl ose($link);
?>

The above examples will output:

Nunmber of rows: 20.

See Also

mysql i _prepare
mysqli _stnt_result_netadata

202

The mysqli_result class

mysqli _stnt _fetch
3.11 The mysqli_result class

Copyright 1997-2019 the PHP Documentation Group.

Represents the result set obtained from a query against the database.

Changelog

Table 3.16 Changelog

Version Description

5.4.0 |t erat or support was added, as nysqli _result
now implements Tr aver sabl e.

nysqli_result {
nysqgli_result

Traver sabl e
Properties

i nt
nysqgli _result->current_field ;

i nt
nmysqli _result->field_count ;

array
nysqli_result->lengths ;

int
nmysqli _result->numrows ;

Met hods

bool nysqgli_result::data_seek(
int offset);

m xed nysqli _result::fetch_all(
int resulttype
= =MYSQLI _NUM;
m xed nysqli _result::fetch_array(
int resulttype
= =MYSQLI BOTH);

array mysqli_result::fetch_assoc();

obj ect nmysqgli_result::fetch_field_direct(
int fieldnr);

object nysqgli_result::fetch_field();
array nysqgli_result::fetch_fields();
obj ect nmysqli_result::fetch_object(

string cl ass_nane
= ="stdd ass",

203

nysqli_result::$current_field,nysqli_field tell

array parans);
m xed nysqli_result::fetch_row);

bool nysqli _result::field_seek(
int fieldnr);

void nysqli_result::free();

}

3.11.1nysqgli _result::$current_field,nysqli _field tell

Copyright 1997-2019 the PHP Documentation Group.
e nysqgli _result::$current_field

nysqli _field_ tell

Get current field offset of a result pointer
Description

Object oriented style

int
nysqli _result->current_field ;

Procedural style

int nysqgli_field_tell(
nysqgli_result result);

Returns the position of the field cursor used for the last nysql i _fetch_fi el d call. This value can be
used as an argument to nysql i _fiel d_seek.

Parameters

result Procedural style only: A result set identifier returned by mysql i _query,
nysqli_store_result ornysqgli_use_result.

Return Values
Returns current offset of field cursor.
Examples

Example 3.105 Object oriented style

<?php
$nmysqgli = new nysqli ("l ocal host", "my_user", "ny_password", "world");

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

$query = "SELECT Nane, SurfaceArea from Country ORDER BY Code LIMT 5";

204

nysqgli _result::$current field,nysqgli field tell

if ($result = $nysqli->query($query)) {

/* Get field information for all colums */
while ($finfo = $result->fetch_field()) {

/* get fieldpointer offset */
$currentfield = $result->current_field;

printf("Colum %:\n", $currentfield);

printf (" Nane: %\ n", $finfo->nane);
printf("Tabl e: %\ n", $finfo->table);
printf("max. Len: %\n", $finfo->max_| ength);
printf("Fl ags: %\ n", $finfo->flags);
printf("Type: %\ n\n", $finfo->type);

}

$resul t->cl ose();

}

/* cl ose connection */
$nysqli->cl ose();
2>

Example 3.106 Procedural style

<?php
$link = nmysqli_connect("local host", "ny_user", "ny_password", "world")

/* check connection */
if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();
}
$query = "SELECT Nane, SurfaceArea from Country ORDER BY Code LIMT 5";
if ($result = nysqgli_query($link, $query)) {

/* Get field information for all fields */
while ($finfo = nysqli_fetch_field($result)) {

/* get fieldpointer offset */
$currentfield = nysqli _field_ tell($result);

printf("Colum %:\n", $currentfield);

printf (" Nane: %\ n", $finfo->nane);
printf("Tabl e: %\ n", $finfo->table);
printf("max. Len: %\n", $finfo->max_| ength);
printf("Fl ags: %\ n", $finfo->flags);
printf("Type: %\ n\n", $finfo->type);

}

nysqgli_free_result($result);

}

/* cl ose connection */
nysql i _cl ose($link);
2>

The above examples will output:

205

mysqli _result::data_seek,nysqgli_data_seek

Col um 1:

Name:
Tabl e:

max. Len:

Fl ags:
Type:

Col um 2:

Name:
Tabl e:

max. Len:

Fl ags:
Type:

See Also

Nanme
Country
11

1

254

Sur f aceAr ea
Country

10

32769

4

nysqli_fetch_field
nysqgli _field seek

3.11.2nysqgli _result::data_seek,nysqli_data_seek

Copyright 1997-2019 the PHP Documentation Group.

e nysqli _result::data seek

nmysql i _data_seek

Adjusts the result pointer to an arbitrary row in the result

Description

Object oriented style

bool nysqli_result::data_seek(

int offset);

Procedural style

bool nysqli _data_seek(
nysqgli_result result,

int offset);

The nmysql i _dat a_seek function seeks to an arbitrary result pointer specified by the of f set in the result

set.

Parameters

result

of f set

Return Values

Procedural style only: A result set identifier returned by nysql i _query,
nmysqli _store_result ornmysqgli_use result.

The field offset. Must be between zero and the total number of rows
minus one (0..nysql i _num rows - 1).

Returns TRUE on success or FALSE on failure.

Notes

206

mysqli _result::data_seek,nysqgli_data_seek

Note

This function can only be used with buffered results attained from the use of the
nysqgli _store result ornysqli _query functions.

Examples

Example 3.107 Object oriented style

<?php
/* QOpen a connection */
$nysqgli = new nysqli ("l ocal host", "my_user", "ny_password", "world");

/* check connection */

if (nmysqli_connect_errno()) {
printf("Connect failed: %\n", nysqli_connect_error());
exit();

}

$query = "SELECT Nane, CountryCode FROM City ORDER BY Nane";
if ($result = $nysqli->query($query)) {

/* seek to row no. 400 */
$resul t ->dat a_seek(399);

/* fetch row */
$row = $result->fetch_row();

printf ("City: % Countrycode: %\n", $row 0], $row 1])

/* free result set*/
$resul t->cl ose();

}

/* cl ose connection */
$nmysql i - >cl ose();
?>

Example 3.108 Procedural style

<?php
/* Open a connection */
$link = nmysqgli_connect("local host", "ny_user", "ny_password", "world")

/* check connection */

if (!$link) {
printf("Connect failed: %\n", nysqgli_connect_error())
exit();

}

$query = "SELECT Nane, CountryCode FROM City ORDER BY Nane";
if ($result = nysqgli_query($link, $query)) {

/* seek to row no. 400 */
nysql i _dat a_seek($result, 399)

/* fetch row */
$row = nysqli_fetch_row $result)

207

mysqli _result::fetch_all,nysqgli_fetch_all

printf ("City: % Countrycode: %\n", $row 0], $rowf 1])

/* free result set*/
nysqgli_free_result($result)

}

/* cl ose connection */
nysql i _cl ose($link);
?>

The above examples will output:

City: Benin Gty Countrycode: NGA

See Also

nysqgli _store result
nysqgli _fetch_row
nysqgli _fetch_array
nysqgli _fetch_assoc
nysql i _fetch_object
nysql i _query

nysqgl i _num rows

3.11.3nysqgli _result::fetch_all,nysqli_fetch_all

Copyright 1997-2019 the PHP Documentation Group.
e mysqli _result::fetch_all

nysqli _fetch_all

Fetches all result rows as an associative array, a numeric array, or both
Description

Object oriented style

m xed nysqli_result::fetch_all(
int resulttype
= =MYSQLI _NUV ;

Procedural style

m xed nysqli_fetch_all(
nysqli _result result,
int resulttype

= =MYSQLI _NUM;

nmysql i _fetch_all fetches all result rows and returns the result set as an associative array, a numeric
array, or both.

Parameters

result Procedural style only: A result set identifier returned by mysql i _query,
nysqli _store result ornmysqli _use result.

208

mysqli _result::fetch_array,nysqgli _fetch_array

resul ttype This optional parameter is a constant indicating what type of array
should be produced from the current row data. The possible values for
this parameter are the constants MYSQLI _ ASSOC, MYSQLI _NUM or
MYSQLI _BOTH.

Return Values

Returns an array of associative or numeric arrays holding result rows.
MySQL Native Driver Only

Available only with mysqind.

Asnysqgl i _fetch_all returns all the rows as an array in a single step, it may consume more memory
than some similar functions such as nysql i _f et ch_arr ay, which only returns one row at a time from
the result set. Further, if you need to iterate over the result set, you will need a looping construct that
will further impact performance. For these reasons nysql i _fetch_al | should only be used in those
situations where the fetched result set will be sent to another layer for processing.

See Also

nysqgli _fetch_array
nysql i _query

3.11.4nysqgli _result::fetch_array,nysqli_fetch_array
Copyright 1997-2019 the PHP Documentation Group.
e nysqli _result::fetch_array
nysqli _fetch array
Fetch a result row as an associative, a numeric array, or both
Description

Object oriented style

m xed nysqli_result::fetch_array(
int resulttype
= =MYSQLI _BOTH);

Procedural style

m xed nysqli_fetch_array(
nysqgli_result result,
int resulttype

= =MYSQLI _BOTH);

Returns an array that corresponds to the fetched row or NULL if there are no more rows for the resultset
represented by the r esul t parameter.

nmysql i _fetch_array is an extended version of the nysql i _f et ch_r owfunction. In addition to storing
the data in the numeric indices of the result array, the mysql i _f et ch_arr ay function can also store the
data in associative indices, using the field names of the result set as keys.

Note
Field names returned by this function are case-sensitive.

209

mysqli _result::fetch_array,nysqgli _fetch_array

Note
This function sets NULL fields to the PHP NULL value.

If two or more columns of the result have the same field names, the last column will take precedence
and overwrite the earlier data. In order to access multiple columns with the same name, the numerically
indexed version of the row must be used.

Parameters

result Procedural style only: A result set identifier returned by mysql i _query,
nysqli_store_result ornysqgli_use_result.

resul ttype This optional parameter is a constant indicating what type of array

should be produced from the current row data. The possible values for
this parameter are the constants MYSQLI _ ASSOC, MYSQLI _NUM or
MYSQLI _BOTH.

By using the MYSQLI _ ASSCC constant this function will behave
identically to the mysql i _f et ch_assoc, while MYSQLI _ NUMwiill
behave identically to the mysql i _f et ch_r owfunction. The final option
MYSQLI _BOTH will create a single array with the attributes of both.

Return Values

Returns an array of strings that corresponds to the fetched row or NULL if there are no more rows in
resultset.

Examples

Example 3.109 Object oriented style

<?php
$nysqgli = new nysqli ("l ocal host", "my_user", "ny_password", "world");

/* check connection */

if ($nysqli->connect_errno) {
printf("Connect failed: %\n", $nysqli->connect_error);
exit();

$query = "SELECT Name, CountryCode FROM City ORDER by ID LIMT 3";
$result = $nysqli->query($query);

/* nuneric array */
$row = $resul t->fetch_array(MYSQLI _NUM ;
printf ("% (%)\n", $row 0], $row 1]);

/* associative array */
$row = $resul t->fetch_array(MYSQLI _ASSCC) ;
printf ("% (%)\n", $row "Nanme"], $row "CountryCode"]);

/* associative and nuneric array */
$row = $resul t->fetch_array(MYSQLI _BOTH);
printf ("% (%)\n", $row 0], $row "CountryCode"]);

/* free result set */
$result->free();

210

mysqli _result::fetch_assoc,nysqgli_fetch_assoc

/* cl ose connection */
$nysqli->cl ose();
?>

Example 3.110 Procedural style

<?php
$link = nysqli_connect("local host", "nmy_user", "ny_password", "world");

/* check connection */

if (nysqli_connect_errno()) {
printf("Connect failed: %\n", nysqli_connect_error());
exit();

$query = "SELECT Name, CountryCode FROM City ORDER by ID LIMT 3";
$result = nysqli_query($link, $query);

/* nuneric array */
$row = nysqli_fetch_array($result, MYSQLI _NUM;
printf ("% (%)\n", $row 0], $row 1])

/* associative array */
$row = nysqli_fetch_array($result, MYSQLI _ASSOC);
printf ("% (%)\n", $row "Nanme"], $row "CountryCode"]);

/* associative and nuneric array */
$row = nysqli_fetch_array($result, MYSQ.l_BOTH);
printf ("% (%)\n", $row 0], $row "CountryCode"]);

/* free result set */
nysqli_free_result($result);

/* cl ose connection */
nysql i _cl ose($link);
2>

The above examples will output:

Kabul (AFG
Qandahar (AFG
Herat (AFQ

See Also

nmysqli _fetch_assoc
nmysqli _fetch_row
nmysql i _fetch_object
nmysql i _query

nmysql i _data_seek

3.11.5nysqgli _result::fetch_assoc,nysqli_fetch_assoc

Copyright 1997-2019 the PHP Documentation Group.

211

mysqli _result::fetch_assoc,nysqgli_fetch_assoc

e mysqli _result::fetch_assoc
nmysqli _fetch_assoc
Fetch a result row as an associative array
Description
Object oriented style
array nysqli_result::fetch_assoc()

Procedural style

array mnysqli_fetch_assoc(
nmysqli_result result)

Returns an associative array that corresponds to the fetched row or NULL if there are no more rows.
Note
Field names returned by this function are case-sensitive.
Note
This function sets NULL fields to the PHP NULL value.
Parameters

resul t Procedural style only: A result set identifier returned by nysql i _query,
nmysqli _store_result ornmysqgli_use result.

Return Values

Returns an associative array of strings representing the fetched row in the result set, where each key in the
array represents the name of one of the result set's columns or NULL if there are no more rows in resultset.

If two or more columns of the result have the same field names, the last column will take precedence. To
access the other column(s) of the same name, you either need to access the result with numeric indices by
using nysql i _f et ch_rowor add alias names.

Examples

Example 3.111 Object oriented style

<?php
$nmysqgli = new nysqli ("l ocal host", "my_user", "ny_password", "world");

/* check connection */

if ($nysqli->connect_errno) {
printf("Connect failed: %\n", $nysqli->connect_error);
exit();

}

$query = "SELECT Nane, CountryCode FROM City ORDER by ID DESC LIMT 50, 5";
if ($result = $nysqli->query($query)) {

/* fetch associative array */
while ($row = $resul t->fetch_assoc()) {

212

mysqli _result::fetch_assoc,nysqgli_fetch_assoc

printf ("% (%)\n", $row "Nane"], $row "CountryCode"])
}

/* free result set */
$resul t->free()

}

/* cl ose connection */
$nysqli->cl ose()
2>

Example 3.112 Procedural style

<?php
$link = nmysqli_connect("local host", "ny_user", "ny_password", "world")

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: 9%\n", nysqgli_connect_error())
exit();

}

$query = "SELECT Nane, CountryCode FROM City ORDER by ID DESC LIMT 50, 5";
if ($result = nysqli_query($link, $query)) {

/* fetch associative array */
while ($row = nysqli_fetch_assoc($result)) {

printf ("% (%)\n", $row "Nanme"], $row "CountryCode"])
}

/* free result set */
nysqli_free_result($result)

}

/* cl ose connection */
nysql i _cl ose($l i nk)
2>

The above examples will output:

Puebl o (USA)
Arvada (USA)

Cape Coral (USA)
G een Bay (USA)
Santa Cl ara (USA)

Example 3.113 A nysql i _resul t example comparing i t er at or usage

<?php
$c = nysqgli_connect('127.0.0.1',"user', 'pass')

/] Using iterators (support was added with PHP 5. 4)
foreach ($c->query(' SELECT user, host FROM nysql .user') as $row) {

213

mysqli _result::fetch _field direct,nysqli_fetch field_direct

printf(""9%' @%'\n", $row'user'], $row ' host']);
}

echo "\n \n";

/1 Not using iterators
$result = $c->query(' SELECT user, host FROM nysql . user');
while ($row = $resul t->fetch_assoc()) {
printf(""'9%' @%'\n", $row'user'], $row ' host']);
}

?>

The above example will output something similar to:

‘root' @192.168.1.1'
‘root' @127.0.0.1'

" dude' @1 ocal host*

' | ebowski ' @I ocal host*

‘root' @192.168.1.1'
‘root' @127.0.0.1'

" dude' @1 ocal host*

' | ebowski ' @I ocal host*

See Also

nysqgli _fetch_array
nysqli_fetch_row
nysql i _fetch_object

nysql i _query
nysql i _data_seek

3.11.6 nysqgli _result::fetch_field direct,
nysqli_fetch field direct
Copyright 1997-2019 the PHP Documentation Group.
e nysqli _result::fetch field direct
nmysqli _fetch field direct
Fetch meta-data for a single field
Description

Object oriented style

obj ect nmysqgli_result::fetch_field_direct(
int fieldnr);

Procedural style

obj ect nysqli_fetch_field_direct(

214

mysqli _result::fetch _field direct,nysqli_fetch field_direct

mysqli_result result
int fieldnr);

Returns an object which contains field definition information from the specified result set.

Parameters

result

fieldnr

Return Values

Procedural style only: A result set identifier returned by mysql i _query,
nysqli _store result ornmysqli _use result.

The field number. This value must be in the range from 0 to nunber of
fields - 1.

Returns an object which contains field definition information or FALSE if no field information for specified

fiel dnr is available.

Table 3.17 Object attributes

Attribute Description

name The name of the column

orgname Original column name if an alias was specified

table The name of the table this field belongs to (if not
calculated)

orgtable Original table name if an alias was specified

def The default value for this field, represented as a
string

max_length The maximum width of the field for the result set.

length The width of the field, as specified in the table
definition.

charsetnr The character set number for the field.

flags An integer representing the bit-flags for the field.

type The data type used for this field

decimals The number of decimals used (for numeric fields)

Examples

Example 3.114 Object oriented style

<?php

$nmysqgli = new nysqli ("l ocal host", "my_user", "ny_password", "world");

/* check connection */
if (nysqgli_connect_errno()) {
printf("Connect failed

exit();
}

%\ n", nmysqgli_connect_error());

$query = "SELECT Nane, SurfaceArea from Country ORDER BY Nane LIMT 5";

if ($result = $nysqli->query($query)) {

215

mysqli _result::fetch _field direct,nysqli_fetch field_direct

/* Get field information for column ' SurfaceArea' */
$finfo = $result->fetch_field_ direct(1);

printf (" Nane: %\ n", $finfo->nane);
printf("Tabl e: %\ n", $finfo->table);
printf("max. Len: %\n", $finfo->max_| ength);
printf("Fl ags: %\ n", $finfo->flags);
printf("Type: %\ n", $finfo->type);

$resul t->cl ose();

}

/* cl ose connection */
$nysqli->cl ose();
2>

Example 3.115 Procedural style

<?php
$link = nmysqli_connect("local host", "ny_user", "ny_password", "world");

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

$query = "SELECT Nane, SurfaceArea from Country ORDER BY Nane LIMT 5";
if ($result = nysqli_query($link, $query)) {

/* Get field information for colum 'SurfaceArea' */
$finfo = nysqli _fetch_field direct($result, 1);

printf (" Nane: %\ n", $finfo->nane);
printf("Tabl e: %\ n", $finfo->table);
printf("max. Len: %\n", $finfo->max_| ength);
printf("Fl ags: %\ n", $finfo->flags);
printf("Type: %\ n", $finfo->type);

nysqli_free_ result($result);

}

/* cl ose connection */
nysql i _cl ose($link);
2>

The above examples will output:

Nane: Sur f aceAr ea
Tabl e: Country

max. Len: 10

Fl ags: 32769

Type: 4

See Also

216

mysqli _result::fetch_field,nysqgli_fetch field

mysqli _numfields
mysqli _fetch field
mysqli _fetch_fields

3.11.7nysqgli _result::fetch_field,nmysqli_fetch_field
Copyright 1997-2019 the PHP Documentation Group.
e nysqli _result::fetch field
nysqli _fetch field
Returns the next field in the result set
Description
Object oriented style
obj ect nmysqgli_result::fetch_field();

Procedural style

obj ect nysqgli_fetch_field(
mysqli _result result);

Returns the definition of one column of a result set as an object. Call this function repeatedly to retrieve
information about all columns in the result set.

Parameters

resul t Procedural style only: A result set identifier returned by nysql i _query,
nysqli _store result ornysqli _use result.

Return Values
Returns an object which contains field definition information or FALSE if no field information is available.

Table 3.18 Object properties

Property Description

name The name of the column

orgname Original column name if an alias was specified

table The name of the table this field belongs to (if not
calculated)

orgtable Original table name if an alias was specified

def Reserved for default value, currently always "

db Database (since PHP 5.3.6)

catalog The catalog name, always "def" (since PHP 5.3.6)

max_length The maximum width of the field for the result set.

length The width of the field, as specified in the table
definition.

charsetnr The character set number for the field.

flags An integer representing the bit-flags for the field.

217

nysqgli_result::fetch_field,nysqli_fetch_field

Property Description

type The data type used for this field

decimals The number of decimals used (for integer fields)
Examples

Example 3.116 Object oriented style

<?php
$nysqli = new nysqli ("l ocal host", "ny_user", "ny_password", "world");

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect _error());
exit();

}

$query = "SELECT Nane, SurfaceArea from Country ORDER BY Code LIMT 5";
if ($result = $nysqli->query($query)) {

/* Get field information for all colums */
while ($finfo = $result->fetch_field()) {

printf (" Nane: %\ n", $finfo->nane);
printf("Tabl e: %\ n", $finfo->table);
printf("max. Len: %\ n", $finfo->max_|ength);
printf("Fl ags: %\ n", $finfo->flags);
printf("Type: %\ n\n", $finfo->type);

}

$resul t->cl ose();

}

/* cl ose connection */
$nysql i - >cl ose();
?>

Example 3.117 Procedural style

<?php
$link = nmysqli_connect("local host", "ny_user", "ny_password", "world");

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

$query = "SELECT Nane, SurfaceArea from Country ORDER BY Code LIMT 5";
if ($result = nysqli_query($link, $query)) {

/* Get field information for all fields */
while ($finfo = nysqli_fetch_field($result)) {

printf (" Nane: %\ n", $finfo->nane);
printf("Tabl e: %\ n", $finfo->table);
printf("max. Len: %\n", $finfo->max_| ength);

218

mysqli _result::fetch fields,mysqli _fetch fields

printf("Fl ags: %\ n", $finfo->flags);
printf("Type: %\ n\n", $finfo->type);
}

nysqgli_free_result($result)

}

/* cl ose connection */
nysql i _cl ose($link);
?>

The above examples will output:

Nane: Nanme
Tabl e: Country
max. Len: 11

Fl ags: 1

Type: 254
Nane: Sur f aceAr ea
Tabl e: Country
max. Len: 10

Fl ags: 32769
Type: 4

See Also

mysqli _numfields

mysqli _fetch field direct
mysqli _fetch fields

mysqli _field seek

3.11.8nysqgli _result::fetch fields,nysqgli _fetch fields
Copyright 1997-2019 the PHP Documentation Group.
e mysqli _result::fetch fields
nysqli _fetch fields
Returns an array of objects representing the fields in a result set
Description

Object oriented style

array nysqli_result::fetch_fields()

Procedural style

array nysqgli_fetch_fields(
nmysqli _result result)

This function serves an identical purpose to the nysql i _fetch_fi el d function with the single difference
that, instead of returning one object at a time for each field, the columns are returned as an array of
objects.

219

mysqli _result::fetch fields,mysqli _fetch fields

Parameters

result Procedural style only: A result set identifier returned by mysql i _query,
nysqli _store result ornysqli _use result.

Return Values

Returns an array of objects which contains field definition information or FALSE if no field information is
available.

Table 3.19 Object properties

Property Description

name The name of the column

orgname Original column name if an alias was specified

table The name of the table this field belongs to (if not
calculated)

orgtable Original table name if an alias was specified

max_length The maximum width of the field for the result set.

length The width of the field, in bytes, as specified in the
table definition. Note that this number (bytes) might
differ from your table definition value (characters),
depending on the character set you use. For
example, the character set utf8 has 3 bytes per
character, so varchar(10) will return a length of 30
for utf8 (10*3), but return 10 for latinl (10*1).

charsetnr The character set number (id) for the field.

flags An integer representing the bit-flags for the field.

type The data type used for this field

decimals The number of decimals used (for integer fields)

Examples

Example 3.118 Object oriented style

<?php

$nysqgli = new nysqli("127.0.0.1",

/* check connection */
if ($nysqli->connect_errno) {
printf("Connect failed:

exit();
}

foreach (array('latinl',

/'l Set character set,
$nysql i - >set _char set ($charset);

$query = "SELECT actor_id,

'utf8') as $charset) {

echo "

echo "Character Set:

$charset\ n";

"foof 00", "sakila");

$nysql i - >connect _error);

to show its inpact on some values (e.g., length in bytes)

| ast _name from act or ORDER BY actor_id";

220

mysqli _result::fetch fields,mysqli _fetch fields

echo " \n";
if ($result = $nysqli->query($query)) {

/* Get field information for all colums */
$finfo = $result->fetch_fields();

foreach ($finfo as $val) {

printf (" Nane: %\ n", $val - >nane) ;
printf("Tabl e: %\ n", $val - >t abl e) ;
printf("Max. Len: %\ n", $val - >max_| engt h) ;
printf("Length: %\ n", $val - >l engt h) ;
printf("charsetnr: %\ n", $val - >charsetnr);
printf("Fl ags: %\ n", $val - >f | ags) ;
printf("Type: %\ n\n", $val - >type);

}

$result->free();

}
}
$nysqli->cl ose();
2>

Example 3.119 Procedural style

<?php
$link = nysqgli_connect("127.0.0.1", "ny_user", "my_password", "sakila")

/* check connection */
if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());

exit();
}
foreach (array('latinl', 'utf8) as $charset) {
/] Set character set, to showits inpact on sone values (e.g., length in bytes)
nysql i _set _charset ($link, $charset);
$query = "SELECT actor_id, |ast_nanme from actor ORDER BY actor_id";
echo " \n";
echo "Character Set: $charset\n";
echo " \n";
if ($result = nysqgli_query($link, $query)) {
/* CGet field information for all colums */
$finfo = nysqli _fetch_fields($result);
foreach ($finfo as $val) {
printf (" Nane: %\ n", $val - >nane) ;
printf("Tabl e: %\ n", $val - >t abl e) ;
printf("Max. Len: %\ n", $val - >max_| engt h) ;
printf("Length: %\ n", $val - >l engt h) ;
printf("charsetnr: %\ n", $val - >charsetnr) ;
printf("Fl ags: %\ n", $val - >f | ags) ;
printf("Type: %\ n\ n", $val - >type);
}
nysqli_free_result($result);
}
}

nysql i _cl ose($link);

221

mysqli _result::fetch_object,mysqli_fetch_object

?>

The above examples will output:

Character Set: latinl

Nane: actor_id
Tabl e: act or
Max. Len: 3

Lengt h: 5
charsetnr: 63

Fl ags: 49699
Type: 2

Nane: | ast _nane
Tabl e: act or
Max. Len: 12

Lengt h: 45
charsetnr: 8

Fl ags: 20489
Type: 253
Character Set: utf8
Nane: actor_id
Tabl e: act or
Max. Len: 3

Lengt h: 5
charsetnr: 63

Fl ags: 49699
Type: 2

Nane: | ast _nane
Tabl e: act or
Max. Len: 12

Lengt h: 135
charsetnr: 33

Fl ags: 20489
See Also

nysql i _numfields
nysqgli _fetch field direct
nysqgli _fetch field

3.119nysqgli _result::fetch_object,nysqgli _fetch_object
Copyright 1997-2019 the PHP Documentation Group.
e nysqli _result::fetch_object
nysqli _fetch object
Returns the current row of a result set as an object

Description

222

mysqli _result::fetch_object,mysqli_fetch_object

Object oriented style

obj ect nmysqgli_result::fetch_object(
string cl ass_nane
= ="stdd ass",
array parans);

Procedural style

obj ect nysqgli_fetch_object(
nysqgli_result result
string cl ass_nane
= ="stdd ass",
array parans)

The nmysql i _fetch_obj ect will return the current row result set as an object where the attributes of the
object represent the names of the fields found within the result set.

Note that mysql i _f et ch_obj ect sets the properties of the object before calling the object constructor.

Parameters

resul t Procedural style only: A result set identifier returned by nysql i _query,
nmysqli _store_result ornmysqgli_use result.

cl ass_nane The name of the class to instantiate, set the properties of and return. If
not specified, a st dCl ass object is returned.

par ams An optional array of parameters to pass to the constructor for

cl ass_name objects.
Return Values

Returns an object with string properties that corresponds to the fetched row or NULL if there are no more
rows in resultset.

Note

Field names returned by this function are case-sensitive.
Note

This function sets NULL fields to the PHP NULL value.

Examples

Example 3.120 Object oriented style

<?php
$nmysqgli = new nysqli("local host", "my_user", "ny_password", "world");

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER by |D DESC LIMT 50, 5";

if ($result = $nysqli->query($query)) {

223

mysqli _result::fetch_object,mysqli_fetch_object

/* fetch object array */
while ($obj = $result->fetch_object()) {

printf ("% (%)\n", $obj->Nane, $obj->CountryCode);
}

/* free result set */
$resul t->cl ose();

}

/* cl ose connection */
$nysqli->cl ose();
2>

Example 3.121 Procedural style

<?php
$link = nmysqli_connect("local host", "ny_user", "ny_password", "world");

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

$query = "SELECT Nane, CountryCode FROM City ORDER by ID DESC LIMT 50, 5";
if ($result = nysqgli_query($link, $query)) {

/* fetch associative array */
while ($obj = nysqli_fetch_object($result)) {

printf ("% (%)\n", $obj->Nane, $obj->CountryCode);
}

/* free result set */
nysqli_free_result($result);

}

/* cl ose connection */
nysql i _cl ose($link);
?>

The above examples will output:

Puebl o (USA)
Arvada (USA)

Cape Coral (USA)
Green Bay (USA)
Santa Clara (USA)

See Also

nysqgli _fetch_array
nmysqli _fetch_assoc
nysqli _fetch_row
nysql i _query

224

mysqli _result::fetch_row nysqli_fetch_row

nmysql i _data_seek
3.11.10 nysqli _result::fetch_row nysqli_fetch_row
Copyright 1997-2019 the PHP Documentation Group.
e nysqli _result::fetch_row
nysqli _fetch_row
Get a result row as an enumerated array
Description
Object oriented style
i xed nysqli_result::fetch_row);

Procedural style

m xed nysqli _fetch_row(
nysqgli_result result)

Fetches one row of data from the result set and returns it as an enumerated array, where each column is
stored in an array offset starting from 0 (zero). Each subsequent call to this function will return the next row
within the result set, or NULL if there are no more rows.

Parameters

result Procedural style only: A result set identifier returned by nysql i _query,
nmysqli _store result ornmysqgli_use result.

Return Values

nmysql i _fetch_rowreturns an array of strings that corresponds to the fetched row or NULL if there are
no more rows in result set.

Note
This function sets NULL fields to the PHP NULL value.
Examples

Example 3.122 Object oriented style

<?php
$nysqli = new nysqli ("l ocal host", "ny_user", "ny_password", "world");
/* check connection */
if (nysqli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();
}

$query = "SELECT Nane, CountryCode FROM City ORDER by ID DESC LIMT 50, 5";
if ($result = $nysqli->query($query)) {

/* fetch object array */

225

mysqli _result::fetch_row nysqli_fetch_row

while ($row = $result->fetch_row()) {
printf ("% (%)\n", $row 0], $row 1]);
}

/* free result set */
$resul t->cl ose();

}

/* cl ose connection */
$nysqli->cl ose();
?>

Example 3.123 Procedural style

<?php
$link = nysqgli_connect ("l ocal host", "ny_user", "nmy_password", "world");

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMT 50, 5";
if ($result = nysqgli_query($link, $query)) {
/* fetch associative array */

while ($row = nysqgli_fetch_rowm$result)) {
printf ("% (%)\n", $row 0], $row 1])
}

/* free result set */
nysqli_free_result($result);

}

/* cl ose connection */
nysql i _cl ose($link);
?>

The above examples will output:

Puebl o (USA)
Arvada (USA)

Cape Coral (USA)
Green Bay (USA)
Santa Clara (USA)

See Also

nysqgli _fetch_array
nmysqli _fetch_assoc
mysqli _fetch_object
mysql i _query

nmysql i _data_seek

226

nysqli_result::$field_count,nmysqgli_numfields

3.11. 11 nysqgli _result::$field _count,nmysqli_numfields
Copyright 1997-2019 the PHP Documentation Group.
e nysqli_result::$field_count
nysqgli _numfields
Get the number of fields in a result
Description

Object oriented style

i nt
nmysqli_result->field_count

Procedural style

int nysqgli_numfields(
nysqgli_result result)

Returns the number of fields from specified result set.
Parameters

result Procedural style only: A result set identifier returned by mysql i _query,
nysqli_store_result ornysqgli_use_result.

Return Values
The number of fields from a result set.
Examples

Example 3.124 Object oriented style

<?php
$nmysqgli = new nysqli ("l ocal host", "nmy_user", "ny_password", "world")

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error())
exit();

}

if ($result = $nysqli->query("SELECT * FROM City ORDER BY ID LIMT 1")) {

/* determ ne nunber of fields in result set */
$field_cnt = $result->field_count;

printf("Result set has % fields.\n", $field_cnt)

/* close result set */
$resul t->cl ose();

}

/* cl ose connection */
$nysqli->cl ose();
?>

227

mysqli _result::field _seek,mysqli_field seek

Example 3.125 Procedural style

<?php
$link = nysqli_connect ("l ocal host", "ny_user", "ny_password", "world");
/* check connection */
if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();
}

if ($result = nysqgli_query($link, "SELECT * FROMCity ORDER BY ID LIMT 1")) {

/* determ ne nunber of fields in result set */
$field_cnt = nysqli_numfields($result)

printf("Result set has % fields.\n", $field_cnt)

/* close result set */
nysqli_free_resul t($result)

}

/* cl ose connection */
nysql i _cl ose($link)
2>

The above examples will output:

Result set has 5 fields

See Also
nysqgli_fetch_field
3.11.12nysqli _result::field seek,nysgli field seek
Copyright 1997-2019 the PHP Documentation Group.
e nysqli _result::field seek
nysqli _field_seek
Set result pointer to a specified field offset
Description

Object oriented style

bool nysqgli _result::field_seek(
int fieldnr);

Procedural style

bool nysqli _field_seek(

228

nysqgli_result::field_seek,nysqgli_field_seek

nmysqli_result result,
int fieldnr);

Sets the field cursor to the given offset. The next call to mysql i _fetch_fi el d will retrieve the field
definition of the column associated with that offset.

Note

To seek to the beginning of a row, pass an offset value of zero.

Parameters

resul t Procedural style only: A result set identifier returned by nysql i _query,
nmysqli _store_result ornmysqgli_use result.

fieldnr The field number. This value must be in the range from 0 to nunber of

fields - 1.
Return Values
Returns TRUE on success or FALSE on failure.
Examples

Example 3.126 Object oriented style

<?php
$nmysqgli = new nysqli ("l ocal host", "my_user", "ny_password", "world");

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

$query = "SELECT Nane, SurfaceArea from Country ORDER BY Code LIMT 5";
if ($result = $nysqli->query($query)) {
/* CGet field information for 2nd col um */

$result->field_seek(1);
$finfo = $result->fetch_field();

printf (" Nane: %\ n", $finfo->nane);
printf("Tabl e: %\ n", $finfo->table);
printf("max. Len: %\n", $finfo->max_| ength);
printf("Fl ags: %\ n", $finfo->flags);
printf("Type: %\ n\n", $finfo->type);

$resul t->cl ose();

}

/* cl ose connection */
$nysqli->cl ose();
2>

Example 3.127 Procedural style

229

mysqli _result::free,mysqli _result::close,nysqgli _result::free_result,mysqgli_free_result

<?php
$link = nmysqli_connect("local host", "ny_user", "ny_password", "world");

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

$query = "SELECT Nane, SurfaceArea from Country ORDER BY Code LIMT 5";
if ($result = nysqgli_query($link, $query)) {
/* Cet field information for 2nd col um */

nysqli_field_seek($result, 1);
$finfo = nysqli_fetch_field($result)

printf (" Nane: %\ n", $finfo->nane);
printf("Tabl e: %\ n", $finfo->table);
printf("max. Len: %\n", $finfo->max_| ength);
printf("Fl ags: %\ n", $finfo->flags);
printf("Type: %\ n\n", $finfo->type);

nysqgli_free_result($result)

}

/* cl ose connection */
nysql i _cl ose($link);
?>

The above examples will output:

Nane: Sur f aceAr ea
Tabl e: Country
max. Len: 10

Fl ags: 32769

Type: 4

See Also

nysqgli _fetch field
3.11.13nysqli _result::free,nysqgli _result::close,
nmysqgli _result::free result,nysqli free result
Copyright 1997-2019 the PHP Documentation Group.
e nysqgli _result::free
nysqgli _result::close
nmysqli _result::free_result
nmysqli _free result

Frees the memory associated with a result

230

nysqli_result::$lengths,nysqli_fetch_I engths

Description

Object oriented style
void nysqli_result::free();
void nysqli_result::close();

void nysqli_result::free_result();

Procedural style

void nysqli_free_resul t(
nysqgli_result result);

Frees the memory associated with the result.
Note

You should always free your result with nysql i _free_resul t, when your result
object is not needed anymore.

Parameters

result Procedural style only: A result set identifier returned by nysql i _query,
nmysqli _store result ornmysqgli_use result.

Return Values
No value is returned.

See Also

nysql i _query

nysqgli_stm store result
nysqli_store_result
nysqgli _use result

3.11.14 nysqgli _result::$l engths,nysqgli _fetch | engths
Copyright 1997-2019 the PHP Documentation Group.
e nysqli _result::$lengths
nmysqli _fetch_| engths
Returns the lengths of the columns of the current row in the result set
Description

Object oriented style

array
nmysqli _result->lengths ;

Procedural style

array mysqli_fetch_l engt hs(
nysqgli_result result);

231

mysqgli _result::$lengths,nysqli _fetch | engths

The nysql i _fetch_| engt hs function returns an array containing the lengths of every column of the
current row within the result set.

Parameters

result Procedural style only: A result set identifier returned by mysql i _query,
nysqli_store_result ornysqgli_use_result.

Return Values

An array of integers representing the size of each column (not including any terminating null characters).
FALSE if an error occurred.

nmysql i _fetch_I engt hs is valid only for the current row of the result set. It returns FALSE if you call it
before calling mysqli_fetch_row/array/object or after retrieving all rows in the result.

Examples

Example 3.128 Object oriented style

<?php
$nysqgli = new nysqli ("l ocal host", "ny_user", "ny_password", "world");

/* check connection */

if (nysqli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

$query = "SELECT * from Country ORDER BY Code LIMT 1";
if ($result = $nysqli->query($query)) {
$row = $result->fetch_row();

/* display columm | engths */

foreach ($result->lengths as $i => $val) {
printf("Field %2d has Length %2d\n", $i+1, $val);

}

$resul t->cl ose();

}

/* cl ose connection */
$nysqli->cl ose();
?>

Example 3.129 Procedural style

<?php
$link = nmysqli_connect("local host", "ny_user", "ny_password", "world")

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: 9%\n", nysqgli_connect_error())
exit();

232

mysqli _result::$numrows, mysqgli_numrows

$query = "SELECT * from Country ORDER BY Code LIMT 1";
if ($result = nysqgli_query($link, $query)) {
$row = nysqli_fetch_row $result)

/* display columm | engths */

foreach (nysqli_fetch_lengths($result) as $i => $val) {
printf("Field 9%2d has Length %2d\n", $i+1, $val);

}

nysqgli_free_result($result);

}

/* cl ose connection */
nysql i _cl ose($link);
?>

The above examples will output:

Field 1 has Length 3
Field 2 has Length 5
Field 3 has Length 13
Field 4 has Length 9
Field 5 has Length 6
Field 6 has Length 1
Field 7 has Length 6
Field 8 has Length 4
Field 9 has Length 6
Field 10 has Length 6
Field 11 has Length 5
Field 12 has Length 44
Field 13 has Length 7
Field 14 has Length 3
Field 15 has Length 2

3.11.15nysqli _result::$numrows, nysqli _numrows
Copyright 1997-2019 the PHP Documentation Group.
e nysqli _result::$numrows
mysql i _num rows
Gets the number of rows in a result
Description

Object oriented style

int
nysqgli_result->numrows ;

Procedural style

int nysqgli_numrows(
nysqgli_result result)

Returns the number of rows in the result set.

233

mysqgli _result::$numrows, mysqgli_numrows

The behaviour of nysqgl i _num r ows depends on whether buffered or unbuffered result sets are being
used. For unbuffered result sets, mysql i _num r ows will not return the correct number of rows until all the
rows in the result have been retrieved.

Parameters

resul t Procedural style only: A result set identifier returned by nysql i _query,
nmysqli _store_result ornmysqgli_use result.

Return Values
Returns number of rows in the result set.
Note

If the number of rows is greater than PHP_| NT _MAX, the number will be returned as
a string.

Examples

Example 3.130 Object oriented style

<?php
$nmysqgli = new nysqli ("l ocal host", "nmy_user", "ny_password", "world")

/* check connection */

if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();

}

if ($result = $nysqli->query("SELECT Code, Nane FROM Country ORDER BY Name")) {

/* determ ne nunber of rows result set */
$row cnt = $resul t->numrows;

printf("Result set has % rows.\n", $row cnt);

/* close result set */
$resul t->cl ose();

}

/* cl ose connection */
$nysqli->cl ose();
2>

Example 3.131 Procedural style

<?php
$link = nysqgli_connect ("l ocal host", "my_user", "my_password", "world")

/* check connection */

if (nysqli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error())
exit();

234

The mysqli_driver class

if ($result = nysqli_query($link, "SELECT Code, Nane FROM Country ORDER BY Nane")) {

/* determ ne nunber of rows result set */
$row cnt = nysqli_numrows($result);

printf("Result set has % rows.\n", $row cnt);
/* close result set */

nysqgli_free_result($result);

}

/* cl ose connection */
nysql i _cl ose($link);
2>

The above examples will output:

Result set has 239 rows.

See Also

nysqgli _affected rows
nysqli_store_result
nysqgli _use result
nysql i _query

3.12 The mysqli_driver class

Copyright 1997-2019 the PHP Documentation Group.
MySQLi Driver.

nysqli _driver {

nysqli _driver

Properties

public readonly string
client_info ;

public readonly string
client_version ;

public readonly string
driver_version ;

public readonly string
enmbedded ;

public bool
reconnect ;

public int
report _node ;

Met hods

235

nmysqli _driver::enbedded_server_end, nysqli _enbedded_server _end

voi d nmysqli_driver::enbedded_server_end();

bool nysqli _driver::enbedded_server_start(
int start,
array argunents
array groups);

}

client _info The Client API header version

client _version The Client version

driver_version The MySQLi Driver version

enbedded Whether MySQLi Embedded support is enabled

reconnect Allow or prevent reconnect (see the mysgli.reconnect INI directive)
report _node Set to MYSQLI _REPORT_OFF, MYSQLI _ REPORT_ALL or any

combination of MYSQLI _ REPORT_STRI CT (throw Exceptions for errors),
MYSQLI _REPORT_ERROCR (report errors) and MYSQLI _ REPORT _| NDEX
(errors regarding indexes). See also nysql i _report.

3.12.1nysqgli _driver::enbedded server end,
nysqgl i _enbedded _server end

Copyright 1997-2019 the PHP Documentation Group.
 nysqli _driver::enbedded_server_end
nysql i _enbedded_server _end
Stop embedded server
Description

Object oriented style

voi d nysqli _driver::enbedded_server_end();

Procedural style

voi d nysql i _enbedded_server _end();

I Warning

This function is currently not documented; only its argument list is available.

3.12.2nysqgl i _driver::enbedded server _start,
nysql i _enbedded server start

Copyright 1997-2019 the PHP Documentation Group.
* nysqli _driver::enbedded_server_start

nysql i _enbedded_server _start

236

nysqli _driver:: $report_node, nysqgli _report

Initialize and start embedded server
Description

Object oriented style

bool nysqli _driver::enbedded_server_start (
int start,
array argunents,
array groups);

Procedural style

bool nysqli_enbedded_server_start (
int start,
array argunents,
array groups);

I Warning

This function is currently not documented; only its argument list is available.

Copyright 1997-2019 the PHP Documentation Group.
e nysqli _driver::$report_node

nysqli _report

Enables or disables internal report functions
Description

Object oriented style

int
nysqli _driver->report_node ;

Procedural style

bool nysqli _report (
int flags);

3.12.3 nysql i _driver:: $report_node, nysqli _report

A function helpful in improving queries during code development and testing. Depending on the flags, it
reports errors from mysqli function calls or queries that don't use an index (or use a bad index).

Parameters

flags Table 3.20 Supported flags

Name

Description

MYSQLI _REPORT OFF

Turns reporting off

MYSQLI _REPORT _ERROR

Report errors from mysqli function
calls

MYSQLI _REPORT_STRI CT

Throw nysqgl i _sql _exception
for errors instead of warnings

237

nysqgli _driver:: $report_node, nysqli _report

Name Description

MYSQLI _REPORT_| NDEX Report if no index or bad index
was used in a query

MYSQLI _REPORT_ALL Set all options (report all)

Return Values

Returns TRUE on success or FALSE on failure.

Changelog

Version Description

5.34 Changing the reporting mode is now be per-request,
rather than per-process.

5.2.15 Changing the reporting mode is now be per-request,
rather than per-process.

Examples

Example 3.132 Object oriented style

<?php
$nmysqgli = new nmysqli ("l ocal host",

/* check connection */
if (nmysqli_connect_errno()) {

"my_user", "my_password", "world");

printf("Connect failed: %\n", nysqli_connect_error());

exit();
}

/* activate reporting */
$driver = new nysqli _driver()

$driver->report_node = MYSQLI _REPORT_ALL

try {

/* this query should report an error */
$result = $nysqli->query("SELECT Nane FROM Nonexi sti ngt abl e WHERE popul ati on > 50000") ;

/* this query should report a bad index */
$result = $nysqli->query("SELECT Nane FROM City WHERE popul ati on > 50000");

$resul t->cl ose();

$nysql i - >cl ose();

} catch (nysqli_sql _exception $e) {

echo $e->_toString();

Example 3.133 Procedural style

238

The mysqgli_warning class

<?php
/* activate reporting */
nmysql i _report (MYSQLI _REPORT_ALL) ;
$link = nmysqli_connect("local host", "ny_user", "ny_password", "world");
/* check connection */
if (nysqgli_connect_errno()) {
printf("Connect failed: %\n", nysqgli_connect_error());
exit();
}

/* this query should report an error */
$result = nysqli_query("SELECT Nanme FROM Nonexi sti ngtabl e WHERE popul ati on > 50000");

/* this query should report a bad index */
$result = nysqli_query("SELECT Nane FROM City WHERE popul ati on > 50000");

nysqgli_free_result($result);

nysql i _cl ose($link);
2>

See Also

mysql i _debug

nmysql i _dunp_debug_info
mysqli _sgl _exception
set _exception_handl er
error_reporting

3.13 The mysqli_warning class

Copyright 1997-2019 the PHP Documentation Group.
Represents a MySQL warning.

nmysql i _warni ng {

nysql i _warni ng

Properties

public
nessage ;

public
sql state ;

public
errno ;

Met hods
protected nysqgli_warning::__construct();

public void nysqgli_warning::next();

239

http://www.php.net/set_exception_handler
http://www.php.net/error_reporting

mysql i _warning::__construct

nmessage Message string

sql state SQL state

errno Error number
3.13.1 nysgli _warning::__construct

Copyright 1997-2019 the PHP Documentation Group.
 mysqli _warning:: __construct

The __construct purpose

Description
protected nysqgli_warning::__construct();
Warning
This function is currently not documented; only its argument list is available.
Parameters

This function has no parameters.

Return Values

3.13.2 nysqgl i _war ni ng: : next
Copyright 1997-2019 the PHP Documentation Group.
e mysql i _war ni ng: : next
The next purpose

Description

public void nysqgli_warning::next();

Warning
I This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.

Return Values

3.14 The mysqli_sqgl _exception class

Copyright 1997-2019 the PHP Documentation Group.

240

Aliases and deprecated Mysqli Functions

The mysqli exception handling class.

nmysql i _sql _exception {
nmysql i _sqgl _excepti onext ends Runti meExcepti on

Properties

protected string
sqgl state

I nherited properties

protected string
nessage

protected int
code ;

protected string
file ;

protected int
l'ine ;

sql state The sql state with the error.

3.15 Aliases and deprecated Mysqli Functions

Copyright 1997-2019 the PHP Documentation Group.

3.15.1 nysqgl i _bi nd_param
Copyright 1997-2019 the PHP Documentation Group.
e nysqli _bind _param
Alias for mysql i _stmt _bi nd_param
Description
This function is an alias of: nysql i _st nt _bi nd_par am
Warning

This function has been DEPRECATED as of PHP 5.3.0 and REMOVED as of PHP
5.4.0.

See Also
nysqgli _stnt _bind _param
3.15.2nysqgli _bind result

Copyright 1997-2019 the PHP Documentation Group.

* nysqgli_bind result

241

mysqli _client_encodi ng

Alias for mysqgl i _stnmt _bind result
Description
This function is an alias of: nysql i _stnt _bind_result.
Warning

This function has been DEPRECATED as of PHP 5.3.0 and REMOVED as of PHP
5.4.0.

See Also
nmysqgli _stm _bind_result
3.15.3nysqgli _client_encodi ng
Copyright 1997-2019 the PHP Documentation Group.
 nysqli_client_encoding
Alias of mysql i _character_set nane
Description
This function is an alias of: nysql i _character _set nane.
Warning

This function has been DEPRECATED as of PHP 5.3.0 and REMOVED as of PHP
5.4.0.

See Also
nysqgli _real escape_string
3.15.4 nysqgl i _connect
Copyright 1997-2019 the PHP Documentation Group.

* nysqli _connect

Alias of nysqli::__construct
Description
This function is an alias of: nysql i :: __construct
Although the nysql i:: __construct documentation also includes procedural examples that use the

nmysql i _connect function, here is a short example:

Examples

Example 3.134 nysql i _connect example

242

mysqli:: disable_reads_from master, nysqli_di sabl e reads_from naster

<?php
$link = nmysqli_connect("127.0.0.1", "ny_user", "ny_password", "my_db");

if (!$link) {
echo "Error: Unable to connect to MySQL." . PHP_EQ;
echo "Debugging errno: " . nysqgli_connect_errno() . PHP_EQ;
echo "Debugging error: " . nysgli_connect_error() . PHP_EQ;
exit;

}

echo "Success: A proper connection to M/SQL was nade! The nmy_db database is great." . PHP_ECL
echo "Host information: " . mysqgli_get_host_info($link) . PHP_EQ;

nysql i _cl ose($link);
?>

The above examples will output something similar to:

Success: A proper connection to MySQL was nade! The ny_db dat abase is great.
Host information: |ocal host via TCP/IP

3.15.5nysqgli::disable reads from naster,
nysqgl i _di sabl e reads _from nmaster

Copyright 1997-2019 the PHP Documentation Group.
e nysqli::disable reads_from master
nysql i _di sabl e_reads_from naster
Disable reads from master
Description

Object oriented style

voi d nysqli::disable_reads_fromnaster();

Procedural style

bool nysqli _di sabl e_reads_from naster (
nysqgli |ink)

I Warning

This function is currently not documented; only its argument list is available.

Warning
This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

3.15.6 nysqgl i _di sabl e_rpl parse

Copyright 1997-2019 the PHP Documentation Group.

243

nmysql i _enabl e_reads_from nmaster

 nmysqli _disable_rpl_parse

Disable RPL parse

Description
bool nysqli _di sabl e_rpl _parse(
nmysqli |ink);
Warning
I This function is currently not documented; only its argument list is available.
Warning
I This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

3.15.7 nysqgl i _enabl e_reads_from nast er

Copyright 1997-2019 the PHP Documentation Group.
* nysqli _enabl e_reads_from nmaster

Enable reads from master

Description
bool nysqli _enabl e_reads_from nast er(
nysqli 1ink);
Warning
I This function is currently not documented; only its argument list is available.
Warning
I This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

3.15.8nysqgli _enabl e rpl parse
Copyright 1997-2019 the PHP Documentation Group.
 nysqli _enabl e _rpl_parse

Enable RPL parse

Description
bool nysqli _enabl e_rpl _parse(
nysqgli |ink)
Warning
I This function is currently not documented; only its argument list is available.
Warning
I This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

244

mysql i _escape_string

3.15.9 nysqgl i _escape_string
Copyright 1997-2019 the PHP Documentation Group.
* nysqli _escape_string
Alias of mysql i _real escape_string
Description

This function is an alias of: nysqgl i _real escape_string.

3.15.10 nysql i _execute
Copyright 1997-2019 the PHP Documentation Group.
* mysqli _execute
Alias for mysql i _stnt _execute
Description
This function is an alias of: nysqgl i _stnt _execute.

Notes

Note
nysql i _execut e is deprecated and will be removed.
See Also

mysqli _stnt_execute

3.15.11 nysqgl i _fetch
Copyright 1997-2019 the PHP Documentation Group.
« mysqli _fetch
Alias for mysqgl i _stmt fetch
Description
This function is an alias of: nysqgl i _stnt _fetch.
Warning

This function has been DEPRECATED as of PHP 5.3.0 and REMOVED as of PHP
5.4.0.

See Also
nysqgli_stm fetch
3.15.12 nysqgl i _get cache_stats

Copyright 1997-2019 the PHP Documentation Group.

245

mysqli _get _client_stats

 mysqli _get _cache_stats

Returns client Zval cache statistics

I Warning

This function has been REMOVED as of PHP 5.4.0.

Description

array nysqli_get_cache_stats();
Returns an empty array. Available only with mysqind.
Parameters

Return Values

Returns an empty array on success, FALSE otherwise.

Changelog

Version Description

54.0 The nysql i _get _cache_st at s was removed.

5.3.0 The nysql i _get cache_st at s was added as
stub.

3.15.13 nysqgli _get _client_stats

Copyright 1997-2019 the PHP Documentation Group.

e nysqgli_get _client_stats
Returns client per-process statistics

Description

array nysqgli_get_client_stats()

Returns client per-process statistics. Available only with mysqglnd.

Parameters

Return Values

Returns an array with client stats if success, FALSE otherwise.

Examples

Example 3.135 A nysql i _get _cl i ent_stats example

<?php

$link = nysqli_connect();
print_r(nysqgli_get_client_stats());
2>

246

mysqli _get _client_stats

The above example will output something similar to:

Array

(
[bytes_sent] => 43
[bytes_received] => 80
[packets_sent] => 1
[packets_received] => 2
[prot ocol _overhead_in] => 8
[prot ocol _overhead_out] => 4
[bytes_recei ved_ok_packet] => 11
[byt es_recei ved_eof _packet] => 0
[bytes_recei ved_rset _header_packet] => 0
[bytes_received_rset_field_neta_packet] => 0
[bytes_recei ved_rset_row _packet] => 0
[byt es_recei ved_prepare_response_packet] => 0
[byt es_recei ved_change_user _packet] => 0
[packet s_sent _command] => 0
[packets_recei ved_ok] => 1
[packets_recei ved_eof] => 0
[packet s_recei ved_rset _header] => 0
[packets_received_rset _field_neta] => 0
[packets_received_rset _row] => 0
[packet s_recei ved_prepare_response] => 0
[packet s_recei ved_change_user] => 0
[result_set_queries] => 0
[non_result_set_queries] => 0
[no_i ndex_used] => 0
[bad_i ndex_used] => 0
[sl ow_queries] => 0
[buf fered_sets] => 0
[unbuffered_sets] => 0
[ps_buffered_sets] => 0
[ps_unbuffered_sets] => 0
[flushed_normal _sets] => 0
[flushed_ps_sets] => 0
[ps_prepared_never _executed] => 0
[ps_prepared_once_executed] => 0
[rows_fetched_fromserver_normal] => 0
[rows_fetched_fromserver_ps] => 0
[rows_buffered_fromclient_normal] => 0
[rows_buffered_fromclient_ps] => 0
[rows_fetched_fromclient_normal _buffered] => 0
[rows_fetched_fromclient_normal _unbuffered] => 0
[rows_fetched_fromclient_ps_buffered] => 0
[rows_fetched_fromclient_ps_unbuffered] => 0
[rows_fetched_fromclient_ps_cursor] => 0
[rows_ski pped_normal] => 0
[rows_ski pped_ps] => 0
[copy_on_wite_saved] => 0
[copy_on_wite_performed] => 0
[command_buffer_too_small] => 0
[connect _success] => 1
[connect _failure] => 0
[connection_reused] => 0
[reconnect] => 0
[pconnect _success] => 0
[active_connections] => 1
[active_persi stent _connections] => 0
[explicit_close] => 0
[implicit_close] => 0
[di sconnect _cl ose] => 0
[in_m ddl e_of _commuand_cl ose] => 0

247

mysqli _get _client_stats

[explicit_free_ result] => 0
[implicit_free_ result] => 0
[explicit_stnt_close] => 0
[implicit_stnt_close] => 0

[mem emal | oc_count] => 0

[mem emal | oc_ammount] => 0

[mem ecal | oc_count] => 0

[mem_ ecal | oc_ammount] => 0

[mem ereal | oc_count] => 0

[mem ereal | oc_ammount] => 0

[mem efree_count] => 0

[mem mal | oc_count] => 0

[mem mal | oc_ammount] => 0

[mem cal | oc_count] => 0

[mem cal | oc_ammount] => 0

[memreal |l oc_count] => 0

[memreal | oc_ammount] => 0

[mem free_count] => 0

[proto_text _fetched_null] => 0
[proto_text_fetched_bit] => 0
[proto_text_fetched_tinyint] => 0
[proto_text_fetched_short] => 0
[proto_text_fetched_int24] => 0
[proto_text_fetched_int] => 0
[proto_text _fetched_bigint] => 0
[proto_text_fetched_decimal] => 0
[proto_text_fetched_float] => 0
[proto_text_fetched_double] => 0
[proto_text _fetched_date] => 0
[proto_text _fetched_year] => 0
[proto_text _fetched_tine] => 0
[proto_text_fetched_datetine] => 0
[proto_text_fetched_timestanp] => 0
[proto_text _fetched_string] => 0
[proto_text _fetched_blob] => 0
[proto_text_fetched_enuni => 0
[proto_text_fetched_set] => 0
[proto_text_fetched_geonetry] => 0
[proto_text_fetched_other] => 0
[proto_binary_fetched_null] => 0
[proto_binary_fetched_bit] => 0
[proto_binary_fetched_tinyint] => 0
[proto_binary_fetched_short] => 0
[proto_binary_fetched_int24] => 0
[proto_binary_fetched_int] => 0
[proto_binary_fetched_bigint] => 0
[proto_binary_fetched_deciml] => 0
[proto_binary_fetched_float] => 0

[proto_bi nary_fetched_double] => 0
[proto_binary_fetched_date] => 0
[proto_binary_fetched_year] => 0
[proto_binary_fetched_tine] => 0
[proto_binary_fetched_datetinme] => 0
[proto_binary_fetched_tinestanp] => 0
[proto_binary_fetched_string] => 0
[proto_bi nary_fetched_blob] => 0

[proto_binary_fetched_enun] => 0
[proto_binary_fetched_set] => 0

[proto_binary_fetched_geonetry] => 0
[proto_binary_fetched_other] => 0

See Also

Stats description

248

mysqli _get |inks_stats

3.15.14 nysqgli _get _links_stats
Copyright 1997-2019 the PHP Documentation Group.
e nysqli _get links_stats
Return information about open and cached links

Description

array mysqli_get_links_stats();
nysqgl i _get |inks_stats returns information about open and cached MySQL links.
Parameters
This function has no parameters.
Return Values

nysql i _get |inks_stats returns an associative array with three elements, keyed as follows:

t ot al An integer indicating the total number of open links in any state.
active_plinks An integer representing the number of active persistent connections.
cached_plinks An integer representing the number of inactive persistent connections.

3.15.15nysqgl i _get net adat a
Copyright 1997-2019 the PHP Documentation Group.
 nysqli _get netadata
Alias for mysql i _stnt _result_net adat a
Description
This function is an alias of: nysql i _stnt _result_net adat a.
Warning

This function has been DEPRECATED as of PHP 5.3.0 and REMOVED as of PHP
5.4.0.

See Also
nmysqgli_stm _result_nmnetadata
3.15.16 nysql i _master _query
Copyright 1997-2019 the PHP Documentation Group.
* nysqli_master_query
Enforce execution of a query on the master in a master/slave setup

Description

249

mysql i _param count

bool nysqli _master_query(
nysqgli |ink,
string query);

Warning
I This function is currently not documented; only its argument list is available.
Warning
I This function has been DEPRECATED and REMOVED as of PHP 5.3.0.
3.15.17 nysql i _param count
Copyright 1997-2019 the PHP Documentation Group.
e mysql i _param count
Alias for mysql i _stnmt _param count
Description
This function is an alias of: nysql i _stnt _param count.
Warning

This function has been DEPRECATED as of PHP 5.3.0 and REMOVED as of PHP
5.4.0.

See Also

mysqli _stnt_param count

3.15.18 nysql i _report
Copyright 1997-2019 the PHP Documentation Group.
e nysqli _report
Alias of mysqli_driver->report_mode
Description

This function is an alias of: mysqli_driver->report_mode

3.15.19 nysql i _rpl _parse_enabl ed
Copyright 1997-2019 the PHP Documentation Group.
« mysqli _rpl _parse_enabl ed
Check if RPL parse is enabled

Description

int nysqgli_rpl_parse_enabl ed(
nmysqli |ink);

250

mysqli _rpl _probe

I Warning

This function is currently not documented; only its argument list is available.
Warning
I This function has been DEPRECATED and REMOVED as of PHP 5.3.0.
3.15.20 nysql i _rpl _probe
Copyright 1997-2019 the PHP Documentation Group.

« mysqli _rpl _probe

RPL probe
Description
bool nysqli _rpl_probe(
nmysqli |ink);
Warning
I This function is currently not documented; only its argument list is available.
Warning
I This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

3.15.21 nysqgli _send_| ong_dat a
Copyright 1997-2019 the PHP Documentation Group.
« mysqli_send_| ong _data
Alias for mysqgl i _stnt _send | ong _data
Description
This function is an alias of: nysql i _stnt _send | ong_dat a.
Warning

This function has been DEPRECATED as of PHP 5.3.0 and REMOVED as of PHP
5.4.0.

See Also
nmysqgli_stm _send_| ong_data
3.15.22 nysql i ::set_opt,nysqli_set opt
Copyright 1997-2019 the PHP Documentation Group.
e nysqli::set_opt

nysqli _set opt

251

mysql i _slave_query

Alias of mysql i _options
Description

This function is an alias of: nysql i _opti ons.

3.15.23 nysql i _sl ave_query
Copyright 1997-2019 the PHP Documentation Group.
* nysqgli_slave _query
Force execution of a query on a slave in a master/slave setup

Description

bool nysqli _sl ave_query(
nysqgli |ink,
string query);

I Warning

This function is currently not documented; only its argument list is available.

I Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

3.16 Changelog

Copyright 1997-2019 the PHP Documentation Group.

The following changes have been made to classes/functions/methods of this extension.

252

Chapter 4 MySQL Functions (PDO_MYSQL)

Table of Contents

4.1 PDO_MYSQL DS ..ttt 256

Copyright 1997-2019 the PHP Documentation Group.

PDO_MYSQL is a driver that implements the PHP Data Objects (PDO) interface to enable access from
PHP to MySQL databases.

PDO_MYSQL will take advantage of native prepared statement support present in MySQL 4.1 and higher.
If you're using an older version of the mysql client libraries, PDO will emulate them for you.

MySQL 8

When running a PHP version before 7.1.16, or PHP 7.2 before 7.2.4, set MySQL 8 Server's
default password plugin to mysgl_native_password or else you will see errors similar to The server
requested authentication method unknown to the client [caching_sha2_password] even when
caching_sha2_password is not used.

This is because MySQL 8 defaults to caching_sha2_password, a plugin that is

not recognized by the older PHP (mysqgind) releases. Instead, change it by setting

default _aut hentication_plugi n=nysql _native_passwordinny.cnf.The
caching_sha2_password plugin will be supported in a future PHP release. In the meantime, the
mysql_xdevapi extension does support it.

Warning

Beware: Some MySQL table types (storage engines) do not support transactions.
When writing transactional database code using a table type that does not support
transactions, MySQL will pretend that a transaction was initiated successfully. In
addition, any DDL queries issued will implicitly commit any pending transactions.

The common Unix distributions include binary versions of PHP that can be installed. Although these binary
versions are typically built with support for the MySQL extensions, the extension libraries themselves

may need to be installed using an additional package. Check the package manager than comes with your
chosen distribution for availability.

For example, on Ubuntu the php5- nysql package installs the ext/mysql, ext/mysqli, and PDO_MYSQL
PHP extensions. On CentOS, the php- nysql package also installs these three PHP extensions.

Alternatively, you can compile this extension yourself. Building PHP from source allows you to specify the
MySQL extensions you want to use, as well as your choice of client library for each extension.

When compiling, use - - wi t h- pdo- nysql [=DI R] to install the PDO MySQL extension, where the
optional [=DI R] is the MySQL base library. As of PHP 5.4, mysqind is the default library. For details about
choosing a library, see Choosing a MySQL library.

Optionally, the - - wi t h- nysql - sock[=DI R] sets to location to the MySQL unix socket pointer for all
MySQL extensions, including PDO_MYSQL. If unspecified, the default locations are searched.

Optionally, the - -wi t h-zl i b-di r[=Dl R] is used to set the path to the libz install prefix.

253

http://www.php.net/manual/en/intro.pdo

$./configure --with-pdo-nysqgl --with-nysql-sock=/var/nysql/nysql.sock

SSL support is enabled using the appropriate PDO_MySQL constants, which is equivalent to calling the
MySQL C API function mysql_ssl_set(). Also, SSL cannot be enabled with PDO: : set At t ri but e because
the connection already exists. See also the MySQL documentation about connecting to MySQL with SSL.

Table 4.1 Changelog

Version Description

54.0 mysqlind became the default MySQL library when
compiling PDO_MYSQL. Previously, libmysglclient
was the default MySQL library.

5.4.0 MySQL client libraries 4.1 and below are no longer
supported.

5.3.9 Added SSL support with mysglnd and OpenSSL.

5.3.7 Added SSL support with libmysglclient and
OpenSSL.

The constants below are defined by this driver, and will only be available when the extension has
been either compiled into PHP or dynamically loaded at runtime. In addition, these driver-specific
constants should only be used if you are using this driver. Using driver-specific attributes with

another driver may result in unexpected behaviour. PDO. : get At t r i but e may be used to obtain the
PDO. : ATTR DRI VER_NANME attribute to check the driver, if your code can run against multiple drivers.

PDO. : MYSQL_ATTR_USE_BUFFEREDiS@ERYUte is set to TRUE on a PDCSt at enent , the MySQL driver
(integer) will use the buffered versions of the MySQL API. If you're writing
portable code, you should use PDCSt at enent : : f et chAl | instead.

Example 4.1 Forcing queries to be buffered in mysql

<?php
if ($db->getAttribute(PDO : ATTR DRI VER NAME) == 'nysql') {
$stmt = $db->prepare(' select * from foo'
array(PDO : MYSQL_ATTR_USE_BUFFERED QUERY => true));
} else {
die("my application only works with nysqgl; | should use \$stnt->fetchAll ()
}

?>

PDO. : MYSQL_ATTR LOCAL | NFIEfable LOAD LOCAL | NFI LE.

(integer)
Note, this constant can only be used in the dri ver _opti ons array
when constructing a new database handle.

PDO. : MYSQL_ATTR | NI T_COvMiBiammand to execute when connecting to the MySQL server. Will
(integer) automatically be re-executed when reconnecting.

Note, this constant can only be used inthe dri ver opti ons array
when constructing a new database handle.

254

http://dev.mysql.com/doc/mysql/en/mysql-ssl-set.html
http://dev.mysql.com/doc/mysql/en/configuring-for-ssl.html
http://www.php.net/PDO::getAttribute
http://www.php.net/PDOStatement::fetchAll

PDO : MYSQL_ATTR _READ DEFAUR8adrbpfions from the named option file instead of from nmy. cnf . This

(integer)

option is not available if mysqlnd is used, because mysqlnd does not
read the mysql configuration files.

PDO : MYSQL_ATTR_READ_DEFAUR&adBAtibNs from the named group from my. cnf or the file specified

(integer)

with M\YSQL_READ_DEFAULT_FI LE. This option is not available
if mysqInd is used, because mysqlnd does not read the mysq|
configuration files.

PDO. : MYSQL_ATTR_MAX BUFFERM&kiAtm buffer size. Defaults to 1 MiB. This constant is not supported

(integer)

when compiled against mysqgind.

PDO. : MYSQL_ATTR DI RECT_QuUHEPafform direct queries, don't use prepared statements.

(integer)

PDO. : MYSQL_ATTR _FOUND ROWAReturn the number of found (matched) rows, not the number of changed

(integer)

rows.

PDO : MYSQL_ATTR_| GNORE_SPARErmit spaces after function names. Makes all functions names

(integer)

PDO: : MYSQL_ATTR_COVPRESS

(integer)

PDO: : MYSQL_ATTR_SSL_CA

(integer)

reserved words.

Enable network communication compression. This is also supported
when compiled against mysqind as of PHP 5.3.11.

The file path to the SSL certificate authority.

This exists as of PHP 5.3.7.

PDO : MYSQL_ATTR_SSL_ CAPATH he file path to the directory that contains the trusted SSL CA

(integer)

PDO: : MYSQL_ATTR_SSL_CERT

(integer)

certificates, which are stored in PEM format.
This exists as of PHP 5.3.7.
The file path to the SSL certificate.

This exists as of PHP 5.3.7.

PDO. : MYSQL_ATTR _SSL_CI PHERA list of one or more permissible ciphers to use for SSL encryption, in

(integer)

PDO; : MYSQL_ATTR_SSL_KEY

(integer)

a format understood by OpenSSL. For example: DHE- RSA- AES256-
SHA: AES128- SHA

This exists as of PHP 5.3.7.
The file path to the SSL key.

This exists as of PHP 5.3.7.

PDO : MYSQL_ATTR_SSL_ VERI FYPreitlésia Waltto disable verification of the server SSL certificate.

(integer)

This exists as of PHP 7.0.18 and PHP 7.1.4.

PDO. : MYSQL_ATTR_MULTI _ STATEISBBIES multi query execution in both PDO: : pr epar e and

(integer)

PDO: : query when set to FALSE.

Note, this constant can only be used inthe dri ver opti ons array
when constructing a new database handle.

This exists as of PHP 5.5.21 and PHP 5.6.5.

255

http://www.php.net/PDO::prepare
http://www.php.net/PDO::query

PDO_MYSQL DSN

The behaviour of these functions is affected by settings in php. i ni .

Table 4.2 PDO_MYSQL Configuration Options

Name Default Changeable
pdo_mysqgl.default_socket "tmp/mysqgl.sock" PHP_INI_SYSTEM
pdo_mysqgl.debug NULL PHP_INI_SYSTEM

For further details and definitions of the PHP_INI_* modes, see the http://www.php.net/manual/en/
configuration.changes.modes.

Here's a short explanation of the configuration directives.

pdo_nysql . default _socket Sets a Unix domain socket. This value can either be set at compile time
string if a domain socket is found at configure. This ini setting is Unix only.

pdo_nysql . debug boolean Enables debugging for PDO_MYSQL. This setting is only available
when PDO_MYSQL is compiled against mysgind and in PDO debug
mode.

4.1 PDO_ MYSQL DSN

Copyright 1997-2019 the PHP Documentation Group.
« PDO_MYSQL DSN

Connecting to MySQL databases
Description

The PDO_MYSQL Data Source Name (DSN) is composed of the following elements:

DSN prefix The DSN prefix is nysql : .

host The hostname on which the database server resides.

port The port number where the database server is listening.

dbnane The name of the database.

uni x_socket The MySQL Unix socket (shouldn't be used with host or port).
char set The character set. See the character set concepts documentation for

more information.

Prior to PHP 5.3.6, this element was silently ignored.

The same behaviour can be partly replicated with the

PDO. : MYSQL_ATTR | NI T_COVMMAND driver option, as the following
example shows.

Warning

The method in the below example can only be
used with character sets that share the same
lower 7 bit representation as ASCII, such as

256

http://www.php.net/manual/en/configuration.changes.modes
http://www.php.net/manual/en/configuration.changes.modes

PDO_ MYSQL DSN

ISO-8859-1 and UTF-8. Users using character
sets that have different representations (such as
UTF-16 or Big5) must use the char set option

provided in PHP 5.3.6 and later versions.

Example 4.2 Setting the connection character set to UTF-8 prior to

PHP 5.3.6

<?php

$dsn = ' nysql : host =l ocal host ; dbnanme=t est db’
$user name = ' user nane'

$password = ' password’

$options = array(
PDO : MYSQL_ATTR_| NI T_COMVAND => ‘' SET NAMES utf8',
NE

$dbh = new PDQ($dsn, $usernanme, $password, $options);
?>

Changelog

Version Description

5.3.6 Prior to version 5.3.6, char set was ignored.
Examples

Example 4.3 PDO_MYSQL DSN examples

The following example shows a PDO_MYSQL DSN for connecting to MySQL databases:

nysql : host =I ocal host ; dbnane=t est db

More complete examples:

nysql : host =I ocal host ; port =3307; dbnane=t est db
nysql : uni x_socket =/t np/ nysql . sock; dbnane=t est db

Notes

When the host name is setto "| ocal host ", then the connection to the server
is made thru a domain socket. If PDO_MYSQL is compiled against libmysglclient
then the location of the socket file is at libmysqlclient's compiled in location. If
PDO_MYSQL is compiled against mysqind a default socket can be set thru the
pdo_mysql.default_socket setting.

257

258

Chapter 5 Mysqgl_xdevapi

Table of Contents

LN A 11y =Y T T @] T [¢ o PP 263
L0 I A = 1= To U1 (=1 0 0 1= L £ PN 263
LN I [1 = = o o PP 263
5.1.3 RUNtiIME CoNfiIQUIAtioNcoueiiiiiei e e e e e e e e e e e e e e eaes 264
5.1.4 Building / Compiling FrOM SOUICEciiiiiiiii e e e e e 265
I S (= To (=) 11 a1 To @0 T) r= g 265
LR T 11 1]][267
5.4 Mysql_XAeVapi FUNCHONSiiiiiiiii et e e e e e e e e e e e e e e e e e et e e et e e et e eeanaeees 269
Lot =5 o1 =TT 10 o 269
Lo A o 1= BT E Y I 0 o 270
5.5 BASERESUIL INTEITACEioviiiii et e e e e e e et e et e e e e aaas 272
5.5.1 BaseReSUl T GET VNI NI NOS ittt e e e e e e e e e e eaeeas 273
5.5.2 BaseResul t:: get VA Ni NGSCOUNT ..uiiiiiiiei e e e e e e e e e ees 274
LN I O] | [=Tox 1 o] o o] = L 275
L 70 Ao B =Y o A I Y R Vo [o 276
5.6.2 Coll ection:: addOr Repl aCEONE ...ovuiiiiie i 277
N oI @ o] I =T ol o o] DA o o 1 0 =3 S Lo S 278
N R Ao B =Y o o I Y A oo 1 1 | 279
5.6.5 Col | €Cti ON: i Creat €1 NUEX ..iiuiiiieii e e e e e e eas 280
5.6.6 Col | €Cti ON: - dr 0PI NUEX wuieniiiiei e e e e e e e e e e ens 282
5.6.7 Col l ection: :exi sStsSINDat abasSecc.oveuiiiiiiiiii e 283
Nt T o I =Y o o I 1 S T 0 T 284
5.6.9 Col | €Ct i ON: i GEENAITE L.oiuiiii i e e e e e e eens 285
5.6.10 COl | €CT T 0N 1 GOE N ciriiiiiii i e et e et e et e e et aans 286
5.6.11 Col | €Cti ON: i gEL SCNEIMA . ceuiiii i e e e e ea e 287
5.6.12 Col | €Ct 1 ON: 1 BT SESST ON ciuiiiiiii it e e e e e e e e e e e eeaees 288
5.6.13 Col | €Ct 1 ON: i MDAl T Y cirniiiiii i e e e e e e e e e e anaas 289
LN T o B Yo o I Y o A = £ 1 = PR 290
5.6.15 Col | €Ct i ON: i T E€NMDVEONE ..oiuiiie i e e e e e e e e e e eenaes 291
5.6.16 Col | €Cti ON: i TPl ACEONE oviiinii i e e e e e e e e e eaees 292
LI A O] 1= Tox 170 o V2o [N F= 1= 293
5.7.1 Col | eCti ONAAA: : CONST I UCT ciiniiiiiiiei e e e e e e e e ees 293
5.7.2 Col | €Ct i ONATA: : EXECUL € ivuiiiiiiiei e e e e e e e e e e e e eeas 295
o S O] | 1= Tox 170 o] 0 To Jox F= 7P 296
5.8.1 Col I ecti ONFi NA: : DI N couniinii e e e e e e 297
5,82 Coll ecti ONFi Nd: : _ CONST I UCT iiiiiiiiiii e r e e e ees 298
5.8.3 Coll €Cti ONFI NO: © EXECUL © 1uiiiniiieiiie et e e e e e e e e e e e e e eneees 299
5.8.4 Col I ecti ONFi NA: 1 Ti €1 AS ciuniiiiiiiii e e e ens 300
5.8.5 Col | €Cti ONFI N gF OUPBY wniiniiiieie et e e e e e e e e ees 301
5.8.6 Col | €Cti ONFI NA: 1 NAVI NQ civniiiiiie e e e e e e e e e eeas 302
5.8.7 Col I €Cti ONFI NA: 1 L1 M T oiiei e e e e e e e e e e e e ens 303
5.8.8 Coll ectionFi nd: : | OCKEXCI UST V& ..oiuiiiiiiii et 304
5.8.9 Col I ecti onFi nd: : | 0CKShAr €0cviniiiiiii e 305
5.8.10 Col | ecti ONFi NA: : Of f ST civiiiiiiii e e e 306
L C 700 B R @ o I = Yo o o] o1 I o Y o 1 307
oIS B O] | T=Tox 170 a11Y[o o 11§V ol - TP 309
5.9.1 Col I ecti onModi fy::arrayAPPENG ..o e e e 310
5.9.2 Col I ecti onModi fy: i arrayl NSEI T i e e e e e 311

5.9.3 Col lectionMdAi fy: DI N .o e 312

5.9.4 Col I ecti onModi fy:: CONSTTIUCT ittt e e e e e e 314
5.9.5 Col | eCti ONMOAI T Y. 1 EXECUL € 1uiiiniiiieiei et e e e e e e ees 315
5.9.6 Col I ecti onMOAI fy: i 1 i Mt oo e e e e et e eeera e aeees 315
5.9.7 Col ecti onMOdi Ty: i PaAL CH i 317
5.9.8 Col I ecti ONMOAI TY: i FPI @CE wuiviniiiiei e 317
5.9.9 Col | €Ct i ONMOIAI T Y 1 SO iiiiii i e e e e e e e e eens 319
5.9.10 Col | €Ct i ONMIAI T Y 1 SKI P terieeeiiiiii e e e e e e e e e e e eaees 320
5.9.11 Col | €Ct i ONMIAI T Y. 1 SOOIt ciriiiii i e e e e e e e e eaees 321
5.9.12 Col | eCt i ONMOIAI T Y. I UNSEL iirii i e e e e e e e e e e eaa e 321
5.10 CollECHONREMOVE CIASSceiviiieiiiiii ettt e et e e et e e e e et e e e eate e eeenes 322
5.10.1 Col | eCct i ONREMDVE: 1 DI NA oeniiiiiii et e e e 323
5.10.2 Col | eCti ONRENMDVE: © CONSE I UCT .iiuiiiniii i e e e e e e e e e e e e e eanees 323
5.10.3 Col | €Ct 1 ONREMDVE: 1 EXECUL © ouuiiiiiiiiii ittt ettt e e et et e et e e e eeneees 324
5.10.4 Col | €Ct i ONREMDVE: 1 11 1M T oeiiiie ettt e e e e e 325
5.10.5 Col | €CTET ONREIMDVE: 1 SOOI T 1ituiiiiiiiiiii ittt e e et e e e e e e e e eaaeees 326
5.11 COIUMNRESUIL CIASS ... iieiiieeiiiie et e e e et e e et e e e e et e e e e eran s 326
5.11.1 Col UMMRESUl t: 1 CONST I UCT it e e e e e e eanees 327
5.11.2 Col umResul t: : get Charact €r SELNAITEocouiiiiii i e 328
5.11.3 Col umResul t:: get Col | at i ONNANMEcouiiii e 329
5.11.4 Col umResul t:: get Col umbLabel ... 330
5.11.5 Col umResul t:: get Col UMMNAITEiiii e e e e 330
5.11.6 Col umResul t:: get Fracti onal Di gi TS .oociiiiiiiii e e 331
5.11.7 Col umResul t:: get Lengt N .o 332
5.11.8 Col utmResul t:: get SChemBNAITEcoiiii e e 332
5.11.9 Col umResul t:: get Tabl eLabel ... 333
5.11.10 Col umResul t:: get Tabl @NaMB ... 333
5.11.11 Col UMMRESUI T i GO Ty PO ittt e e e e e e e e anas 334
5.11.12 Col urmResul t: : 1 SNUMDEr Si gned ..o 335
5.11.13 Col ummResUl T 1 SPAOAEA ...euiiiieiii e 335
5.12 CrudOperationBindable iNEIfACEiiiiiiiiii e e e s 336
5.12.1 CrudOper ati onBi ndabl €: : bi N ..o 336
5.13 CrudOperationLimitable iINterfacecccouiiiiiii e e 337
5.13.1 CrudOperationLimtabl € i 11 Mt e 337
5.14 CrudOperationSKippable INtEIfaCeiiiiiiiii e 338
5.14.1 CrudOper at i onSKi ppabl €: : SKi P veuiieiiiiiii e 338
5.15 CrudOperationSortable INtErfaCeooiiiiiiiii e 339
5.15.1 CrudOperati onSOortabl €: @ SOt .o 339
5.16 DatabaseODbjJECt INTEITACEuiiii i e e e e e e e e eaes 340
5.16.1 Dat abaseCbj ect: : exi stsl nDat abaseccovviiiiiii i 340
5.16.2 Dat abaseQn] €Ct: i QT NAITE ...ttt e e e e e e e e e e eaees 341
5.16.3 Dat abaseOD] €Ct: 1 geT SESSI ON it e 341
5.17 DOCRESUIL CIASS ... iiiiiiieeeiii et ettt e e e et e e e et e e e et n e e et e e e ennan s 342
5.17.1 DOCRESUI T 1 i CONST I UCT ittt e e e e e e e e e e e e e e e e e eaees 342
5.17.2 DOCReSUl T 11 FeECRAI | o e 343
5.17.3 DOCRESUI 111 L CNONE ettt e 345
5.17.4 DOCRESUI 1 gET VAN NI NS titiiiniii it e e e e e e e e e e e e e e e e eenaes 346
5.17.5 DocResul t:: get VAr Ni NGSCOUNT ..oouiiiiii e e e e e 347
N I 1= ol - T SRR 349
LT T R g R V=Y e o o 3 A Lo P 349
LN R (o =T o T g N = 1 350
5.20 EXECULADIE INTEITACE ...oeuuiiiiiiii ettt e e e et e e et e e e eaeas 350
5.20.1 EXECUL @Dl B 1 EXECUL © iuuiiiiii ittt e e e 350
5.21 EXECULIONSTIAIUS CIASSiiiiiieiiiii et e e e r e et e e e e at e e e eaanns 351

260

5.21.1 EXecut i ONSt @t US: i CONST T UCT iuiiieiiiiiii i e e e e e e e e en e ans 352

I {0 (=TT (0] T = P 352
5.22.1 EXPresSi ON: i CONST I UCT .iiiuiiiiiii i eaanes 353
5.23 FIEldMEtadata ClaSSoiieiiiieeiiii e e e e e e e et e e et e e e s 353
5.23.1 Fiel dMet adat @: @ CONST T UCT couiiiniiiiiii e e e e e e e e e e e 355
B5.24 RESUIL CIASS ...eeviiiiiiii et e et e e et e ettt e e e e e et eaa s 356
L R oYY U I S o o =3 A Lo P 356
5,242 Resul t::get Aut ol NCremBNt Val Uecccuiiieiiiiii e 357
5,243 Resul t::get Generat €0l US .uiiiiii e 358
I oY U I Ao 1= YL ¥ VI Vo PP 359
5.24.5 Resul t:: get VA NI NGSCOUNT .uniieiiiii e e e e e e e e e e e e e eane e 360
5.25 ROWRESUIL CIASS .. .eeiiiieiiiiii ettt e e et e e et e e e et e e e e et e e e e et e e e e et eas 361
5.25.1 ROWRESUI £ 1 CONST I UCT ittt e et e e e e e e e e e e e eaees 362
5.25.2 ROWRESUI 111 F L CRAI | e 362
5.25.3 ROWRESUI 111 L CNONE it et 363
5.25.4 RowResuUl t:: get Col UNMCOUNT ..o e e e e e 364
5.25.5 ROWResUl t:: get Col UNTMINANMES ..oouiieiiii e e e e e e e e e 365
5.25.6 ROWRESUI T gt COl UNMS .. iiniii i e e e e ea e 366
5.25.7 ROWRESUI 1 i GET VAN NI NS cotiiiiiii ittt e e e e e e e e e e e e e e eeaaes 368
5.25.8 RowResul t:: get VAr Ni NGSCOUNT ..oiuiinii e e e e e e 369
5.26 SCREMA CIASS ... ittt e et e e et e e e et e e e e et eeaera e aae 370
5.26.1 SChEMBA: © CONSE I UCT 1iiiiiiiii e e e e e e e e e et e e e et e e et e e e et e et aannas 370
5.26.2 Schema: i Creat @C0l | @CTT ON ot 371
5.26.3 Schema: : dr opCol | €CT T ON v e eae e 372
5.26.4 Schema: : exi St Sl NDat @basSeoiieiii e 373
5.26.5 SchemB: : get COl | @CT T ON .iiuii i e r e e ea e 374
5.26.6 Schema: : get Col | eCti ONASTAD] € .uieniiiii e 375
5.26.7 Schema: : get COl | @CT T ONS iuiiniii i e e e e e e e e eaees 376
5.26.8 SChEMB: 1 GBI NAITE L.ttt ie e e e e e e e e e e e et e et e e e an e anaaanns 377
5.26.9 SChEMA: & BT SES ST 0N ciuuiiiiiii i e e e e e e e e et e et e e e eaaaannas 378
5.26.10 SchemB: 1 gel Tabl @ v e 379
5.26.11 SchemB: 1 gel Tabl @S . 380
5.27 SChemaObjECt INLEITACEiiii i et e et e e e e e e et e e eaaaeee 381
5.27.1 SchemaQbj €Ct: : geTL SCREIMA ..ieviiii e e eae e 381
B5.28 SESSION ClASS ...uiiiiiiii ittt e s 382
5.28.1 SESST 0N I Cl DS @ ittt 383
5.28.2 SESST 0N I COMITE T ittt ettt ettt et et e e et e e e e e et e ean e eenes 384
5.28.3 SESSI 0N i CONST T UCT tiuiiiiiit it e ettt e e e e e e e e e e e e e s e e e et e et e et e eaaennas 384
5.28.4 SESSi ON: I Creal ESCNEMA ..oieuiiiii e et e e e e 385
5.28.5 SeSSi ON: i Ar OPSCREITA L.ieiii i e e e e e e e e anaas 386
5.28.6 SESSi ON: i EXECUL SOl wuiveniiiiie i e 386
5.28.7 Sessi on: i generat @UUI Dcoiiiiiiiiiii e 387
5.28.8 SeSSi 0N: i get Cli €Nt A oo e et e e e eas 388
5.28.9 SESSi ON: : gET SCHEMB ..ouiii i e e e e e e e e ans 388
5.28.10 SESSIi ON: i gET SCHEIMBS ..iiiiiii i e e e e e e e e anas 389
5.28.11 SeSSi ON: : gt SEI VeI VEI Si O .uiitiiiiiii i et e e e e e e e e e e e e e eeans 390
5.28.12 SesSSi 0N I Ki LT Cl T @NT o 391
5.28.13 SESSI 0N i LT ST Ol T BNT S 1eniiiiiiiii et e 391
LI T I AT o A o [Lo A= V= 1 ¢ 392
5.28.15 SessSi 0N: i rel @aSeSAVEPOI N ..iiviiiiii e e eans 393
5.28.16 SeSSi ON: 1 1Ol I DACK eeneei e 394
5.28.17 SeSSi 0N I T 0Ol I DACKTO iieiiiiii et e 395
5.28.18 SeSSi 0N: : SEt SAVEPOI N .oiiriiitii i e e e e e e e aaas 395
5.28.19 SES ST 0N & SOl ciiiiiiiii e 396

5.28.20 SeSSi ON: St Al t TranNSACT 1 ON cuuiuiiiiiiiiii e e e e e enaaas 397

5.29 SOISIAtEMENT CIASS ...uiiiiiiiii it e et e e e e e e e e e e e e e e e e a e e 398
5.29.1 Sgl Stat @mBnt ;1 DI N oo 398
5.29.2 Sql Stat emBnt i : CONST I UCT it e e e e e e e e eaaees 399
5.29.3 SOl St At €MBNT 1 EXECUL © ..ieuiiiiiiii i e e e e e et r e e e e e e e en e 400
5.29.4 Sgl Statenment : i get NeXt RESUI T .o 400
5.29.5 Sgl Stat ement i e RESUI T .ieeiiii e 401
5.29.6 Sql Stat enment : : hasMIr €RESUI 1S .ot e e 401

5.30 SQIStatemMeENtRESUIL CIASScvuuiiiii i e e e e e e e e e e e e e e aans 402
5.30.1 Sgl Statenment Resul t:: CONSTIUCT .oiiuiiiiiiiii e e e s 403
5.30.2 Sgl Statenment Resul t:: f et ChAI | e 403
5.30.3 Sgl Statenent Resul t: : f et ChONE ..o 404
5.30.4 Sql Statenment Resul t::get Affectedl tensCountcccoeveiiiiiiiiiiiiiin e, 405
5.30.5 Sgl St at emrent Resul t:: get Col UMMQCOUNTcoviiiiiiii e e s 405
5.30.6 Sql St at emrent Resul t:: get Col UMNAITESooviiiiiii i 406
5.30.7 Sgl Statement Resul t:: get Col UMS ..o 406
5.30.8 Sgl Statenment Resul t::getGenerat €dl dSoveviieiiii i 407
5.30.9 Sgl Statenment Resul t::getLastlInNSertld .coooiiiiiiiiiii e 408
5.30.10 Sgl St at ement Resul t:: get VAT NI NQS .niiiiiiiii e e e e 408
5.30.11 Sql St at emrent Resul t:: get VAr ni NGSCOUNT ..uiiviiiiei e e 409
5.30.12 Sgl Stat ement ReSuUl t: : NASDAL @ ..cvvuveviiiii e 410
5.30.13 Sgl Statenment Resul t::neXt ReSUl T ..o 410

RN S =1 (=] 4= o = L1 PSP 411
L 1 R = L =T 0= o S o oY 1= U o 411
5.31.2 Statenment : : get NeXt RESUI T oo e 412
5.31.3 Stat ement i get ReSUI t oo e e 413
5.31.4 Statenment : : hasMOr €RESUI 1S e 413

LT A I o] LT o = T PP 414
LR 720 R 1= o] = S o oY 1= A U [o PP 415
5.32.2 Tabl @ 1 COUNT ettt 415
5.32.3 Tabl €1 1 del B @ i 416
5.32.4 Tabl e: : exi St SINDat @DASEc.uiiiii e 417
5.32.5 Tabl € i GO NAME ..ot 418
5.32.6 Tabl €: i gt SCHEMB ..uuiiiii e e e 418
5.32.7 Tabl € i QT SES ST ON .ottt e e e e e 419
5.32.8 Al B 1 1 NS BT b e et 420
5.32.9 TabBl €1 11 SVI BW e 421
5.32.10 Tabl €I 1 Sl BCT ittt 422
LR 720 o R 1=V o I = U o Yo = X = PP 423

5.33 TADIEDEIEIE CIASS ... iiietiieieii et e et e et e e e ettt e e e et e e e e et aeeeete e aeees 424
5.33.1 Tabl €Del €t €: 1 DI NA .uuniiiee et 424
5.33.2 Tabl eDel et €10 CONST I UCT ittt e e e e e e e e e e e eanees 425
5.33.3 Tabl €Del Bt €1 1 EXECUL © .uuiieiiiiii ettt e e e e ees 426
5.33.4 Tabl @Del €t @ 1 11 M b oeieie et ettt e e e e e e e e e ees 427
5.33.5 Tabl €Del et @1 1 Of F SBE ciuuiii i et 427
5.33.6 Tabl eDel et €1 Or der DY oo e e 428
5.33.7 Tabl €Del et @ 1 WHET @ .ot 429

R 7 B - 1]] RY= T o o TSP 430
5.34.1 Tabl €l NSert i CONSTIUCT ittt e e e e e e e e e e eane e 430
5.34.2 Tabl €I NSEI T 1 1 EXECUL € .uuiiiiiiiiii ettt ettt e e e e e e aees 431
5.34.3 Tabl €I NSErt 1 VAl UBS .ot e e e 431

G 1SR - 1] (SRS = (=T ol o o TSP 432
5.35.1 Tabl €Sel €Ct 1 1 DI MO .uniieee et 433
5.35.2 Tabl €Sel €Ct i CONST I UCT ittt e e eae e 434

262

Installing/Configuring

5.35.3 Tabl €Sel ECT i 1 EXEBCUL © .uniieiiiiiiie ettt e e e e e 435
5.35.4 Tabl €Sel €Ct i i gr OQUPBY ovniiiiii e e e e e 436
5.35.5 Tabl €Sel €Ct i i NAVI NQ iiiiiii e e e e e e ans 437
5.35.6 Tabl @Sl €CtT 1 1 11 Mt oeie ettt e e e e e e ees 438
5.35.7 Tabl eSel eCt: i | OCKEXCI UST VO ..iiuiiiiiiiii et 439
5.35.8 Tabl eSel eCt i 1 1 0CKSNAr €0 ...couuiiiiiiie e 440
5.35.9 Tabl €Sel ECt i Of F SO ciiuiii e 441
5.35.10 Tabl €Sel eCt i i Order DY oo 442
5.35.11 Tabl @Sel @Ct 1 1 WHBE @ .ot 443
IR IF= 1] =10 o T o (= ol = L 444
5.36.1 Tabl eUpdat €: : Di NA ..o e e e e aas 445
5.36.2 Tabl eUpdat €:: CONST I UCT .ottt e e e e e e e e e e e eane e 446
5.36.3 Tabl eUpdat €: : EXECUL € iuuiiriiii ittt e e e e e e e e e e et e e e et e e aennas 446
5.36.4 Tabl eUpdat € |1 Mt couiieiii i e e e e e e e e e e et e e e e e e aannas 447
5.36.5 Tabl eUpdat €: : OFr der DY oo e e 448
5.36.6 Tabhl EUDOAL €1 & ST ciriiiiiiiiii i e e e e e 449
5.36.7 Tabl eUpdat €: i WHET € oouiiiiiiii i e e e e e e e e aas 449
IR ALY - g 1T T F= 1 450
LR 0 R VL Y o VI o o A o oY 1= A U [o P 451
5.38 XSESSION ClASS ...uuiiiiiiiiii ittt a e 451
5.38.1 XSESSI ON: i CONST I UCT .iiitiiiiiii it enees 451

Copyright 1997-2019 the PHP Documentation Group.

This extension provides access to the MySQL Document Store via the X DevAPIl. The X DevAPl is a
common API provided by multiple MySQL Connectors providing easy access to relational tables as well as
collections of documents, which are represented in JSON, from a APl with CRUD-style operations.

The X DevAPI uses the X Protocol, the new generation client-server protocol of the MySQL 8.0 server.

For general information about the MySQL Document Store, please refer to the MySQL Document Store
chapter in the MySQL manual.

5.1 Installing/Configuring

Copyright 1997-2019 the PHP Documentation Group.

5.1.1 Requirements

Copyright 1997-2019 the PHP Documentation Group.

This extension requires a MySQL 8+ server with the X plugin enabled (default).

Prerequisite libraries for compiling this extension are: Boost (1.53.0 or higher), OpenSSL, and Protobuf.
5.1.2 Installation

Copyright 1997-2019 the PHP Documentation Group.
This PECL extension is not bundled with PHP.

An example installation procedure on Ubuntu 18.04 with PHP 7.2:

/| Dependenci es

263

https://dev.mysql.com/doc/refman/8.0/en/document-store.html
http://pecl.php.net/

Runtime Configuration

$ apt install build-essential |ibprotobuf-dev |ibboost-dev openssl protobuf-conpiler

/1 PHP with the desired extensions; php7.2-dev is required to conpile
$ apt install php7.2-cli php7.2-dev php7.2-nysql php7.2-pdo php7.2-xm

/1 Conpil e the extension
$ pecl install nysqgl _xdevapi

The pecl install command does not enable PHP extensions (by default) and enabling PHP extensions
can be done in several ways. Another PHP 7.2 on Ubuntu 18.04 example:

/] Create its own ini file
$ echo "extensi on=nysqgl _xdevapi .so" > /etc/php/7.2/nods-avail abl e/ nysqgl _xdevapi . i ni

/1 Use the 'phpennod’ command (note: it's Debi an/ Ubuntu specific)
$ phpennod -v 7.2 -s ALL nysql _xdevapi

/1 A 'phpennod' alternative is to manually symink it
/1 $ In -s [etc/php/7.2/ nods-avai |l abl e/ nysql _xdevapi .ini /etc/php/7.2/clilconf.d/20-nmysql_xdevapi.ini

/] Let's see which MySQL extensions are enabl ed now
$ php -m | grep nysql

nysql _xdevapi

nysql i

nysql nd
pdo_nysql

Information for installing this PECL extension may be found in the manual chapter titled Installation of
PECL extensions. Additional information such as new releases, downloads, source files, maintainer
information, and a CHANGELOG, can be located here: http://pecl.php.net/package/mysqgl_xdevapi.

5.1.3 Runtime Configuration
Copyright 1997-2019 the PHP Documentation Group.
The behaviour of these functions is affected by settings in php. i ni .

Table 5.1 Mysql_xdevapi Configure Options

Name Default Changeable Changelog
xmysqlnd.collect_memory|Gtatistics PHP_INI_SYSTEM
xmysqlnd.collect_statisticg 1 PHP_INI_ALL

xmysqlnd.debug PHP_INI_SYSTEM
xmysqlnd.mempool_defaulL&ioe PHP_INI_ALL
xmysqlnd.net_read_timeou31536000 PHP_INI_SYSTEM
xmysqlnd.trace_alloc PHP_INI_SYSTEM

Here's a short explanation of the configuration directives.

xmysql nd. col | ect _nmenory_statistics
integer

xnysql nd. col | ect _statistics
integer

264

http://www.php.net/install.pecl
http://www.php.net/install.pecl
http://pecl.php.net/package/apc

Building / Compiling From Source

xnmysql nd. debug string

xnysgl nd. nenpool _defaul t_si ze
integer

xnysql nd. net _read_ti neout
integer

xmysql nd. trace_al | oc
string

5.1.4 Building / Compiling From Source

Copyright 1997-2019 the PHP Documentation Group.

Considerations for compiling this extension from source.

The extension name is 'mysql_xdevapi', so use - - enabl e- nysql - xdevapi .

Boost: required, optionally use the --with-boost=DIR configure option or set the
MYSQL_XDEVAPI_BOOST_ROOT environment variable. Only the boost header files are required; not
the binaries.

Google Protocol Buffers (protobuf): required, optionally use the --with-protobuf=DIR configure option or
set the MYSQL_XDEVAPI_PROTOBUF_ROOT environment variable.

Windows specific protobuf note: depending on your environment, the static library with
a multi-threaded DLL runtime may be needed. To prepare, use the following options: -
Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf BUILD_SHARED_LIBS=0OFF

Google Protocol Buffers / protocol compiler (protoc): required, ensure that proper 'protoc' is available in
the PATH while building. It is especially important as Windows PHP SDK batch scripts may overwrite the
environment.

Bison: required, and available from the PATH.

Windows specific bison note: we strongly recommended that bison delivered with the chosen PHP
SDKis used else an error similar to "zend_globals_macros.h(39): error C2375: 'zendparse': redefinition;
different linkage Zend/zend_language_parser.h(214): note: see declaration of 'zendparse™ may be the
result. Also, Windows PHP SDK batch scripts may overwrite the environment.

Windows Specific Notes: To prepare the environment, see the official Windows build documentation for
either the original SDK (older, PHP-7.1 only) or the current SDK (PHP-7.1 or newer).

We recommend using the backslash '\\' instead of a slash '/* for all paths.

5.2 Predefined Constants

Copyright 1997-2019 the PHP Documentation Group.

The constants below are defined by this extension, and will only be available when the extension has either
been compiled into PHP or dynamically loaded at runtime.

MYSQLX_CLI ENT_SSL (integer)

MYSQLX_TYPE_DECI VAL
(integer)

265

http://wiki.php.net/internals/windows/stepbystepbuild
http://wiki.php.net/internals/windows/stepbystepbuild_sdk_2

Predefined Constants

MYSQLX_TYPE_TI NY (integer)
MYSQLX_TYPE_SHORT (integer)

MYSQLX_TYPE_SMALLI NT
(integer)

MYSQLX_TYPE_MEDI UM NT
(integer)

MYSQLX_TYPE_I NT (integer)

MYSQLX_TYPE_BI Gl NT
(integer)

MYSQLX_TYPE_LONG (integer)
MYSQLX_TYPE_FLQAT (integer)

MYSQLX_TYPE_DOUBLE
(integer)

MYSQLX_TYPE_NULL (integer)

MYSQLX_TYPE_TI MESTAWP
(integer)

MYSQLX_TYPE_LONGLONG
(integer)

MYSQLX _TYPE_ | NT24 (integer)
MYSQLX_TYPE_DATE (integer)
MYSQLX_TYPE_TI ME (integer)

MYSQLX_TYPE_DATETI MVE
(integer)

MYSQLX_TYPE_YEAR (integer)

MYSQLX_TYPE_NEWDATE
(integer)

MYSQLX_TYPE_ENUM(integer)
MYSQLX_TYPE_SET (integer)

MYSQLX_TYPE_TI NY_BLOB
(integer)

MYSQLX_TYPE_MEDI UM BLOB
(integer)

MYSQLX_TYPE_LONG BLOB
(integer)

MYSQLX_TYPE_BLOB (integer)

266

Examples

MYSQLX_TYPE_VAR_STRI NG
(integer)

MYSQLX_TYPE_STRI NG
(integer)

MYSQLX_TYPE_CHAR (integer)
MYSQLX_TYPE_BYTES (integer)

MYSQLX_TYPE_| NTERVAL
(integer)

MYSQLX_TYPE_GEOVETRY
(integer)

MYSQLX_TYPE_JSON (integer)

MYSQLX_TYPE_NEWDECI MAL
(integer)

MYSQLX_TYPE_BI T (integer)

MYSQLX_LOCK_DEFAULT
(integer)

MYSQLX_LOCK_NOWAI T
(integer)

MYSQLX_LOCK_SKI P_LOCKED
(integer)

5.3 Examples

Copyright 1997-2019 the PHP Documentation Group.

The central entry point to the X DevAPI is the nysql xdevapi \ get Sessi on function, which receives a
URI to a MySQL 8.0 Server and returns a nysql _xdevap\ Sessi on object.

Example 5.1 Connecting to a MySQL Server

<?php
try {
$session = nysql _xdevapi \ get Sessi on("nysql x: // user : passwor d@ost ") ;
} catch(Exception $e) {
di e(" Connection could not be established: " . $e->get Message());
}

/1 ... use $session
2>

The session provides full access to the API. For a new MySQL Server installation, the first step is to create
a database schema with a collection to store data:

Example 5.2 Creating a Schema and Collection on the MySQL Server

267

http://www.php.net/mysql_xdevapigetSession

Examples

<?php
$schena = $sessi on->creat eSchema("test");

$col | ecti on = $schenm- >creat eCol | ecti on("exanpl e")
?>

When storing data, typically j son_encode is used to encode the data into JSON, which can then be
stored inside a collection.

The following example stores data into the collection we created earlier, and then retrieve parts of it again.

Example 5.3 Storing and Retrieving Data

<?php
$marco = |
“name" => "Marco"
"age" => 19
"job" => "Progranmer"
¥
$m ke = [
"name" => "M ke",
“age" => 39
"job" => "Manager"

I

$schema = $sessi on- >get Schema("test")
$col | ecti on = $schenm- >get Col | ecti on(" exanpl e")

$col | ecti on->add($mar co, $mi ke) - >execut e()

var _dunp($col | ection->find("nane = ' M ke'")->execut e()->fetchOne());
2>

The above example will output something similar to:

array(4) {
["_id"]=>
string(28) "00005ad66aaf 0000000000000003"
["age"] =>
i nt(39)
["job"]=>
string(7) "Manager"
["name"] =>
string(4) "M ke"

The example demonstrates that the MySQL Server adds an extra field named _i d, which serves as
primary key to the document.

The example also demonstrates that retrieved data is sorted alphabetically. That specific order comes from
the efficient binary storage inside the MySQL server, but it should not be relied upon. Refer to the MySQL
JSON datatype documentation for details.

Optionally use PHP's iterators fetch multiple documents:

268

http://www.php.net/json_encode

Mysql_xdevapi Functions

Example 5.4 Fetching and Iterating Multiple Documents

<?php

$result = $col | ection->find()->execute())
foreach ($result as $doc) {
echo "${doc["nane"]} is a ${doc["job"]}.\n"

}

?>

The above example will output something similar to:

Marco is a Progranmmer
M ke is a Manager.

5.4 Mysql_xdevapi Functions

Copyright 1997-2019 the PHP Documentation Group.

5.4.1 expressi on

Copyright 1997-2019 the PHP Documentation Group.

e expression

Bind prepared statement variables as parameters

Description

obj ect mysqgl _xdevapi \ expressi on(
string expression);

I Warning

This function is currently not documented; only its argument list is available.

Parameters

expression

Return Values

Examples

Example 5.5 nysql xdevapi \ Expr essi on example

<?php

$expressi on = nysql _xdevapi \ Expressi on("[age, j ob] ")

$res
$dat a

$col | ->find("age > 30")->fiel ds($expressi on)->linit(3)->execute()
$res->fetchAll ()

269

http://www.php.net/mysql_xdevapiExpression

get Sessi on

print_r($data);
?>

The above example will output something similar to:

<?php

5.4.2 get Sessi on

Copyright 1997-2019 the PHP Documentation Group.
* get Sessi on
Connect to a MySQL server

Description

nysql _xdevapi \ Sessi on nysql _xdevapi \ get Sessi on(
string uri);

Connects to the MySQL server.
Parameters

uri The URI to the MySQL server, such as nmysql x: //
user: passwor d@ost .

URI format:

schene://[user[:[password]] @target[:port][?
attributel=val uel&attribute2=val ue2. ..

e schene: required, the connection protocol
In mysql_xdevapi it is always 'mysqlx’ (for X Protocol)
e user : optional, the MySQL user account for authentication
* passwor d: optional, the MySQL user's password for authentication
e target: required, the server instance the connection refers to:
* TCP connection (host name, IPv4 address, or IPv6 address)
* Unix socket path (local file path)
* Windows named-pipe (local file path)
e port: optional, network port of MySQL server.
by default port for X Protocol is 33060

e ?attribut e=val ue: this element is optional and specifies a data
dictionary that contains different options, including:

270

get Sessi on

Return Values
A Sessi on object.

Errors/Exceptions

e The aut h (authentication mechanism) attribute as it relates to
encrypted connections. For additional information, see Command
Options for Encrypted Connections. The following ‘auth’ values are
supported: pl ai n, nysql 41, ext er nal , and sha256_nem

e The connect -ti nmeout attribute affects the connection and not
subsequent operations. It is set per connection whether on a single
or multiple hosts.

Pass in a positive integer to define the connection timeout in
seconds, or pass in 0 (zero) to disable the timeout (infinite). Not
defining connect-timeout uses the default value of 10.

Related, the MYSQLX_CONNECTION_TIMEOUT (timeout in
seconds) and MYSQLX_TEST_CONNECTION_TIMEOUT (used
while running tests) environment variables can be set and used
instead of connect-timeout in the URI. The connect-timeout URI
option has precedence over these environment variables.

Example 5.6 URI examples

nysql x:
nysql x:
nysql x:
nysql x:
nysql x:
nysql x:
nysql x:
nysql x:
nysql x:
nysql x:
nysql x:
nysql x:
nysql x:

/| f oobar

//root @ ocal host ?socket =92Ft mp%2Fmysql d. sock%2F

/1 foo: bar @ ocal host : 33060

/1 foo: bar @ocal host : 33160?ssl| - mode=di sabl ed

/] f oo: bar @ ocal host : 332607?ssl - node=r equi r ed

/] f oo: bar @ ocal host : 333607ssl - node=r equi r ed&aut h=nysql 41

/] foo: bar @/ pat h/ t o/ socket)

[/ foo: bar @/ pat h/ t o/ socket) ?aut h=sha256_nem

/] foo: bar @ ocal host: 33060, 127.0.0. 1: 33061]

/] f oobar ?ssl - ca=(/ pat h/t o/ ca. pem &ssl -crl =(/ path/to/crl.pem
//foo: bar @I ocal host: 33060, 127.0.0. 1: 33061] ?ssl - node=di sabl ed
/'] f oo: bar @ ocal host : 33160/ ?connect - t i neout =0

/] foo: bar @ ocal host : 33160/ ?connect - t i meout =10

For related information, see MySQL Shell's Connecting using a URI

String.

A connection failure throws an Except i on.

Examples

Example 5.7 nysql _xdevapi \ get Sessi on example

<?php
try {

$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: password@ost");

} catch(Exception $e) {

di e(" Connection could not be established: " . $e->get Message());

}

271

https://dev.mysql.com/doc/refman/8.0/en/encrypted-connection-options.html
https://dev.mysql.com/doc/refman/8.0/en/encrypted-connection-options.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-shell-connection-using-uri.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-shell-connection-using-uri.html
http://www.php.net/mysql_xdevapigetSession

BaseResult interface

$schenas = $sessi on- >get Schemas()
print_r($schenas)

$nmysql _versi on = $sessi on->get Ser ver Ver si on()
print_r($nysqgl _version)

var _dunp($col | ection->find("name = 'Alfred ")->execute()->fetchOne())
?>

The above example will output something similar to:

Array
(
[0] => nysql _xdevapi\ Schema Cbj ect
(
[nane] => helloworld
)
[1] => nysql _xdevapi\ Schema Cbj ect
(
[nane] => information_schema
)
[2] => nysql _xdevapi\ Schema Cbj ect
(
[nane] => nysq
)
[3] => nysql _xdevapi\ Schema Cbj ect
(
[nane] => perfornmance_schema
)
[4] => nysql _xdevapi\ Schema Cbj ect
(
[name] => sys
)
)
80012
array(4) {
["_id"]=>
string(28) "00005ad66abf 0001000400000003"
["age"]=>
int(42)
["job"]=>
string(7) "Butler"
["name"] =>
string(4) "Afred"
}

5.5 BaseResult interface

Copyright 1997-2019 the PHP Documentation Group.

nmysql _xdevapi \ BaseResul t {
nmysql _xdevapi \ BaseResul t

Met hods

272

BaseResul t : : get War ni ngs

abstract public array nysqgl _xdevapi\BaseResul t:: get Warni ngs();
abstract public integer nmysql _xdevapi\BaseResult:: getWarni ngsCount () ;
}
5.5.1 BaseResul t : : get War ni ngs
Copyright 1997-2019 the PHP Documentation Group.
* BaseResul t:: get V\r ni ngs
Fetch warnings from last operation

Description

abstract public array nysqgl _xdevapi\BaseResul t:: get Warni ngs() ;
Fetches warnings generated by MySQL server's last operation.
Parameters
This function has no parameters.

Return Values

An array of warnings raised by the last operation, or FALSE if no warnings are present.

Examples

Example 5.8 nysql xdevapi \ RowResul t : : get Var ni ngs example

<?php

$session = nysql _xdevapi \ get Sessi on("nysql x: // user : passwor d@ ocal host ") ;

$sessi on->sql (" CREATE DATABASE foo")->execute();
$sessi on->sql (" CREATE TABLE foo.test_table(x int)")->execute();

$schema
$t abl e

$sessi on- >get Schema("f 00");
$schena- >get Tabl e("test _table");

$tabl e->insert (['x"'])->val ues([1])->val ues([2])->execute();

$res = $table->select(['x/0 as bad_x'])->execute();
$war ni ngs = $res->get War ni ngs() ;

print_r ($warni ngs);
2>

The above example will output something similar to:

Array
[0] => nysql _xdevapi \ War ni ng bj ect
(
[message] => Division by 0

[level] => 2
[code] => 1365

273

http://www.php.net/mysql_xdevapiRowResult::getWarnings

BaseResul t: : get War ni ngsCount

)
[1] => nysqgl _xdevapi \ Warni ng Qbj ect
(

[message] => Division by 0
[level] => 2
[code] => 1365

5.5.2 BaseResul t : : get War ni ngsCount

Copyright 1997-2019 the PHP Documentation Group.
* BaseResul t:: get War ni ngsCount
Fetch warning count from last operation

Description

abstract public integer nmysqgl _xdevapi\BaseResul t:: get War ni ngsCount () ;

Returns the number of warnings raised by the last operation. Specifically, these warnings are raised by the
MySQL server.

Parameters

This function has no parameters.

Return Values

The number of warnings from the last operation.
Examples

Example 5.9 nysql xdevapi \ RowResul t : : get War ni ngsCount example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$sessi on- >sql (" DROP DATABASE | F EXI STS foo0") - >execute();
$sessi on- >sql (" CREATE DATABASE fo00") - >execut e();
$sessi on- >sql (" CREATE TABLE foo.test_table(x int)")->execute();

$schema
$t abl e

$sessi on- >get Schema("f o00");
$schenm- >get Tabl e("test _table");

$tabl e->insert (['x"'])->val ues([1])->val ues([2])->execute();
$res = $tabl e->select(['x/0 as bad_x'])->execute();

echo $res->get War ni ngsCount () ;
?>

The above example will output something similar to:

274

http://www.php.net/mysql_xdevapiRowResult::getWarningsCount

Collection class

5.6 Collection class

Copyright 1997-2019 the PHP Documentation Group.

nysql _xdevapi \ Col | ection {
nmysql _xdevapi \ Col | ecti on

nysql _xdevapi \ SchenmaObj ect
Properties

public
name ;

Met hods

publ i c nmysql _xdevapi\ Col | ecti onAdd mysql _xdevapi \ Col | ecti on: : add(
m xed docunent);

publ i c mysql xdevapi\Result mysqgl xdevapi\ Col | ecti on:: addOr Repl aceOne(
string id,
string doc);

public integer mysql _xdevapi\Coll ection::count();

public void nysqgl _xdevapi\Col | ection:: createl ndex(
string i ndex_nane,

string index_desc_json);

publi ¢ bool nysql _xdevapi\ Col | ecti on: : dr opl ndex(
string index_nane);

publ i c bool nysqgl _xdevapi\ Col | ecti on: : exi st sl nDat abase() ;

publ i c nysql _xdevapi \ Col | ecti onFi nd nysql _xdevapi \ Col | ecti on:: fi nd(
string search_condition);

public string nmysql _xdevapi\ Col | ecti on: : get Nanme() ;

publ i ¢ Docunent nysql _xdevapi\ Col | ecti on:: get One(
string id);

public Schema Object nysql _xdevapi\Col | ection:: get Schema();
publ i c Session mysqgl _xdevapi\ Col | ecti on: : get Sessi on() ;

publ i c nysql _xdevapi \ Col | ecti onMdi fy nysql _xdevapi \ Col | ecti on: : nodi fy(
string search_condition);

publ i ¢ nmysql _xdevapi\ Col | ecti onRenove nysql _xdevapi\ Col | ecti on: : renove(
string search_condition);

publ i c nmysql _xdevapi\ Result mysql _xdevapi\ Col | ecti on::renpveOne(
string id);

publ i c nysql _xdevapi \ Resul t nysql _xdevapi \ Col | ecti on: : repl aceOne(
string id,
string doc);

275

Col | ection:: add

nanme

56.1Col | ecti on: : add

Copyright 1997-2019 the PHP Documentation Group.
e Coll ection::add
Add collection document

Description

publ i ¢ nysql _xdevapi \ Col | ecti onAdd nysql _xdevapi \ Col | ecti on: : add(
m xed docunent);

Triggers the insertion of the given document(s) into the collection, and multiple variants of this method are
supported. Options include:

1. Add a single document as a JSON string.

2. Add asingle documentas anarrayas:['field => 'value', 'field2" =>
"value2' ...]

3. A mix of of both, and multiple documents can be added in the same operation.
Parameters

docunent One or multiple documents, and this can be either JSON or an array of
fields with their associated values. This cannot be an empty array.

The MySQL server automatically generates unique _i d values for each
document (recommended), although this can be manually added as
well. This value must be unique as otherwise the add operation will fail.

Return Values

A CollectionAdd object. Use execute() to return a Result that can be used to query the number of affected
items, the number warnings generated by the operation, or to fetch a list of generated IDs for the inserted
documents.

Examples

Example 5.10 nysql _xdevapi \ Col | ecti on: : add example

<?php

$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;
$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e();

$schema
$create

$sessi on- >get Schema(" addr essbook") ;
$schena- >cr eat eCol | ecti on(" peopl e");

$col | ecti on = $schenm- >get Col | ecti on("peopl e");

// Add two documents
$col | ecti on->add(' {"nanme": "Fred", "age": 21, "job": "Construction"}"')->execute()
$col | ecti on->add(' {"name": "WIm", "age": 23, "job": "Teacher"}')->execute()

276

http://www.php.net/mysql_xdevapiCollection::add

Col | ection: : addOr Repl aceOne

/! Add two docunments using a single JSON object
$result = $col | ecti on->add(
"{"nane": "Bernie",
"jobs": [{"title":"Cat Herder","Sal ary": 42000}, {"title":"Father","Salary":0}],
"hobbi es": ["Sports", " Mking cupcakes"]}",
"{"pnane": "Jane",
"jobs": [{"title":"Scientist","Salary":18000}, {"title":"Mther","Salary":0}],
"hobbi es": ["Wal ki ng", "Maki ng pies"]}"')->execute();

/Il Fetch a list of generated IDs fromthe |ast add()
$i ds = $resul t->get Generatedl ds();

print_r($ids);

?>

The above example will output something similar to:

Array

(
[0] => 00005b60b53610000000000000056

[1] => 00005b6b53610000000000000057

Notes
Note

A unique _id is generated by MySQL Server 8.0 or higher, as demonstrated in the
example. The _id field must be manually defined if using MySQL Server 5.7.

5.6.2 Col | ection:: addO Repl aceOne

Copyright 1997-2019 the PHP Documentation Group.
e Col |l ection::addO Repl aceOne
Add or replace collection document

Description

publ i c nmysql _xdevapi \ Result mysql _xdevapi\ Col | ecti on: : addOr Repl aceOne(
string id,
string doc);
Add a new document, or replace a document if it already exists.
Here are several scenarios for this method:

* If neither the id or any unique key values conflict with any document in the collection, then the document
is added.

« If the id does not match any document but one or more unique key values conflict with a document in the
collection, then an error is raised.

+ If id matches an existing document and no unique keys are defined for the collection, then the document
is replaced.

277

Col I ection::__construct

« If id matches an existing document, and either all unique keys in the replacement document match that
same document or they don't conflict with any other documents in the collection, then the document is
replaced.

« If id matches an existing document and one or more unique keys match a different document from the
collection, then an error is raised.

Parameters

id This is the filter id. If this id or any other field that has a unique index
already exists in the collection, then it will update the matching
document instead.
By default, this id is automatically generated by MySQL Server when
the record was added, and is referenced as a field named '_id'".

doc This is the document to add or replace, which is a JSON string.

Return Values
A Result object.

Examples

Example 5.11 nysql _xdevapi \ Col | ecti on: : addOr Repl aceOne example

<?php

$session = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;
$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e();

$schema
$create

$sessi on- >get Schena(" addr essbook") ;
$schena- >cr eat eCol | ecti on(" peopl e");

$col | ecti on = $schenm- >get Col | ecti on("peopl e");

/] Using add()
$result = $col |l ection->add(' {"nane": "WIm", "age": 23, "job": "Teacher"}')->execute();

/1 Using addOr Repl aceOne()
/'l Note: we're passing in a known _id value here

$result = $col | ecti on->addOr Repl aceOne(' 00005b6b53610000000000000056' , ' {"name": "Fred", "age": 21, "job":
2>
5.6.3Col | ection:: _construct

Copyright 1997-2019 the PHP Documentation Group.
e Collection::__construct
Collection constructor

Description

private nysqgl _xdevapi\Col |l ection::__construct();

Construct a Collection object.

278

http://www.php.net/mysql_xdevapiCollection::addOrReplaceOne

Col | ecti on: : count

Parameters
This function has no parameters.
Examples

Example 5.12 nysql _xdevapi \ Col | ecti on: : get One example

<?php
$session = nysql _xdevapi \ get Sessi on("nysql x: // user : passwor d@ ocal host ") ;

$sessi on->sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;
$sessi on->sql (" CREATE DATABASE addr essbook")->execute();

$schema
$col | ection

$sessi on- >get Schena(" addr essbook") ;
$schenm- >creat eCol | ecti on(" peopl e");

$result = $col |l ection->add(' {"nane": "Alfred", "age": 42, "job": "Butler"}')->execute();
/!l A unique _idis (by default, and recommended) generated by MySQL Server

/1 This retrieves the generated _id's; only one in this exanple, so $ids[0]

$i ds = $resul t->get Generatedl ds();

$alfreds_id = $ids[0];

/1

print_r(%alfreds_id);

print_r($collection->getOne($alfreds_id));
2>

The above example will output something similar to:

00005b6b536100000000000000b1
Array

(
[_id] => 00005b6b536100000000000000b1

[age] => 42
[job] => Butler
[nane] => Alfred

5.6.4 Col | ecti on: : count
Copyright 1997-2019 the PHP Documentation Group.
* Col | ection::count
Get document count

Description

public integer mysql _xdevapi\Coll ection::count();

This functionality is similar to a SELECT COUNT(*) SQL operation against the MySQL server for the
current schema and collection. In other words, it counts the number of documents in the collection.

279

http://www.php.net/mysql_xdevapiCollection::getOne

Col | ection: :createl ndex

Parameters

This function has no parameters.

Return Values

The number of documents in the collection.
Examples

Example 5.13 nysql _xdevapi \ Col | ecti on: : count example

<?php

$sessi on = nysql _xdevapi \ get Sessi on("nysql x: // user: passwor d@ ocal host");
$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e();

$sessi on- >get Schenma(" addr essbook") ;
$schema- >cr eat eCol | ecti on(" peopl e");

$schema
$create

$col | ection = $schema- >get Col | ecti on(" peopl e");

$result = $col | ection

- >add(

"{"name": "Bernie",

"jobs": [

{"title":"Cat Herder","Sal ary": 42000},
{"title":"Father","Sal ary": 0}

I
"hobbi es": ["Sports", "Mki ng cupcakes"]}",
"{"nanme": "Jane",

"jobs": [
{"title":"Scientist","Salary": 18000},
{"title":"Mther", "Sal ary": 0}

I

"hobbi es": ["Wal ki ng", "Maki ng pies"]}")
->execute();

var _dunp($col | ecti on->count ())
?>

The above example will output:

int(2)

5.6.5Col | ection:: createl ndex
Copyright 1997-2019 the PHP Documentation Group.
* Col |l ection::createl ndex
Create collection index

Description

public void nysql _xdevapi\ Col | ecti on:: creat el ndex(

280

http://www.php.net/mysql_xdevapiCollection::count

Col | ection: :createl ndex

string i ndex_nane
string index_desc_j son)

Creates an index on the collection.

An exception is thrown if an index with the same name already exists, or if index definition is not correctly
formed.

Parameters

i ndex_nane The name of the index that to create. This name must be a valid index
name as accepted by the CREATE | NDEX SQL query.

i ndex_desc_j son Definition of the index to create. It contains an array of IndexField

objects, and each object describes a single document member to
include in the index, and an optional string for the type of index that
might be INDEX (default) or SPATIAL.

A single IndexField description consists of the following fields:

e fi el d: string, the full document path to the document member or
field to be indexed.

e type: string, one of the supported SQL column types to map the field
into. For numeric types, the optional UNSIGNED keyword may follow.
For the TEXT type, the length to consider for indexing may be added.

e required: bool, (optional) true if the field is required to exist in the
document. Defaults to FALSE, except for GEOJ SON where it defaults
to TRUE.

e opti ons: integer, (optional) special option flags for use when
decoding GEQJ SON data.

e sri d:integer, (optional) srid value for use when decoding GEQJ SON
data.

It is an error to include other fields not described above in
IndexDefinition or IndexField documents.

Return Values

Examples

Example 5.14 nysql xdevapi \ Col | ection: : creat el ndex example

<?php

$session = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host")
$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e()
$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e()

$schema
$col | ection

$sessi on- >get Schenu(" addr essbook™)
$schenm- >cr eat eCol | ecti on(" peopl e")

// Creating a text index
$col | ecti on->creat el ndex(
' nyi ndex1'

281

http://www.php.net/mysql_xdevapiCollection::createIndex

Col | ecti on: : dropl ndex

"{"fields": [{
"field"': "$.name"
"type": "TEXT(25)",
"required": true}],
"uni que": false}’

)

/] A spatial index
$col | ecti on->creat el ndex(
' myi ndex2'
{"fields": [{
"field': "$. home"
"type": "GEQISON',
"required": true}],
"type": "SPATIAL"}'

5.6.6 Col | ecti on: : dr opl ndex

Copyright 1997-2019 the PHP Documentation Group.
e Col | ection::dropl ndex
Drop collection index

Description

publ i c bool nysqgl _xdevapi\Col |l ecti on:: dropl ndex(
string i ndex_nane);

Drop a collection index.

This operation does not yield an error if the index does not exist, but FALSE is returned in that case.
Parameters

i ndex_nane Name of collection index to drop.

Return Values

TRUE if the DROP INDEX operation succeeded, otherwise FALSE.

Examples

Example 5.15 nysql _xdevapi \ Col | ecti on: : dr opl ndex example

<?php
$session = nysql _xdevapi \ get Sessi on("nysql x: // user : passwor d@ ocal host ") ;

$sessi on->sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;
$sessi on->sql (" CREATE DATABASE addr essbook")->execut e();

$schema = $sessi on- >get Schema(" addr essbook") ;
$create = $schemn- >creat eCol | ecti on(" peopl e");
...

$col | ecti on = $schenm- >get Col | ecti on(" peopl e");

282

http://www.php.net/mysql_xdevapiCollection::dropIndex

Col | ecti on: : exi st sl nDat abase

$col | ecti on->creat el ndex(

' nyi ndex' ,

"{"fields": [{"field": "$.nane", "type": "TEXT(25)", "required": true}], "unique": false}'
IE

/1

if ($collection->droplndex('nyindex')) {
echo ' An index nanmed ' nyindex' was found, and dropped.";

}

?>

The above example will output:

An index naned 'nyindex' was found, and dropped

5.6.7 Col | ecti on: : exi st sl nDat abase

Copyright 1997-2019 the PHP Documentation Group.
e Col |l ection::existslnDat abase
Check if collection exists in database

Description

publ i c bool nysql _xdevapi\Col | ection:: exi st sl nDat abase();
Checks if the Collection object refers to a collection in the database (schema).
Parameters
This function has no parameters.
Return Values
Returns TRUE if collection exists in the database, else FALSE if it does not.
Examples

Example 5.16 nysql _xdevapi \ Col | ecti on: : exi st sl nDat abase example

<?php

$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;
$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;
$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e() ;

$schenma = $sessi on- >get Schenma(" addr essbook") ;
$create = $schemn- >creat eCol | ecti on(" peopl e");
/1

$col | ecti on = $schenm- >get Col | ecti on("peopl e");

283

http://www.php.net/mysql_xdevapiCollection::existsInDatabase

Collection::find

/1

if (!$collection->existslnDatabase()) {
echo "The coll ection no |onger exists in the database named addressbook. Wat happened?";

}

?>

5.6.8 Col I ection::find
Copyright 1997-2019 the PHP Documentation Group.
* Collection::find
Search for document

Description

publ i ¢ nmysql _xdevapi\ Col | ecti onFi nd nysql _xdevapi\ Col | ecti on:: find(
string search_condition);

Search a database collection for a document or set of documents. The found documents are returned as a
CollectionFind object is to further modify or fetch results from.

Parameters

search_condition Although optional, normally a condition is defined to limit the results to a
subset of documents.

Multiple elements might build the condition and the syntax supports
parameter binding. The expression used as search condition must be
a valid SQL expression. If no search condition is provided (field empty)
then find('true’) is assumed.

Return Values
A CollectionFind object to verify the operation, or fetch the found documents.
Examples

Example 5.17 nysql _xdevapi \ Col | ection: : find example

<?php
$sessi on = nysql _xdevapi \ get Sessi on("nysql x: // user : passwor d@ ocal host ") ;

$sessi on->sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;
$sessi on->sql (" CREATE DATABASE addr essbook")->execut e();

$schema
$col | ection

$sessi on- >get Schenma(" addr essbook") ;
$schena- >cr eat eCol | ecti on(" peopl e");

$col | ecti on->add(' {"nane": "Al fred", "age": 18, "job": "Butler"}')->execute();

$col | ecti on->add(' {"nane": "Bob", "age": 19, "job": "Swimmer"}')->execute();

$col | ecti on->add(' {"nane": "Fred", "age": 20, "job": "Construction"}')->execute();
$col | ecti on->add(' {"nane": "WInm", "age": 21, "job": "Teacher"}')->execute();

$col | ecti on->add(' {"nane": "Suki", "age": 22, "job": "Teacher"}')->execute();
$find $col l ection->find('job LIKE :job AND age > :age');

$resul t $find

284

http://www.php.net/mysql_xdevapiCollection::find

Col | ecti on: : get Nane

->bind(['job' =>'Teacher', 'age' => 20])
->sort (' age DESC)

->limt(2)

->execute();

print_r($result->fetchAl());
?>

The above example will output:

Array
(
[0] => Array
[_id] => 00005b6b536100000000000000a8
[age] => 22
[job] => Teacher
[name] => Suki
)
[1] => Array

[_id] => 00005b6b536100000000000000a7
[age] => 21

[job] => Teacher

[nanme] => Wl m

5.6.9 Col | ecti on: : get Nane
Copyright 1997-2019 the PHP Documentation Group.
e Col | ection:: get Nane
Get collection name

Description

public string nysql _xdevapi\Col | ection:: get Nane();
Retrieve the collection's name.
Parameters
This function has no parameters.
Return Values
The collection name, as a string.
Examples

Example 5.18 nysql _xdevapi \ Col | ecti on: : get Nane example

<?php

285

http://www.php.net/mysql_xdevapiCollection::getName

Col | ecti on: : get One

$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;
$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e();

$schema
$col | ection

$sessi on- >get Schenu(" addr essbook") ;
$schenm- >cr eat eCol | ecti on(" peopl e");

/1

var _dunp($col | ecti on->get Nanme());
?>

The above example will output something similar to:

string(6) "people"

5.6.10 Col | ecti on: : get One

Copyright 1997-2019 the PHP Documentation Group.
e Col |l ection::get(One
Get one document

Description

publ i ¢ Docunent nysql _xdevapi\ Col | ecti on: : get One(
string id);

Fetches one document from the collection.

This is a shortcut for: Col | ection. find("_id = :id").bind("id",
i d).execute().fetchOne();

Parameters

id The document _id in the collection.

Return Values
The collection object, or NULL if the _id does not match a document.
Examples

Example 5.19 nysql _xdevapi \ Col | ecti on: : get One example

<?php
$session = nysql _xdevapi \ get Sessi on("nysql x: // user : passwor d@ ocal host ") ;

$sessi on->sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;
$sessi on->sql (" CREATE DATABASE addr essbook") ->execut e();

286

http://www.php.net/mysql_xdevapiCollection::getOne

Col | ecti on: : get Schema

$schema
$col | ection

$sessi on- >get Schenu(" addr essbook")
$schenm- >cr eat eCol | ecti on(" peopl e")

$result = $col |l ection->add(' {"nane": "Alfred", "age": 42, "job": "Butler"}')->execute()

/!l A unique _id is (by default, and recommended) generated by MySQL Server
// This retrieves the generated _id's; only one in this exanple, so $ids[O0]
$i ds = $resul t->get Gener at edl ds()

$al freds_id = $ids[0]

/1

print_r($al freds_id)
print_r($collection->getOne($al freds_id))
?>

The above example will output something similar to:

00005b6b536100000000000000b1

Array

(
[_id] => 00005b6b536100000000000000b1

[age] => 42
[job] => Butler
[nanme] => Alfred

5.6.11 Col | ecti on: : get Schenma
Copyright 1997-2019 the PHP Documentation Group.
e Col |l ection:: get Schema
Get schema object

Description

public Schema Object nysql _xdevapi\Col | ection:: get Schema();
Retrieve the schema object that contains the collection.
Parameters
This function has no parameters.
Return Values
The schema object on success, or NULL if the object cannot be retrieved for the given collection.
Examples

Example 5.20 nysql _xdevapi \ Col | ecti on: : get Schema example

<?php

287

http://www.php.net/mysql_xdevapiCollection::getSchema

Col | ecti on: : get Sessi on

$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host")

$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e()
$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e()

$schema
$col | ection

$sessi on- >get Schenu(" addr essbook")
$schenm- >cr eat eCol | ecti on(" peopl e")

var _dunp($col | ecti on- >get Schema())
?>

The above example will output something similar to:

obj ect (nmysqgl _xdevapi \ Schema) #9 (1) {
["nanme"] =>
string(11) "addressbook"

}

5.6.12 Col | ecti on: : get Sessi on

Copyright 1997-2019 the PHP Documentation Group.
e Col | ection:: getSession
Get session object

Description

public Session nysql _xdevapi\Col | ecti on:: get Sessi on();
Get a new Session object from the Collection object.
Parameters
This function has no parameters.
Return Values
A Session object.
Examples

Example 5.21 nysql _xdevapi \ Col | ecti on: : get Sessi on example

<?php

$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;
$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;
$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e() ;

$schema
$col | ection

$sessi on- >get Schenu(" addr essbook") ;
$schena- >cr eat eCol | ecti on(" peopl e");

/1

$newsessi on = $col | ecti on->get Sessi on();

288

http://www.php.net/mysql_xdevapiCollection::getSession

Col | ection::nodify

var _dunp($sessi on) ;
var _dunp($newsessi on) ;
?>

The above example will output something similar to:

obj ect (nmysql _xdevapi \ Sessi on) #1 (0) {
}

obj ect (nmysql _xdevapi \ Sessi on) #4 (0) {
}

5.6.13 Col l ection::nodify
Copyright 1997-2019 the PHP Documentation Group.
e Collection::nodify
Modify collection documents

Description

publ i ¢ nysql _xdevapi \ Col | ecti onMddi fy nysql _xdevapi \ Col | ecti on: : nodi fy(
string search_condition)

Modify collections that meet specific search conditions. Multiple operations are allowed, and parameter
binding is supported.

Parameters

search_condi tion Must be a valid SQL expression used to match the documents to
modify. This expression might be as simple as TRUE, which matches all
documents, or it might use functions and operators such as ' CAST(_i d
AS SIGNED) >= 10','age MOD 2 = 0 OR age MOD 3 = 0',or
"id IN["2","5", 7, 10" .

Return Values

If the operation is not executed, then the function will return a Modify object that can be used to add
additional modify operations.

If the modify operation is executed, then the returned object will contain the result of the operation.
Examples

Example 5.22 nysql _xdevapi \ Col | ecti on: : nodi fy example

<?php
$session = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host")

$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e()
$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e()

289

http://www.php.net/mysql_xdevapiCollection::modify

Col | ection::renove

$schema
$col | ection

= $sessi on- >get Scherma(" addr essbook")
= $schema- >creat eCol | ecti on("peopl e")
$col | ecti on->add(' {"name": "Alfred", "age": 18, "job": "Butler"}')->execute()
$col | ecti on->add(' {"nanme": "Bob", "age": 19, "job": "Painter"}')->execute()

// Add two new jobs for all Painters: Artist and Crafter
$col | ection
->nodi fy("job in ('Butler', 'Painter')")
->arrayAppend('job', 'Artist')
->arrayAppend('job', 'Crafter"')
->execute();

/!l Remove the 'beer' field fromall docunents with the age 21
$col | ection

->nodi fy(' age < 21')

->unset ([' beer'])

->execute();
?>

5.6.14 Col | ecti on: : renove

Copyright 1997-2019 the PHP Documentation Group.
e Collection::renove
Remove collection documents

Description

publ i c nmysql _xdevapi\ Col | ecti onRenove nysql _xdevapi\ Col | ecti on: :renove(
string search_condition);

Remove collections that meet specific search conditions. Multiple operations are allowed, and parameter
binding is supported.

Parameters

search_condition Must be a valid SQL expression used to match the documents to
modify. This expression might be as simple as TRUE, which matches all
documents, or it might use functions and operators such as ' CAST(_i d
AS SIGNED) >= 10','age MOD 2 = 0 OR age MDD 3 = 0',or
" id INT["2","5", 7,10 .

Return Values

If the operation is not executed, then the function will return a Remove object that can be used to add
additional remove operations.

If the remove operation is executed, then the returned object will contain the result of the operation.
Examples

Example 5.23 nysql _xdevapi \ Col | ecti on: : renpove example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host")

290

http://www.php.net/mysql_xdevapiCollection::remove

Col | ection::renoveOne

$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;
$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e();

$schema
$col | ection

= $sessi on- >get Scherma(" addr essbook") ;

= $schema- >creat eCol | ecti on("peopl e");

$col | ection->add(' {"nanme": "Alfred", "age": 18, "job": "Butler"}')->execute();
$col | ecti on->add(' {"nanme": "Bob", "age": 19, "job": "Painter"}')->execute();

/'l Rermove all painters

$col | ection
->renove("job in ('Painter')")
->execute();

/'l Renove the ol dest butler
$col | ection

->renmove("job in ('Butler')")

->sort (' age desc')

->limt (1)

->execute();
/'l Rermove record with | owest age
$col | ection

->renmove('true')

->sort (' age desc')

->limt (1)

->execute();
?>

5.6.15Col | ecti on: : removeOne

Copyright 1997-2019 the PHP Documentation Group.
e Collection::renmveOne
Remove one collection document

Description

publ i c nysql _xdevapi \ Result nysql _xdevapi \ Col | ecti on: : renpveOne(
string id);

Remove one document from the collection with the correspending ID. This is a shortcut for

Collection.remove("_id = :id").bind("id", id).execute().
Parameters
id The ID of the collection document to remove. Typically this is the _id

that was generated by MySQL Server when the record was added.
Return Values

A Result object that can be used to query the number of affected items or the number warnings generated
by the operation.

Examples

Example 5.24 nysql _xdevapi\ Col | ecti on: : renpveOne example

201

http://www.php.net/mysql_xdevapiCollection::removeOne

Col | ection::replaceOne

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;
$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e() ;

$schema
$col | ection

$sessi on- >get Schenu(" addr essbook") ;
$schena- >cr eat eCol | ecti on(" peopl e");

$result = $col |l ection->add(' {"nane": "Alfred", "age": 18, "job": "Butler"}')->execute()
/1l Normally the _id is known by other neans
/1 but for this exanple let's fetch the generated id and use it
$i ds = $resul t->get Gener at edl ds()
$al fred_id = $ids[O0]
$result = $col | ecti on->renoveOne($al fred_id)
i f(!$result->getAffectedltensCount()) {
echo "Alfred with id $alfred_id was not renoved.";

} else {
echo "CGoodbye, Alfred, you can take _id $alfred_id with you.";

}

?>

The above example will output something similar to:

Goodbye, Alfred, you can take _id 00005b6b536100000000000000ch with you

5.6.16 Col | ecti on: : repl aceOne

Copyright 1997-2019 the PHP Documentation Group.
e Coll ection::replaceOne
Replace one collection document

Description
publ i c nmysql _xdevapi \ Result mysql _xdevapi\ Col | ecti on: : repl aceOne(

string id
string doc)

Updates (or replaces) the document identified by ID, if it exists.

Parameters

id ID of the document to replace or update. Typically this is the _id that
was generated by MySQL Server when the record was added.

doc Collection document to update or replace the document matching the

i d parameter.

This document can be either a document object or a valid JSON string
describing the new document.

Return Values

292

CollectionAdd class

A Result object that can be used to query the number of affected items and the number warnings
generated by the operation.

Examples

Example 5.25 nysql xdevapi \ Col | ecti on: : repl aceOne example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;
$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e() ;

$schema
$col | ection

$sessi on- >get Schenu(" addr essbook") ;
$schena- >cr eat eCol | ecti on(" peopl e");

$result = $col |l ection->add(' {"nane": "Alfred", "age": 18, "job": "Butler"}')->execute();

// Normally the _id is known by other neans,

/'l but for this exanple let's fetch the generated id and use it
$i ds = $resul t->get Generat edl ds();

$al fred_id = $ids[0];

/1
$al fred = $col | ecti on->get One($al fred_id);

$al fred[' age'] 81;
$al fred['job'] ‘Quru';

$col | ecti on->repl aceOne($al fred_id, $alfred);

2>

5.7 CollectionAdd class

Copyright 1997-2019 the PHP Documentation Group.

nmysql _xdevapi \ Col | ecti onAdd {
nmysql _xdevapi \ Col | ecti onAdd

nmysql _xdevapi \ Execut abl e
Met hods
publ i c mysql xdevapi\Result mysqgl _xdevapi\ Col | ecti onAdd: : execut e();

}
5.7.1 Col | ecti onAdd: : __construct

Copyright 1997-2019 the PHP Documentation Group.
e Coll ectionAdd:: construct

CollectionAdd constructor

293

http://www.php.net/mysql_xdevapiCollection::replaceOne

Col | ecti onAdd: : __construct

Description

private mysql _xdevapi\ Col | ecti onAdd: : __construct();
Use to add a document to a collection; called from a Collection object.
Parameters
This function has no parameters.
Examples

Example 5.26 nysql xdevapi\ Col | ecti onAdd:: construct example

<?php

$sessi on = nysql _xdevapi \ get Sessi on("nysql x: // user : passwor d@ ocal host ") ;
$sessi on->sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on->sql (" CREATE DATABASE addr essbook")->execut e();

$schema
$create

$sessi on- >get Schenma(" addr essbook") ;
$schena- >cr eat eCol | ecti on(" peopl e");

$col | ecti on = $schenm- >get Col | ecti on(" peopl e");

/] Add two docunents

$col | ection
->add(' {"nanme": "Fred", "age": 21, "job": "Construction"}")
->execute();

$col | ecti on
->add(' {"name": "WIlm", "age": 23, "job": "Teacher"}')
->execut e();

/! Add two docunents using a single JSON object
$result = $coll ection
- >add(
"{"nane": "Bernie",
"jobs": [{"title":"Cat Herder", "Sal ary": 42000}, {"title":"Father","Salary":0}],
"hobbi es": ["Sports", "Mking cupcakes"]}"',
"{"nane": "Jane",
"jobs": [{"title":"Scientist","Salary":18000}, {"title":"Mther","Salary": 0}]
"hobbi es": ["Wal ki ng", "Making pies"]}")
->execute();

/Il Fetch a list of generated ID's fromthe |ast add()
$ids = $result->get Generat edl ds();
print_r($ids);

2>

The above example will output something similar to:

Array

(
[0] => 00005b6b53610000000000000056
[1] => 00005b6b53610000000000000057

294

http://www.php.net/mysql_xdevapiCollectionAdd::__construct

Col | ecti onAdd: : execut e

Notes

Note

A unique _id is generated by MySQL Server 8.0 or higher, as demonstrated in the
example. The _id field must be manually defined if using MySQL Server 5.7.

5.7.2 Col | ecti onAdd: : execut e

Copyright 1997-2019 the PHP Documentation Group.

e Col | ecti onAdd: : execut e

Execute the statement

Description

public nysql _xdevapi \ Result nysql _xdevapi\ Col | ecti onAdd: : execut e();

The execute method is required to send the CRUD operation request to the MySQL server.

Parameters

This function has no parameters.

Return Values

A Result object that can be used to verify the status of the operation, such as the number of affected rows.

Examples

Example 5.27 nysql _xdevapi \ Col | ecti onAdd: : execut e example

<?php

$sessi on

= nysql _xdevapi \ get Sessi on(" mysql x: // user: passwor d@ ocal host") ;

$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;
$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e();

$schema
$create

$sessi on- >get Schenu(" addr essbook") ;
$schenm- >cr eat eCol | ecti on(" peopl e");

$col | ecti on = $schenm- >get Col | ecti on("peopl e");

/] Add two docunents

$col | ection
->add(' {"name": "Fred", "age": 21, "job": "Construction"}"')
->execute();

$col | ection
->add(' {"name": "WI|m", "age": 23, "job": "Teacher"}')
->execute();

/1 Add two documents using a single JSON object

$resul t

- >add(

= $col l ection

"{"nanme": "Bernie",
"jobs": [{"title":"Cat Herder","Sal ary": 42000}, {"title":"Father","Salary":0}],
"hobbi es": ["Sports", " Mking cupcakes"]}"',

"{"nanme": "Jane",
"jobs": [{"title":"Scientist","Salary":18000}, {"title":"Mther","Salary":0}],
"hobbi es": ["Wal ki ng", "Maki ng pies"]}")

295

http://www.php.net/mysql_xdevapiCollectionAdd::execute

CollectionFind class

->execute();

/Il Fetch a list of generated IDs fromthe |ast add()

$i ds = $resul t->get Generatedl ds();
print_r($ids);
?>

The above example will output something similar to:

Array
(

[0] => 00005b6b53610000000000000056
[1] => 00005b6b53610000000000000057

5.8 CollectionFind class

Copyright 1997-2019 the PHP Documentation Group.

nmysql _xdevapi \ Col | ecti onFi nd {
nmysql _xdevapi \ Col | ecti onFi nd

nmysql _xdevapi \ Execut abl e

nmysql _xdevapi \ CrudOper at i onBi ndabl e

nmysql _xdevapi \ CrudOper ati onLi m t abl e

nmysql _xdevapi \ CrudOper ati onSort abl e

Met hods

publ i ¢ nysql _xdevapi \ Col | ecti onFi nd nysql _xdevapi \ Col | ecti onFi nd: : bi nd(

array pl acehol der_val ues);

publ i c nysql _xdevapi \ DocResult nysql _xdevapi\ Col | ecti onFi nd: : execut e();

publ i ¢ nysql _xdevapi\ Col | ecti onFi nd nysql _xdevapi \ Col | ecti onFi nd: : fi el ds(

string projection);

publ i c nmysql _xdevapi\ Col | ecti onFi
string sort_expr);

publ i c nmysql _xdevapi\ Col | ecti onFi
string sort_expr);

publ i c nmysql _xdevapi\ Col | ecti onFi
i nteger rows);

publ i c nmysql _xdevapi\ Col | ecti onFi
i nteger | ock_waiting_option);

publ i c nmysql xdevapi\ Col | ecti onFi
i nteger |ock_waiting_option);

publ i c nmysql _xdevapi\ Col | ecti onFi

nd

nd

nd

nd

nd

nd

nmysql _xdevapi \ Col | ecti onFi

nmysql _xdevapi \ Col | ecti onFi

nysql _xdevapi \ Col | ecti onFi

nmysql _xdevapi \ Col | ecti onFi

nmysql _xdevapi \ Col | ecti onFi

nmysql _xdevapi \ Col | ecti onFi

nd:

: groupBy/(

- havi ng(

colimt(

;1 ockExcl usi ve(

;1 ockShar ed(

s of fset(

296

Col | ecti onFi nd: : bi nd

i nt eger position)

publ i c nmysql _xdevapi\ Col | ecti onFi nd nysql _xdevapi \ Col | ecti onFi nd: : sort (
string sort_expr)

}
5.8.1 Col I ecti onFi nd: : bi nd
Copyright 1997-2019 the PHP Documentation Group.
* Col I ectionFind::bind
Bind value to query placeholder

Description

publ i c nmysql _xdevapi\ Col | ecti onFi nd nysql _xdevapi \ Col | ecti onFi nd: : bi nd(
array pl acehol der _val ues);

It allows the user to bind a parameter to the placeholder in the search condition of the find operation. The
placeholder has the form of :NAME where "' is a common prefix that must always exists before any NAME,
NAME is the actual name of the placeholder. The bind function accepts a list of placeholders if multiple
entities have to be substituted in the search condition.

Parameters

pl acehol der _val ues Values to substitute in the search condition; multiple values are allowed
and are passed as an array where "PLACEHOLDER_NAME =>
PLACEHOLDER_VALUE".

Return Values
A CollectionFind object, or chain with execute() to return a Result object.
Examples

Example 5.28 nysql _xdevapi \ Col | ecti onFi nd: : bi nd example

<?php

$sessi on = nmysql _xdevapi \ get Sessi on(" nmysql x: // user: passwor d@ ocal host") ;
$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;
$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e() ;

$schema = $sessi on- >get Schena(" addr essbook") ;
$create = $schenm->creat eCol | ecti on(" peopl e");
$result = $create

->add(' {"name": "Alfred", "age": 18, "job": "Butler"}"')
->execut e();

...
$col |l ecti on = $schenm- >get Col | ecti on(" peopl €");
$result = $col | ection
->find('job like :job and age > :age')
->bind(['job' => "Butler', 'age' => 16])

->execute();

var _dunp($resul t->fetchAll());

297

http://www.php.net/mysql_xdevapiCollectionFind::bind

Col | ecti onFi nd:: __construct

?>

The above example will output something similar to:

array(1) {

[0]=>

array(4) {
["_id"]=>
string(28) "00005b6b536100000000000000cf "
["age"] =>
i nt(18)
["job"]=>
string(6) "Butler"
["nane"] =>
string(6) "Alfred"

5.8.2Col | ectionFind:: _construct

Copyright 1997-2019 the PHP Documentation Group.
e Coll ectionFind:: construct

CollectionFind constructor

Description
private nysql _xdevapi\Col |l ectionFind::__construct();
Warning
This function is currently not documented; only its argument list is available.
Parameters

This function has no parameters.
Examples

Example 5.29 CollectionFind example

<?php

$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;
$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e();

$schena = $sessi on- >get Scherma(" addr essbook") ;
$create = $schema- >creat eCol | ecti on(" peopl e");
$result = $create

->add(' {"nanme": "Alfred", "age": 18, "job": "Butler"}"')
->execute();

/1

298

Col | ecti onFi nd: : execut e

$col | ecti on = $schenm- >get Col | ecti on(" peopl e");
$result = $col |l ection
->find('job like :job and age > :age')
->bind(['job' => "Butler', 'age' => 16])
->execute();

var _dunp($resul t->fetchAll());
?>

The above example will output something similar to:

array(1) {

[0]=>

array(4) {
["_id"]=>
string(28) "00005b6b536100000000000000cf "
["age"] =>
int(18)
["job"]=>
string(6) "Butler"
["nanme"] =>
string(6) "Alfred"

5.8.3Col | ecti onFi nd: : execut e
Copyright 1997-2019 the PHP Documentation Group.
* Col | ectionFind:: execute
Execute the statement

Description

publ i c nysql _xdevapi \ DocResult nysql _xdevapi\ Col | ecti onFi nd: : execut e();
Execute the find operation; this functionality allows for method chaining.
Parameters
This function has no parameters.
Return Values
A DocResult object that to either fetch results from, or to query the status of the operation.
Examples

Example 5.30 CollectionFind example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

299

Coll ectionFind::fields

$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;
$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e();

$schena = $sessi on- >get Schenma(" addr essbook") ;
$create = $schemn- >creat eCol | ecti on(" peopl e");
$create

->add(' {"name": "Alfred", "age": 18, "job": "Butler"}')
->execute();

/1
$col | ecti on = $schenm- >get Col | ecti on(" peopl e");

$result = $col | ection
->find('job like :job and age > :age')
->bind(['job' => "Butler', 'age' => 16])
->execute();

var _dunp($resul t->fetchAll());
?>

The above example will output something similar to:

array(1) {

[0]=>

array(4) {
["_id"]=>
string(28) "00005b6b536100000000000000cf "
["age"] =>
int(18)
["job"]=>
string(6) "Butler"
["nanme"] =>
string(6) "Alfred"

5.84Col |l ectionFind::fields

Copyright 1997-2019 the PHP Documentation Group.
e CollectionFind::fields
Set document field filter

Description

publ i c mysql xdevapi\ Col | ecti onFi nd nysql _xdevapi \ Col | ecti onFi nd: : fi el ds(
string projection);

Defined the columns for the query to return. If not defined then all columns are used.
Parameters

proj ection Can either be a single string or an array of string, those strings are
identifying the columns that have to be returned for each document that
match the search condition.

300

Col | ecti onFi nd: : gr oupBy

Return Values
A CollectionFind object that can be used for further processing.
Examples

Example 5.31 nysql xdevapi\ Col | ecti onFi nd:: fi el ds example

<?php
$sessi on = nysql _xdevapi \ get Sessi on("nysql x: // user : passwor d@ ocal host") ;

$sessi on->sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;
$sessi on->sql (" CREATE DATABASE addr essbook")->execut e();

$schena = $sessi on- >get Schenr(" addr essbook") ;
$create = $schenm->creat eCol | ecti on(" peopl e");
$create

->add(' {"name": "Alfred", "age": 18, "job": "Butler"}")
->execut e();

/1

$col | ecti on = $schenm->get Col | ecti on(" peopl e");

$result = $coll ection
->find('job like :job and age > :age')
->bind(['job' => "Butler', 'age' => 16])
->fields(' nane')

->execute();

var _dunp($resul t->fetchAll());
2>

The above example will output something similar to:

array(1) {
[0]=>
array(1) {
["nane"] =>
string(6) "Alfred"

}
}

5.8.5Col | ecti onFi nd: : gr oupBy
Copyright 1997-2019 the PHP Documentation Group.
* Col I ectionFi nd: : groupBy
Set grouping criteria
Description

publ i c nysql _xdevapi\ Col | ecti onFi nd nysql _xdevapi \ Col | ecti onFi nd: : gr oupBy/(
string sort_expr);

301

http://www.php.net/mysql_xdevapiCollectionFind::fields

Col | ecti onFi nd: : havi ng

This function can be used to group the result-set by one more columns, frequently this is used with
aggregate functions like COUNT,MAX,MIN,SUM etc.

Parameters

sort _expr The columns or columns that have to be used for the group operation,
this can either be a single string or an array of string arguments, one for
each column.

Return Values
A CollectionFind that can be used for further processing
Examples

Example 5.32 nysql xdevapi \ Col | ecti onFi nd: : gr oupBy example

<?php
// Assum ng $coll is a valid Collection object

// Extract all the docunments fromthe Collection and group the results by the 'nanme' field
$res = $col | ->find()->groupBy(' nane')->execute();

?>

5.8.6 Col | ecti onFi nd: : havi ng
Copyright 1997-2019 the PHP Documentation Group.
e Col | ecti onFi nd: : havi ng
Set condition for aggregate functions

Description

publ i c nmysql _xdevapi\ Col | ecti onFi nd nysql _xdevapi \ Col | ecti onFi nd: : havi ng(
string sort_expr);

This function can be used after the 'field' operation in order to make a selection on the documents to
extract.

Parameters

sort _expr This must be a valid SQL expression, the use of aggreate functions is
allowed

Return Values
CollectionFind object that can be used for further processing
Examples

Example 5.33 nysql _xdevapi \ Col | ecti onFi nd: : havi ng example

302

http://www.php.net/mysql_xdevapiCollectionFind::groupBy
http://www.php.net/mysql_xdevapiCollectionFind::having

CollectionFind::limt

<?php
// Assum ng $coll is a valid Collection object

//Find all the docunents for which the 'age' is greather than 40
//Only the colums 'name' and 'age' are returned in the Result object
$res = $coll->find()->fields([' nane', "' age'])->havi ng(' age > 40')->execute()

?>

58.7Col lectionFind::limt
Copyright 1997-2019 the PHP Documentation Group.
* CollectionFind::limt
Limit number of returned documents

Description

publ i c nysql _xdevapi \ Col | ecti onFi nd nysql _xdevapi \ Col | ectionFind::limt(
i nteger rows);

Set the maximum number of documents to return.

Parameters

r ows Maximum number of documents.
Return Values

A CollectionFind object that can be used for additional processing; chain with the execute() method to
return a DocResult object.

Examples

Example 5.34 nysql xdevapi\ Col | ectionFind::|limt example

<?php

$session = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host")
$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e()
$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e()

$schena = $sessi on- >get Scherma(" addr essbook")
$create = $schema- >creat eCol | ecti on(" peopl e")
$create

->add(' {"nanme": "Alfred", "age": 18, "job": "Butler"}"')
->execute();

$create
->add(' {"nanme": "Reginald", "age": 42, "job": "Butler"}")
->execute();

/1
$col | ecti on = $schenm- >get Col | ecti on(" peopl e")
$result = $coll ection

->find('job like :job and age > :age')
->bind(['job' => 'Butler', 'age' => 16])

303

http://www.php.net/mysql_xdevapiCollectionFind::limit

Col | ecti onFi nd: : | ockExcl usi ve

->sort (' age desc')
->limt (1)
->execute();

var _dunp($resul t->fetchAll());
?>

The above example will output something similar to:

array(1) {

[0]=>

array(4) {
["_id"]=>
string(28) "00005b6b536100000000000000f 3"
["age"] =>
int(42)
["job"]=>
string(6) "Butler"
["nane"] =>
string(8) "Reginald"

5.8.8 Col | ecti onFi nd: : | ockExcl usi ve

Copyright 1997-2019 the PHP Documentation Group.
e Col | ectionFind: : | ockExcl usi ve
Execute operation with EXCLUSIVE LOCK

Description

publ i c nysql _xdevapi \ Col | ecti onFi nd nysql _xdevapi \ Col | ecti onFi nd: : | ockExcl usi ve(
i nteger |ock_waiting_option);

Lock exclusively the document, other transactions are blocked from updating the document until the
document is locked While the document is locked, other transactions are blocked from updating those
docs, from doing SELECT ... LOCK IN SHARE MODE, or from reading the data in certain transaction
isolation levels. Consistent reads ignore any locks set on the records that exist in the read view.

This feature is directly useful with the modify() command, to avoid concurrency problems. Basically, it
serializes access to a row through row locking

Parameters

| ock_waiting option Optional waiting option. By default it is MYSQLX LOCK DEFAULT. Valid
values are these constants:

« MYSQLX_LOCK_DEFAULT
« MYSQLX_LOCK_NOWAI T
« MYSQLX_LOCK_SKI P_LOCKED

Return Values

304

Col | ecti onFi nd: : | ockShar ed

Returns a CollectionFind object that can be used for further processing
Examples

Example 5.35 nysql _xdevapi \ Col | ecti onFi nd: : | ockExcl usi ve example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$schena = $sessi on- >get Schema(" addr essbook") ;
$col | ecti on = $schenm- >creat eCol | ecti on("peopl e");

$sessi on->start Transaction();

$result = $col |l ection
->find("age > 50")
- >l ockExcl usi ve()
->execute();

/1 ... do an operation on the object

/] Conplete the transacti on and unl ock the document
$sessi on->comi t () ;
?>

5.8.9Col | ecti onFi nd: : | ockShar ed

Copyright 1997-2019 the PHP Documentation Group.
e Col |l ectionFind:: | ockShared
Execute operation with SHARED LOCK

Description

publ i c nmysql _xdevapi\ Col | ecti onFi nd nysql _xdevapi \ Col | ecti onFi nd: : | ockShar ed(
integer |ock_waiting_option);

Allows to share the documents between multiple transactions which are locking in shared mode.
Other sessions can read the rows, but cannot modify them until your transaction commits.

If any of these rows were changed by another transaction that has not yet committed,

your query waits until that transaction ends and then uses the latest values.

Parameters

 ock_waiting_option Optional waiting option. By default it is MYSQLX LOCK DEFAULT. Valid
values are these constants:

« MYSQLX_LOCK_DEFAULT
« MYSQLX_LOCK_NOWAI T
« MYSQLX_LOCK_SKI P_LOCKED

Return Values

305

http://www.php.net/mysql_xdevapiCollectionFind::lockExclusive

Col | ecti onFi nd: : of f set

A CollectionFind object that can be used for further processing
Examples

Example 5.36 nysql xdevapi\ Col | ecti onFi nd: : | ockShar ed example

<?php
$session = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host")

$schema
$col | ection

$sessi on- >get Schena(" addr essbook™)
$schena- >cr eat eCol | ecti on(" peopl e")

$sessi on->start Transaction();

$result = $col |l ection
->find("age > 50")
->| ockShar ed()
->execut e();

/1 ... read the object in shared node

/'l Conpl ete the transacti on and unl ock the docunent
$sessi on->conmi t ()
?>

5.8.10 Col | ecti onFi nd: : of f set

Copyright 1997-2019 the PHP Documentation Group.
e Col I ectionFind:: of fset
Skip given number of elements to be returned

Description

publ i c nysql _xdevapi\ Col | ecti onFi nd nysql _xdevapi \ Col | ecti onFi nd: : of f set (
i nteger position);

Skip (offset) these number of elements that otherwise would be returned by the find operation. Use with the
limit() method.

Defining an offset larger than the result set size results in an empty set.

Parameters

position Number of elements to skip for the limit() operation.
Return Values

A CollectionFind object that can be used for additional processing.

Examples

Example 5.37 nysql _xdevapi \ Col | ecti onFi nd: : of f set example

<?php
$session = nysql _xdevapi \ get Sessi on("nysql x: // user : passwor d@ ocal host ") ;

306

http://www.php.net/mysql_xdevapiCollectionFind::lockShared
http://www.php.net/mysql_xdevapiCollectionFind::offset

Col | ectionFind: : sort

$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;
$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e();

$schena = $sessi on- >get Schenma(" addr essbook") ;
$create = $schemn- >creat eCol | ecti on(" peopl e");
$create

->add(' {"name": "Alfred", "age": 18, "job": "Butler"}')
->execute();

$create
->add(' {"nanme": "Reginald", "age": 42, "job": "Butler"}")
->execute();

/1
$col | ecti on = $schenm- >get Col | ecti on(" peopl e");

$result = $col | ection
->find()
->sort('age asc')
->of fset (1)
->limt(1)
->execute();

var _dunp($resul t->fetchAll());
?>

The above example will output something similar to:

array(1) {

[O] =>

array(4) {
["_id"]=>
string(28) "00005b6b536100000000000000f 3"
["age"]=>
int(42)
["job]=>
string(6) "Butler"
["nane"] =>
string(8) "Reginald"

5.8.11 Col | ecti onFi nd: : sort

Copyright 1997-2019 the PHP Documentation Group.
e Col I ectionFind::sort
Set the sorting criteria

Description

publ i c nmysql _xdevapi\ Col | ecti onFi nd nysql _xdevapi \ Col | ecti onFi nd: : sort (
string sort_expr);

Sort the result set by the field selected in the sort_expr argument. The allowed orders are ASC (Ascending)
or DESC (Descending). This operation is equivalent to the 'ORDER BY' SQL operation and it follows the
same set of rules.

307

Col | ectionFind: : sort

Parameters

sort _expr One or more sorting expressions can be provided. The evaluation is
from left to right, and each expression is separated by a comma.

Return Values
A CollectionFind object that can be used to execute the command, or to add additional operations.
Examples

Example 5.38 nysql _xdevapi \ Col | ecti onFi nd: : sort example

<?php

$sessi on = nysql _xdevapi \ get Sessi on("nysql x: // user: passwor d@ ocal host");
$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e();

$schema = $sessi on- >get Schema(" addr essbook");
$create = $schemn->createCol | ecti on("peopl e");
$create

->add(' {"nanme": "Alfred", "age": 18, "job": "Butler"}"')
->execute();

$create
->add(' {"nanme": "Reginald", "age": 42, "job": "Butler"}")
->execute();

/1
$col | ection = $schema- >get Col | ecti on(" peopl e");

$result = $col | ection
->find()
->sort('job desc', 'age asc')
->execute();

var _dunp($resul t->fetchAll());
?>

The above example will output something similar to:

array(2) {

[0]=>

array(4) {
["_id"]=>
string(28) "00005b6b53610000000000000106"
["age"] =>
int(18)
["job"]=>
string(6) "Butler"
["nanme"] =>
string(6) "Alfred"

}

[1]=>

array(4) {
["_id"]=>
string(28) "00005b6b53610000000000000107"
["age"] =>
int(42)

308

http://www.php.net/mysql_xdevapiCollectionFind::sort

CollectionModify class

["job"]=>
string(6) "Butler"
["name"] =>
string(8) "Reginald"

}

}

5.9 CollectionModify class

Copyright 1997-2019 the PHP Documentation Group.

nysql _xdevapi \ Col | ecti onModi fy {
nysql _xdevapi \ Col | ecti onModi fy

nysql _xdevapi \ Execut abl e
nysql _xdevapi \ CrudOper at i onBi ndabl e
nysql _xdevapi \ CrudOper ati onLi ni tabl e
nysql _xdevapi \ CrudOper at i onSki ppabl e
nysql _xdevapi \ CrudOper ati onSort abl e
Met hods
publ i c nmysql _xdevapi\ Col | ecti onMddi fy nysql _xdevapi\ Col | ecti
string collection_field,
string expression_or_literal);
publ i c nmysql _xdevapi\ Col | ecti onMbdi fy nysqgl _xdevapi\Col | ecti
string collection_field,

string expression_or_literal);

publ i c nysql _xdevapi\ Col | ecti onMdodi fy nysql _xdevapi\ Col | ecti
array pl acehol der _val ues);

public nmysql _xdevapi\ Result mysql xdevapi\ Col | ecti onModi fy: :

publ i c nmysql _xdevapi\ Col | ecti onMbdi fy nysqgl _xdevapi\Col | ecti
i nteger rows);

publ i c nysql _xdevapi\ Col | ecti onMdodi fy nysql _xdevapi\ Col | ecti
string docunent);

publ i c nmysql _xdevapi\ Col | ecti onMbdi fy nysqgl _xdevapi\Col | ecti
string collection_field,
string expression_or_literal);

publ i ¢ nmysql _xdevapi\ Col | ecti onMbdi fy nysqgl _xdevapi\Col | ecti
string collection_field,
string expression_or_literal);

publ i c nysql _xdevapi\ Col | ecti onMdbdi fy nysql _xdevapi\ Col | ecti
i nteger position);

publ i c nmysql _xdevapi\ Col | ecti onMbdi fy nysqgl _xdevapi\Col | ecti
string sort_expr);

publi ¢ nysql _xdevapi\ Col | ecti onMbdi fy nysql _xdevapi\ Col | ecti
array fields);

onhbdi fy:

onhbdi fy:

onModi fy:

execute();

onMbdi fy: :

onModi fy:

onhbdi fy:

onhbdi fy:

onModi fy:

onhbdi fy:

onModi fy:

;arrayAppend(

carrayl nsert(

2 bi nd(

Limit(

:pat ch(

:repl ace(

s set (

: ski p(

isort(

:unset (

309

Col | ecti onModi fy: :arrayAppend

}

5.9.1 Col | ecti onModi fy::arrayAppend

Copyright 1997-2019 the PHP Documentation Group.
e Col | ecti onModify::arrayAppend
Append element to an array field

Description

publ i c nysql _xdevapi \ Col | ecti onMddi fy nysql _xdevapi \ Col | ecti onMdi fy: : arrayAppend(
string collection_field,
string expression_or_literal);

Add an element to a document's field, as multiple elements of a field are represented as an array.
Unlike arraylnsert(), arrayAppend() always appends the new element at the end of the array, whereas
arraylnsert() can define the location.

Parameters
collection field The identifier of the field where the new element is inserted.
expression_or _literal The new element to insert at the end of the document field array.

Return Values
A CollectionModify object that can be used to execute the command, or to add additional operations.
Examples

Example 5.39 nysql _xdevapi \ Col | ecti onModi fy: :arrayAppend example

<?php

$session = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;
$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e() ;

$schema
$col | ection

$sessi on- >get Schena(" addr essbook") ;
$schena- >cr eat eCol | ecti on(" peopl e");

$result = $col l ection

- >add(
"{"nanme": "Bernie",
“traits": ["Friend", "Brother", "Human"]}')

->execute();

$col | ection
->nmodi fy("name in ('Bernie', 'Jane')")
->arrayAppend('traits', 'Happy')
->execute();

$result = $col l ection
->find()
->execute();

print_r($result->fetchAl());
?>

310

http://www.php.net/mysql_xdevapiCollectionModify::arrayAppend

Col | ecti onModi fy::arrayl nsert

The above example will output something similar to:

Array
[0] => Array
[_id] => 00005b6b5361000000000000010c
[nane] => Bernie

[traits] => Array
(
[0] => Friend
[1] => Brother
[2] => Human
[3] => Happy

5.9.2 Col | ecti onModi fy::arrayl nsert

Copyright 1997-2019 the PHP Documentation Group.
* Col l ectionModi fy::arrayl nsert
Insert element into an array field

Description

publ i c nysql _xdevapi\ Col | ecti onMddi fy nysql _xdevapi \ Col | ecti onMddi fy: :arrayl nsert (
string collection_field,
string expression_or_literal);

Add an element to a document's field, as multiple elements of a field are represented as an array. Unlike
arrayAppend(), arraylnsert() allows you to specify where the new element is inserted by defining which
item it is after, whereas arrayAppend() always appends the new element at the end of the array.

Parameters

collection field Identify the item in the array that the new element is inserted after.
The format of this parameter is FI ELD_NAVME[| NDEX] where
FIELD_NAME is the name of the document field to remove the element
from, and INDEX is the INDEX of the element within the field.

The INDEX field is zero based, so the leftmost item from the array has
an index of 0.

expression_or_literal The new element to insert after FIELD_NAME[INDEX]

Return Values

A CollectionModify object that can be used to execute the command, or to add additional operations
Examples

Example 5.40 nysql xdevapi\ Col | ecti onModi fy::arrayl nsert example

311

http://www.php.net/mysql_xdevapiCollectionModify::arrayInsert

Col | ecti onModi fy: : bind

<?php

$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;
$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e() ;

$schema
$col | ection

$sessi on- >get Schena(" addr essbook")
$schenm- >cr eat eCol | ecti on(" peopl e")

$result = $coll ection

- >add(
"{"nanme": "Bernie",
“traits": ["Friend", "Brother", "Human"]}')

->execute();

$col | ection
->nodi fy("name in ('Bernie', 'Jane')")
->arraylnsert('traits[1]', 'Happy')
->execute();

$result = $col | ection
->find()
->execute();

print_r($result->fetchAl())
2>

The above example will output something similar to:

Array

(
[0] => Array

[_id] => 00005b6b5361000000000000010d
[nane] => Bernie

[traits] => Array
(
[0] => Friend
[1] => Happy
[2] => Brother
[3] => Human

5.9.3Col | ecti onModi fy: : bind

Copyright 1997-2019 the PHP Documentation Group.
e Col | ectionMdify::bind
Bind value to query placeholder

Description

publ i c mysql _xdevapi\ Col | ecti onMbdi fy nysql _xdevapi\ Col | ecti onMbdi fy: : bi nd(
array pl acehol der _val ues);

Bind a parameter to the placeholder in the search condition of the modify operation.

312

Col | ecti onModi fy: : bind

The placeholder has the form of :NAME where "' is a common prefix that must always exists before any
NAME where NAME is the name of the placeholder. The bind method accepts a list of placeholders if
multiple entities have to be substituted in the search condition of the modify operation.

Parameters

pl acehol der _val ues Placeholder values to substitute in the search condition. Multiple
values are allowed and have to be passed as an array of mappings
PLACEHOLDER_NAME->PLACEHOLDER_VALUE.

Return Values
A CollectionModify object that can be used to execute the command, or to add additional operations.
Examples

Example 5.41 nysql xdevapi \ Col | ecti onModi fy: : bi nd example

<?php

$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;
$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e() ;

$sessi on- >get Schena(" addr essbook") ;
$schena- >cr eat eCol | ecti on(" peopl e");

$schema
$col | ection

$result = $coll ection

- >add(
"{"nanme": "Bernie",
"traits": ["Friend", "Brother", "Human"]}')

->execute();

$col | ection
->nodi fy("name = :nanme")
->bind([' name' => 'Bernie'])
->arrayAppend('traits', 'Happy')
->execute();

$result = $col | ection
->find()
->execute();

print_r($result->fetchAl());
2>

The above example will output something similar to:

Array
[0] => Array

[_id] => 00005b6b53610000000000000110
[nane] => Bernie
[traits] => Array
(
[0] => Friend
[1] => Brother
[2] => Human

313

http://www.php.net/mysql_xdevapiCollectionModify::bind

Col | ecti onModi fy:: _construct

[3] => Happy

5.9.4Col | ecti onModi fy:: construct

Copyright 1997-2019 the PHP Documentation Group.
e Coll ectionMdify:: construct
CollectionModify constructor

Description

private mysql _xdevapi\ Col | ecti onModi fy::__construct();
Modify (update) a collection, and is instantiated by the Collection::modify() method.
Parameters
This function has no parameters.
Examples

Example 5.42 nysql _xdevapi\ Col | ecti onMddi fy:: _construct example

<?php

$sessi on = nysql _xdevapi \ get Sessi on("nysql x: // user : passwor d@ ocal host ") ;
$sessi on->sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on->sql (" CREATE DATABASE addr essbook")->execut e();

$schema
$col | ection

$sessi on- >get Schena(" addr essbook") ;
$schena- >cr eat eCol | ecti on(" peopl e");

$result = $coll ection

- >add(
"{"name": "Bernie",
"traits": ["Friend", "Brother", "Human"]}')

->execute();

$col | ection
->nmodi fy("name in ('Bernie', 'Jane')")
->arrayAppend('traits', 'Happy')
->execute();

$result = $coll ection
->find()
->execute();

print_r($result->fetchAll());
2>

The above example will output something similar to:

314

http://www.php.net/mysql_xdevapiCollectionModify::__construct

Col | ecti onMbdi fy: : execute

Array
[0] => Array

[_id] => 00005b6b5361000000000000010c
[nane] => Bernie
[traits] => Array
([0] => Friend
[1] => Brother
[2] => Human
[3] => Happy

5.95Col | ecti onModi fy: : execute

Copyright 1997-2019 the PHP Documentation Group.
e Col | ecti onMbdify::execute
Execute modify operation

Description

publ i c nmysql _xdevapi \ Result mysql _xdevapi\ Col | ecti onModi fy: : execut e()
The execute method is required to send the CRUD operation request to the MySQL server.
Parameters
This function has no parameters.
Return Values
A Result object that can be used to verify the status of the operation, such as the number of affected rows.
Examples

Example 5.43 nysql xdevapi\ Col | ecti onMbdi fy: : execut e example

<?php
[* .0 %

?>

59.6 Coll ectionModi fy::limt

Copyright 1997-2019 the PHP Documentation Group.
* CollectionModify::limt

Limit number of modified documents

315

http://www.php.net/mysql_xdevapiCollectionModify::execute

Col l ectionModify::limt

Description

publ i c mysql xdevapi\ Col | ecti onMbdi fy nysqgl _xdevapi\Col | ecti onModi fy::limt(
i nt eger rows)

Limit the number of documents modified by this operation. Optionally combine with skip() to define an
offset value.

Parameters

r ows The maximum number of documents to modify.
Return Values

A CollectionModify object.

Examples

Example 5.44 nysql xdevapi \ Col | ectionhbdify::limt example

<?php

$sessi on = nysql _xdevapi \ get Sessi on("nysql x: // user: passwor d@ ocal host")
$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e()
$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e()

$schema
$col | ecti on

$sessi on- >get Schena(" addr essbook")
$schema- >cr eat eCol | ecti on(" peopl e")

$col | ection->add(' {"nane": "Fred", "age": 21, "job": "Construction"}"')->execute()
$col | ection->add(' {"nane": "WIna", "age": 23, "job": "Teacher"}')->execute()
$col | ection->add(' {"nane": "Betty", "age": 24, "job": "Teacher"}')->execute()

$col | ecti on

->nmodi fy("job = :job")
->bind(['job' => "'Teacher'])
->set('job', 'Principal')
->limt(1)

->execut e();

$result = $coll ection
->find()
->execut e();

print_r($result->fetchAl())
?>

The above example will output something similar to:

Array

[0] => Array
[_id] => 00005b6b53610000000000000118
[age] => 21
[job] => Construction
[name] => Fred

)
[1] => Array

316

http://www.php.net/mysql_xdevapiCollectionModify::limit

Col | ecti onMbdi fy: : patch

[_id] => 00005b6b53610000000000000119
[age] => 23

[job] => Principal

[nane] => WI ma

)
[2] => Array

[_id] => 00005b6b5361000000000000011a
[age] => 24

[job] => Teacher

[nane] => Betty

5.9.7 Col | ecti onModi fy: : patch

Copyright 1997-2019 the PHP Documentation Group.
e Col | ectionMbdify:: patch
Patch document

Description

publ i c nmysql _xdevapi\ Col | ecti onMbdi fy nysql _xdevapi\ Col | ecti onModi fy: : pat ch(
string docunent);

Takes a patch object and applies it on one or more documents, and can update multiple document
properties.

Warning
I This function is currently not documented; only its argument list is available.
Parameters
docunent A document with the properties to apply to the matching documents.
Return Values
A CollectionModify object.
Examples

Example 5.45 nysql _xdevapi \ Col | ecti onhbdi fy: : pat ch example

<?php
$res = $col | ->nmodi fy(' "Progranmatore” |IN job')->patch('{"Hobby" : "Programmare"}')->execute();

?>

5.9.8 Col | ecti onModi fy: :repl ace

Copyright 1997-2019 the PHP Documentation Group.

317

http://www.php.net/mysql_xdevapiCollectionModify::patch

Col | ecti onModi fy: :repl ace

e Col | ecti onModify::replace
Replace document field

Description
publ i c nmysql _xdevapi\ Col | ecti onMbdi fy nysql _xdevapi\ Col | ecti onModi fy::repl ace(

string collection_field
string expression_or_literal)

Replace (update) a given field value with a new one.

Parameters
collection_field The document path of the item to set.
expression_or _literal The value to set on the specified attribute.

Return Values
A CollectionModify object.
Examples

Example 5.46 nysql xdevapi\ Col | ecti onMbdi fy::repl ace example

<?php

$session = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;
$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;
$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e();

$schema
$col | ection

$sessi on- >get Schena(" addr essbook") ;
$schena- >cr eat eCol | ecti on(" peopl e");

$result = $coll ection

- >add(
"{"name": " Berni e",
“"traits": ["Friend", "Brother", "Human"]}"')

->execute();

$col | ection
->nodi fy(" nanme :nane")
->bind([' name' => 'Bernie'])
->repl ace("nanme", "Bern")
->execute();

$result = $coll ection
->find()
->execute();

print_r($result->fetchAl());
?>

The above example will output something similar to:

Array

[0] => Array

318

http://www.php.net/mysql_xdevapiCollectionModify::replace

Col | ecti onMbdi fy:: set

[_id] => 00005b6b5361000000000000011b
[nane] => Bern
[traits] => Array
(
[0] => Friend
[1] => Brother
[2] => Human

5.9.9 Col | ecti onModi fy:: set

Copyright 1997-2019 the PHP Documentation Group.
e Col | ectionModify::set
Set document attribute

Description
publ i c nysql _xdevapi \ Col | ecti onMddi fy nysql _xdevapi \ Col | ecti onMddi fy: : set (

string collection_field
string expression_or_literal)

Sets or updates attributes on documents in a collection.

Parameters
collection field The document path (name) of the item to set.
expression_or_literal The value to set it to.

Return Values
A CollectionModify object.
Examples

Example 5.47 nysql _xdevapi \ Col | ecti onMbdi fy: : set example

<?php

$sessi on = nysql _xdevapi \ get Sessi on("nysql x: // user : passwor d@ ocal host ") ;
$sessi on->sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;
$sessi on- >sql (" CREATE DATABASE addr essbook")->execut e();

$schema = $sessi on- >get Schenma(" addr essbook") ;
$col | ecti on = $schenm- >creat eCol | ecti on("peopl e");

$result = $coll ection

- >add(
"{"name": "Bernie",
"traits": ["Friend", "Brother", "Human"]}')

->execut e();

$col I ection
->nodi fy("name = : nanme")
->bind([' name' => 'Bernie'])

319

http://www.php.net/mysql_xdevapiCollectionModify::set

Col | ecti onModi fy: :skip

->set ("nane", "Bern")
->execute();

$result = $col | ection
->find()
->execute();

print_r($result->fetchAll());
2>

The above example will output something similar to:

Array
(
[0] => Array
(
[_id] => 00005b6b53610000000000000111
[nane] => Bern
[traits] => Array
(
[0] => Friend
[1] => Brother
[2] => Human
)
)
)

5.9.10 Col I ecti onModi fy: :skip

Copyright 1997-2019 the PHP Documentation Group.
* Col |l ecti onModify::skip
Skip elements

Description

publ i c nmysql _xdevapi\ Col | ecti onMbdi fy nysql _xdevapi\ Col | ecti onMbdi fy: : skip(
i nteger position);

Skip the first N elements that would otherwise be returned by a find operation. If the number of elements
skipped is larger than the size of the result set, then the find operation returns an empty set.

Warning
I This function is currently not documented; only its argument list is available.
Parameters
position Number of elements to skip.
Return Values
A CollectionModify object to use for further processing.

Examples

320

Col | ecti onModi fy: :sort

Example 5.48 nysql xdevapi\ Col | ecti onModi fy: : ski p example

<?php
$col | ->nodi fy(' age > :age')->sort (' age desc')->unset(['age'])->bind(['age’ => 20])->limt(4)->skip(l)->exe

?>

5.9.11 Col | ecti onModi fy: :sort
Copyright 1997-2019 the PHP Documentation Group.
» Col l ectionhbdify::sort
Set the sorting criteria

Description

publ i c nmysql _xdevapi\ Col | ecti onMbdi fy nysql _xdevapi\ Col | ecti onMbdi fy: :sort(
string sort_expr);

Sort the result set by the field selected in the sort_expr argument. The allowed orders are ASC (Ascending)
or DESC (Descending). This operation is equivalent to the 'ORDER BY' SQL operation and it follows the
same set of rules.

Warning
This function is currently not documented; only its argument list is available.
Parameters
sort _expr One or more sorting expression can be provided, the evaluation of
these will be from the leftmost to the rightmost, each expression must
be separated by a comma.
Return Values
CollectionModify object that can be used for further processing.

Examples

Example 5.49 nysql _xdevapi\ Col | ecti onModi fy::sort example

<?php
$res = $col |l ->nodi fy('true')->sort(' nane desc', 'age asc')->limt(4)->set('Married , 'NO)->execute()

?>

5.9.12 Col | ecti onMbdi fy: : unset

Copyright 1997-2019 the PHP Documentation Group.

321

http://www.php.net/mysql_xdevapiCollectionModify::skip
http://www.php.net/mysql_xdevapiCollectionModify::sort

CollectionRemove class

e Col | ecti onModify::unset
Unset the value of document fields

Description

publ i c nmysql _xdevapi\ Col | ecti onMbdi fy nysql _xdevapi\ Col | ecti onModi fy: : unset (
array fields);

Removes attributes from documents in a collection.

Warning

This function is currently not documented; only its argument list is available.
Parameters
fields The attributes to remove from documents in a collection.
Return Values
CollectionModify object that can be used for further processing.
Examples

Example 5.50 nysql xdevapi\ Col | ecti onMbdi fy::unset example

<?php
$res = $col |l ->nmodify('job |ike :job_nane')->unset(["age", "name"])->bind(['job_name' => "'Plunber'])->execute()

?>

5.10 CollectionRemove class

Copyright 1997-2019 the PHP Documentation Group.

nysql _xdevapi \ Col | ecti onRenove {
nmysql _xdevapi \ Col | ecti onRenove

nmysql _xdevapi \ Execut abl e

nysql _xdevapi \ CrudOper at i onBi ndabl e

nysql _xdevapi \ CrudOper ati onLi m t abl e

nmysql _xdevapi \ CrudOper ati onSort abl e
Met hods

publ i c nmysql _xdevapi\ Col | ecti onRenove nysql _xdevapi \ Col | ecti onRenobve: : bi nd(
array pl acehol der _val ues);

public nmysql _xdevapi\ Result mnysql _xdevapi\ Col | ecti onRenpve: : execut e();

publ i c nysql _xdevapi \ Col | ecti onRenpve nysql _xdevapi \ Col | ecti onRenove: :limt(

322

http://www.php.net/mysql_xdevapiCollectionModify::unset

Col | ecti onRenove: : bi nd

i nteger rows);

publ i ¢ nysql _xdevapi \ Col | ecti onRenpbve nysql _xdevapi \ Col | ecti onRenpve: : sort (
string sort_expr);

}
5.10.1 Col | ecti onRenove: : bi nd

Copyright 1997-2019 the PHP Documentation Group.
» Col | ecti onRenove: : bi nd
Bind value to placeholder

Description

publi ¢ nysqgl _xdevapi \ Col | ecti onRenpbve nysql _xdevapi \ Col | ecti onRenpve: : bi nd(
array pl acehol der_val ues)

Bind a parameter to the placeholder in the search condition of the remove operation.

The placeholder has the form of :NAME where "' is a common prefix that must always exists before any
NAME where NAME is the name of the placeholder. The bind method accepts a list of placeholders if
multiple entities have to be substituted in the search condition of the remove operation.

Warning
This function is currently not documented; only its argument list is available.
Parameters

pl acehol der val ues Placeholder values to substitute in the search condition. Multiple
values are allowed and have to be passed as an array of mappings
PLACEHOLDER_NAME->PLACEHOLDER_VALUE.

Return Values
A CollectionRemove object that can be used to execute the command, or to add additional operations.
Examples

Example 5.51 nysql xdevapi\ Col | ecti onRenove: : bi nd example

<?php
$res = $col | ->renpve(' age > :age_fromand age < :age_to')->bind(['age_from => 20, 'age_to' => 50])->limt

72>

5.10.2 Col | ecti onRenpbve:: construct

Copyright 1997-2019 the PHP Documentation Group.
» Col | ecti onRenmove: : _construct

CollectionRemove constructor

323

http://www.php.net/mysql_xdevapiCollectionRemove::bind

Col | ecti onRenove: : execut e

Description
private nysql _xdevapi\Col | ecti onRenove:: __construct();
Remove collection documents, and is instantiated by the Collection::remove() method.
Parameters
This function has no parameters.
Examples

Example 5.52 nysql _xdevapi\ Col | ecti on: : renpve example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;
$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e();

$schema
$col | ection

$sessi on- >get Schenu(" addr essbook") ;
$schenm- >cr eat eCol | ecti on(" peopl e");

$col | ecti on->add(' {"nanme": "Alfred", "age": 18, "job": "Butler"}')->execute();
$col | ecti on->add(' {"nanme": "Bob", "age": 19, "job": "Painter"}')->execute();

/'l Rermove all painters
$col | ection
->renmove("job in ('Painter')")
->execute();

/1 Renove the ol dest butl er
$col | ection

->renmove("job in ('Butler')")

->sort (' age desc')

->limt (1)

->execute();
/'l Rermove record with | owest age
$col | ection

->renmove('true')

->sort (' age desc')

->limt (1)

->execute();
2>

5.10.3 Col | ecti onRenove: : execut e
Copyright 1997-2019 the PHP Documentation Group.
* Col | ecti onRenpve: : execut e
Execute remove operation

Description

public nysqgl _xdevapi\Result nysql _xdevapi\ Col | ecti onRenpve: : execut e();

The execute function needs to be invoked in order to trigger the client to send the CRUD operation request
to the server.

324

http://www.php.net/mysql_xdevapiCollection::remove

Col | ecti onRenmove: :linmt

Warning
I This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.
Return Values
Result object.
Examples

Example 5.53 nysql xdevapi\ Col | ecti onRenove: : execut e example

<?php
$res = $col |l ->renpve(' true')->sort (' age desc')->linit(2)->execute();

?>

5.10.4 Col | ecti onRenmove::limt

Copyright 1997-2019 the PHP Documentation Group.
e CollectionRenove::limt
Limit number of documents to remove

Description

publ i c nysql _xdevapi \ Col | ecti onRenpve nysql _xdevapi \ Col | ecti onRenove: :limt(
i nteger rows);

Sets the maximum number of documents to remove.
Warning
I This function is currently not documented; only its argument list is available.
Parameters
r ows The maximum number of documents to remove.
Return Values

Returns a CollectionRemove object that can be used to execute the command, or to add additional
operations.

Examples

Example 5.54 nysql xdevapi \ Col | ecti onRenove: :|imt example

<?php

325

http://www.php.net/mysql_xdevapiCollectionRemove::execute
http://www.php.net/mysql_xdevapiCollectionRemove::limit

Col | ecti onRenove: : sort

$res = $coll->remove('job in (\'Barista\', \'Programmatore\', \'Ballerino\', \'Programmatrice\')')->limt(5)->

?>

5.105Col | ecti onRenove: : sort

Copyright 1997-2019 the PHP Documentation Group.
e Col | ecti onRenove: : sort
Set the sorting criteria

Description

publ i c nmysql _xdevapi\ Col | ecti onRenove nysql _xdevapi \ Col | ecti onRenpve: : sort (
string sort_expr);

Sort the result set by the field selected in the sort_expr argument. The allowed orders are ASC (Ascending)
or DESC (Descending). This operation is equivalent to the 'ORDER BY' SQL operation and it follows the
same set of rules.

Warning
This function is currently not documented; only its argument list is available.
Parameters

sort _expr One or more sorting expressions can be provided. The evaluation is
from left to right, and each expression is separated by a comma.

Return Values
A CollectionRemove object that can be used to execute the command, or to add additional operations.
Examples

Example 5.55 nysql xdevapi\ Col | ecti onRenove: : sort example

<?php
$res = $col | ->renove(' true')->sort (' age desc')->limt(2)->execute();

2>

5.11 ColumnResult class

Copyright 1997-2019 the PHP Documentation Group.

nysql _xdevapi \ Col umResul t {
nysql _xdevapi \ Col umResul t

Met hods

326

http://www.php.net/mysql_xdevapiCollectionRemove::sort

Col utmResul t:: __construct

public string nmysql _xdevapi\ Col umResul t: : get Char act er Set Nane() ;
public string nysqgl _xdevapi\ Col umResul t:: get Col | ati onNane() ;
public string mysql _xdevapi\ Col umResul t: : get Col unmLabel () ;
public string nmysql _xdevapi\ Col umResul t:: get Col umNane() ;
public integer mysqgl _xdevapi\ Col umResult::getFractional Digits();
public integer mysql _xdevapi\ Col umResul t:: getLength();
public string mysql _xdevapi\ Col umResul t:: get SchemaNane() ;
public string nmysql _xdevapi\ Col umResul t: : get Tabl eLabel ();
public string nysql _xdevapi\ Col umResul t:: get Tabl eNane();
public integer mysql _xdevapi\ Col umResul t:: get Type();
public integer nysqgl_xdevapi\ Col umResult::i sNunber Si gned();
public integer mysqgl _xdevapi\ Col umResul t::isPadded();

}

5.11.1 Col umResul t:: __construct

Copyright 1997-2019 the PHP Documentation Group.
e ColumResult:: construct
ColumnResult constructor
Description
private nysql _xdevapi\ Col umResult::__construct();

Retrieve column metadata, such as its character set; this is instantiated by the RowResult::getColumns()
method.

Parameters
This function has no parameters.
Examples

Example 5.56 nysql _xdevapi \ Col utmResul t:: __construct example

<?php
$session = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$sessi on- >sql (" DROP DATABASE | F EXI STS nonsense") - >execut e();

$sessi on- >sql (" CREATE DATABASE nonsense") - >execut e();

$sessi on- >sql (" CREATE TABLE nonsense. nunbers (hello int, world float unsigned)")->execute();
$sessi on->sql ("I NSERT | NTO nonsense. nunbers val ues (42, 42)")->execute();

$schema
$t abl e

$sessi on- >get Schema(" nonsense") ;
$schena- >get Tabl e(" nunmber s") ;

$resultl = $tabl e->select (' hello', ' world')->execute();

327

http://www.php.net/mysql_xdevapiColumnResult::__construct

Col utmmResul t : : get Char act er Set Nane

/!l Returns an array of ColummResult objects
$col ums = $resul t 1- >get Col umrms()

foreach ($colums as $col um) {

echo "\ nCol umm | abel " , $col utm- >get Col urmLabel ()
echo " is type " , $col um- >get Type()
echo " and is ", ($columm->i sNunber Si gned() === 0) ? "Unsigned." : "Signed.";

}

/1 Alternatively
$resul t2 = $sessi on->sqgl ("SELECT * FROM nonsense. nunbers") - >execut e()

/'l Returns an array of Fiel dMetadata objects
print_r($result2->get Col ums())

The above example will output something similar to:

Col umm | abel hello is type 19 and is Signed
Colum | abel world is type 4 and is Unsigned

Array
[0] => nysqgl _xdevapi\ Fi el dMet adat a Cbj ect
(

[type] =>1

[type_nanme] => SINT
[nane] => hello
[original _nanme] => hello
[tabl e] => nunbers
[original _table] => nunbers
[schema] => nonsense
[catal og] => def
[collation] => 0
[fractional _digits] => 0
[length] => 11

[flags] => 0O

[content _type] => 0

[1] => nysqgl _xdevapi\ Fi el dMet adat a Cbj ect
(

[type] => 6

[type_name] => FLOAT
[nane] => world

[original _nane] => world
[tabl e] => nunbers
[original _table] => nunbers
[schema] => nonsense
[catal og] => def
[collation] => 0
[fractional _digits] => 31
[length] => 12

[flags] => 1

[content _type] => 0

5.11.2 Col umResul t : : get Char act er Set Nane

Copyright 1997-2019 the PHP Documentation Group.

328

Col umResul t: : get Col | ati onNane

e Col umResul t:: get Char act er Set Nane
Get character set

Description

public string nmysql _xdevapi\ Col umResul t: : get Char act er Set Nane() ;

Warning

This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.

Return Values

Examples

Example 5.57 nysql _xdevapi \ Col uimResul t : : get Char act er Set Nane example

<?php
A

?>

5.11.3 Col unmmResul t : : get Col | ati onNane
Copyright 1997-2019 the PHP Documentation Group.
e Col umResul t:: getCol |l ati onNane
Get collation name

Description

public string nysqgl _xdevapi\ Col utmResul t:: get Col | ati onNane() ;

Warning

This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.

Return Values

Examples

329

http://www.php.net/mysql_xdevapiColumnResult::getCharacterSetName

Col umResul t: : get Col utmLabel

Example 5.58 nysql xdevapi \ Col uimmResul t: : get Col | ati onNane example

<?php
0% oo #f

?>

5.11.4 Col umResul t : : get Col uimLabel
Copyright 1997-2019 the PHP Documentation Group.
» Col umResul t: : get Col umLabel
Get column label

Description

public string mysql xdevapi\ Col umResul t: : get Col unmmLabel () ;

I Warning

This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.

Return Values

Examples

Example 5.59 nysql _xdevapi \ Col umResul t: : get Col uimmLabel example

<?php
[* ... %]

?>

5.11.5 Col ummResul t : : get Col umNane
Copyright 1997-2019 the PHP Documentation Group.
» Col umResul t: : get Col utmNane
Get column name

Description

public string nysqgl _xdevapi\ Col umResul t: : get Col unmNane() ;

330

http://www.php.net/mysql_xdevapiColumnResult::getCollationName
http://www.php.net/mysql_xdevapiColumnResult::getColumnLabel

Col umResul t::getFractional Digits

I Warning

This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.

Return Values

Examples

Example 5.60 nysql _xdevapi \ Col utmmResul t : : get Col unmNane example

<?php
[* .0 %]

?>

5.11.6 Col umResul t:: get Fractional Digits
Copyright 1997-2019 the PHP Documentation Group.
e ColumResult::getFractionalDigits
Get fractional digit length

Description

public integer mysql _xdevapi\ Col umResult:: getFractional Di gits();
Fetch the number of fractional digits for column.
Warning
I This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.

Return Values

Examples

Example 5.61 nysql _xdevapi \ Col umResul t: : get Fracti onal Di gi t s example

<?php
I* o0

?>

331

http://www.php.net/mysql_xdevapiColumnResult::getColumnName
http://www.php.net/mysql_xdevapiColumnResult::getFractionalDigits

Col umResul t: : get Length

5.11.7 Col ummResul t: : get Lengt h
Copyright 1997-2019 the PHP Documentation Group.
e Col umResul t:: getlLength
Get column field length

Description

public integer mysql _xdevapi\ Col umResul t:: getLength();

I Warning

This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.

Return Values

Examples

Example 5.62 nysql _xdevapi \ Col uimResul t : : get Lengt h example

<?php
[* ... %

?>

5.11.8 Col unmmResul t : : get SchenmaNane
Copyright 1997-2019 the PHP Documentation Group.
* Col umResul t: : get SchemaNane
Get schema name

Description

public string nysql _xdevapi\ Col umResul t:: get SchemaNane()
Fetch the schema name where the column is stored.
Warning
I This function is currently not documented; only its argument list is available.
Parameters

This function has no parameters.

332

http://www.php.net/mysql_xdevapiColumnResult::getLength

Col utmResul t : : get Tabl eLabel

Return Values

Examples

Example 5.63 nysql _xdevapi \ Col utmResul t : : get SchenaNane example

<?php
I coa

?>

5.11.9 Col ummResul t : : get Tabl eLabel
Copyright 1997-2019 the PHP Documentation Group.
e Col umResul t: : get Tabl eLabel
Get table label

Description

public string nysqgl _xdevapi\ Col umResul t: : get Tabl eLabel ();

I Warning

This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.

Return Values

Examples

Example 5.64 nysql _xdevapi \ Col uimResul t : : get Tabl eLabel example

<?php
[* ... %]

?>

5.11.10 Col umResul t : : get Tabl eNane
Copyright 1997-2019 the PHP Documentation Group.
e Col umResul t: : get Tabl eNane

Get table name

333

http://www.php.net/mysql_xdevapiColumnResult::getSchemaName
http://www.php.net/mysql_xdevapiColumnResult::getTableLabel

Col umResul t: : get Type

Description

public string nmysqgl _xdevapi\ Col umResul t:: get Tabl eNane();

I Warning

This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.
Return Values
Name of the table for the column.
Examples

Example 5.65 nysql xdevapi \ Col utmmResul t : : get Tabl eNane example

<?php
[* ... %]

?>

5.11.11 Col umResul t: : get Type
Copyright 1997-2019 the PHP Documentation Group.
e Col umResul t: : get Type
Get column type

Description

public integer nysqgl_xdevapi\ Col umResul t:: get Type()

I Warning

This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.

Return Values

Examples

Example 5.66 nysql xdevapi \ Col utmResul t: : get Type example

334

http://www.php.net/mysql_xdevapiColumnResult::getTableName
http://www.php.net/mysql_xdevapiColumnResult::getType

Col umResul t: : i sNunber Si gned

<?php
0% coo #f

?>

5.11.12 Col umResul t: : i sNunber Si gned
Copyright 1997-2019 the PHP Documentation Group.
e Col umResul t::i sNunber Si gned
Check if signed type

Description

public integer nysql_xdevapi\Col umResult::isNunberSi gned();
Retrieve a table's column information, and is instantiated by the RowResult::getColumns() method.
Warning
I This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.
Return Values
TRUE if a given column as a signed type.
Examples

Example 5.67 nysql _xdevapi \ Col utmResul t: : i sNunber Si gned example

<?php
[* ... %

?>

5.11.13 Col umResul t: : i sPadded
Copyright 1997-2019 the PHP Documentation Group.
* Col umResul t::i sPadded
Check if padded

Description

public integer mysqgl _xdevapi\ Col umResult::isPadded();

335

http://www.php.net/mysql_xdevapiColumnResult::isNumberSigned

CrudOperationBindable interface

I Warning

This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.
Return Values
TRUE if a given column is padded.
Examples

Example 5.68 nysql _xdevapi \ Col utmResul t: : i sPadded example

<?php
[* .0 %]

?>

5.12 CrudOperationBindable interface

Copyright 1997-2019 the PHP Documentation Group.

nysql _xdevapi \ CrudOper at i onBi ndabl e {
nysql _xdevapi \ Cr udOper at i onBi ndabl e

Met hods

abstract public nysqgl _xdevapi\ CrudOperati onBi ndabl e mysql _xdevapi \ CrudQper at i onBi ndabl e: : bi nd(
array pl acehol der _val ues);

}
5.12.1 CrudOper at i onBi ndabl e: : bi nd
Copyright 1997-2019 the PHP Documentation Group.
* CrudQperati onBi ndabl e: : bi nd
Bind value to placeholder

Description

abstract public mysqgl _xdevapi\ CrudQOperati onBi ndabl e nmysqgl _xdevapi \ CrudOper at i onBi ndabl e: : bi nd(
array pl acehol der_val ues)

Binds a value to a specific placeholder.

I Warning

This function is currently not documented; only its argument list is available.

336

http://www.php.net/mysql_xdevapiColumnResult::isPadded

CrudOperationLimitable interface

Parameters

pl acehol der val ues The name of the placeholders and the values to bind.
Return Values

A CrudOperationBindable object.

Examples

Example 5.69 nysql _xdevapi \ CrudQper at i onBi ndabl e: : bi nd example

<?php

$res = $col | ->nodi fy(' nane |ike :nanme')->arraylnsert('job[0]', 'Calciatore')->bind(['name’ => 'ENTITY'])->
$res = $tabl e->del ete()->orderby(' age desc')->where(' age < 20 and age > 12 and nane != :nane')->bi nd([' nam
?>

5.13 CrudOperationLimitable interface

Copyright 1997-2019 the PHP Documentation Group.

nysql _xdevapi \ CrudOper ati onLi m tabl e {
nysql _xdevapi \ CrudOper ati onLi ni tabl e

Met hods

abstract public nmysqgl _xdevapi\CrudQOperationLi mtabl e nmysqgl _xdevapi\ CrudOperationLimtable::limt(
i nteger rows);

}
5.13.1 CGrudQperationLimtable::limt
Copyright 1997-2019 the PHP Documentation Group.
e CrudOperationLimtable::limt
Set result limit

Description

abstract public nysqgl _xdevapi\CrudOperationLi m tabl e nysqgl _xdevapi \ CrudOperationLimtable::limt(
i nteger rows);

Sets the maximum number of records or documents to return.
Warning
I This function is currently not documented; only its argument list is available.
Parameters

r ows The maximum number of records or documents.

337

http://www.php.net/mysql_xdevapiCrudOperationBindable::bind

CrudOperationSkippable interface

Return Values
A CrudOperationLimitable object.
Examples

Example 5.70 nysql _xdevapi \ CrudQperationLinmtable::1imt example

<?php

$res = $coll->find()->fields(['nane as n',"'age as a','job as j'])->groupBy('j"')->limt(11)->execute();

$res = $tabl e->update()->set (' age', 69)->where('age > 15 and age < 22')->limt(4)->orderby([' age asc',' nanme des
?>

5.14 CrudOperationSkippable interface

Copyright 1997-2019 the PHP Documentation Group.

mysql _xdevapi \ CrudOper at i onSki ppabl e {
nmysql _xdevapi \ CrudOper at i onSki ppabl e

Met hods

abstract public nysqgl _xdevapi\ CrudQOperati onSki ppabl e mysqgl _xdevapi \ CrudQper at i onSki ppabl e: : ski p(
i nt eger skip);

}
5.14.1 CrudQper at i onSki ppabl e: : ski p
Copyright 1997-2019 the PHP Documentation Group.
* CrudOper ati onSki ppabl e: : ski p
Number of operations to skip

Description

abstract public nysqgl _xdevapi\ CrudQperati onSki ppabl e mysqgl _xdevapi \ CrudQper at i onSki ppabl e: : ski p(
i nt eger skip);

Skip this number of records in the returned operation.
Warning
I This function is currently not documented; only its argument list is available.
Parameters
skip Number of elements to skip.
Return Values

A CrudOperationSkippable object.

338

http://www.php.net/mysql_xdevapiCrudOperationLimitable::limit

CrudOperationSortable interface

Examples

Example 5.71 nysql _xdevapi \ CrudQper at i onSki ppabl e: : ski p example

<?php
$res = $coll->find('job like \'Progranmatore\'')->limt(1)->skip(3)->sort('age asc')->execute();

?>

5.15 CrudOperationSortable interface

Copyright 1997-2019 the PHP Documentation Group.

nysql _xdevapi \ CrudOper at i onSort abl e {
nysql _xdevapi \ CrudOper at i onSort abl e

Met hods

abstract public nmysqgl _xdevapi\CrudQperationSortabl e nysqgl _xdevapi \ CrudQOperati onSort abl e: : sort (
string sort_expr);

}
5.15.1 CrudQper ati onSort abl e: : sort
Copyright 1997-2019 the PHP Documentation Group.
e CrudQOperationSortable::sort
Sort results

Description

abstract public nmysqgl _xdevapi\ CrudQOperati onSortabl e nmysqgl _xdevapi \ CrudQOperati onSort abl e: : sort (
string sort_expr)

Sort the result set by the field selected in the sort_expr argument. The allowed orders are ASC (Ascending)
or DESC (Descending). This operation is equivalent to the 'ORDER BY' SQL operation and it follows the
same set of rules.

Warning
This function is currently not documented; only its argument list is available.
Parameters

sort _expr One or more sorting expressions can be provided. The evaluation is
from left to right, and each expression is separated by a comma.

Return Values

A CrudOperationSortable object.

339

http://www.php.net/mysql_xdevapiCrudOperationSkippable::skip

DatabaseObiject interface

Examples

Example 5.72 nysql _xdevapi \ CrudQOper ati onSort abl e: : sort example

<?php
$res = $coll->find('job like \'Cavia\'"')->sort('age desc', '_id desc')->execute();

?>

5.16 DatabaseObject interface

Copyright 1997-2019 the PHP Documentation Group.

nmysql _xdevapi \ Dat abaseCbj ect {
nmysql _xdevapi \ Dat abase(bj ect

Met hods
abstract public bool nysqgl _xdevapi\ Dat abaseObj ect: : exi st sl nDat abase()
abstract public string nysqgl _xdevapi\ Dat abaseObj ect : : get Nane()

abstract public mysqgl _xdevapi\ Sessi on mysqgl _xdevapi \ Dat abasebj ect : : get Sessi on() ;

}

5.16.1 Dat abasebj ect : : exi st sl nDat abase

Copyright 1997-2019 the PHP Documentation Group.
» Dat abaseObj ect : : exi st sl nDat abase
Check if object exists in database

Description

abstract public bool nysqgl_xdevapi\ Dat abaseObj ect : : exi st sl nDat abase() ;
Verifies if the database object refers to an object that exists in the database.
Parameters
This function has no parameters.
Return Values
Returns TRUE if object exists in the database, else FALSE if it does not.
Examples

Example 5.73 nysql _xdevapi \ Dat abasebj ect : : exi st sl nDat abase example

340

http://www.php.net/mysql_xdevapiCrudOperationSortable::sort
http://www.php.net/mysql_xdevapiDatabaseObject::existsInDatabase

Dat abaseObj ect : : get Nane

<?php
$exi st nDb = $dbObj - >exi st sl nDat abase() ;

?>

5.16.2 Dat abase(Obj ect : : get Nane
Copyright 1997-2019 the PHP Documentation Group.
» Dat abaseOhj ect : : get Nane
Get object name

Description

abstract public string nysqgl _xdevapi\ Dat abaseObj ect : : get Nane()
Fetch name of this database object.
Warning
I This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.
Return Values
The name of this database object.
Examples

Example 5.74 nysql _xdevapi \ Dat abaseChj ect : : get Nane example

<?php
$dboj Nane = $dbbj - >get Nane() ;

?>

5.16.3 Dat abaseObj ect : : get Sessi on
Copyright 1997-2019 the PHP Documentation Group.
» Dat abasebj ect : : get Sessi on
Get session name

Description

abstract public nysqgl _xdevapi\ Sessi on nmysql _xdevapi \ Dat abaseObj ect : : get Sessi on() ;

Fetch session associated to the database object.

341

http://www.php.net/mysql_xdevapiDatabaseObject::getName

DocResult class

Warning
This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.
Return Values
The Session object.
Examples

Example 5.75 nysql xdevapi \ Dat abaseObj ect : : get Sessi on example

<?php
$sessi on = $dbObj - >get Sessi on() ;

2>

5.17 DocResult class

Copyright 1997-2019 the PHP Documentation Group.

nmysql _xdevapi \ DocResul t {
nmysql _xdevapi \ DocResul t

nmysql _xdevapi \ BaseResul t
Traversabl e
Met hods
public Array nysql _xdevapi\DocResult::fetchAll ()
public Ooject mysql _xdevapi\DocResult::fetchOne();
public Array mnysql _xdevapi\ DocResul t:: get Warni ngs();
public integer nysqgl_xdevapi\DocResult:: get War ni ngsCount ()

}
5.17.1 DocResul t:: _construct
Copyright 1997-2019 the PHP Documentation Group.
e DocResult:: construct
DocResult constructor

Description

342

http://www.php.net/mysql_xdevapiDatabaseObject::getSession

DocResul t:: fetchAll

private mysql _xdevapi\DocResult::__construct();
Fetch document results and warnings, and is instantiated by CollectionFind.
Parameters
This function has no parameters.
Examples

Example 5.76 A DocResult example

<?php

$sessi on = nysql _xdevapi \ get Sessi on("nysql x: // user: passwor d@ ocal host");
$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e();

$schema = $sessi on->get Schema(" addr essbook")

$create = $schemn->createCol | ecti on("peopl e")

$create->add(' {"nanme": "Alfred", "age": 18, "job": "Butler"}')->execute()
$create->add(' {"nane": "Reginald", "age": 42, "job": "Butler"}')->execute()
/1

$col | ection = $schema- >get Col | ecti on(" peopl e")

/1 Yields a DocResul t object

$result = $coll ection
->find('job like :job and age > :age')
->bind(['job' => 'Butler', 'age' => 16])
->sort (' age desc')
->limt(1)
->execute();

var _dunp($resul t->fetchAll())
?>

The above example will output something similar to:

array(1) {

[0]=>

array(4) {
["_id"]=>
string(28) "00005b6b536100000000000000f 3"
["age"] =>
int(42)
["job"]=>
string(6) "Butler"
["nanme"] =>
string(8) "Reginald"

5.17.2 DocResul t : : f et chAl |

Copyright 1997-2019 the PHP Documentation Group.

343

DocResul t:: fetchAll

e DocResul t::fetchAll
Get all rows

Description

public Array nysql _xdevapi\DocResult::fetchAll ();
Fetch all results from a result set.
Parameters
This function has no parameters.
Return Values
An array with all results from the query; each result is an associative array.
Examples

Example 5.77 nysql xdevapi \ DocResul t:: fetchAl | example

<?php

$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;
$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e();

$schena = $sessi on- >get Schenma(" addr essbook")

$create = $schema- >creat eCol | ecti on(" peopl e")

$create->add(' {"nane": "Alfred", "age": 18, "job": "Butler"}')->execute()
$creat e- >add(' {"nane": "Reginald", "age": 42, "job": "Butler"}')->execute()
/1

$col | ecti on = $schenm- >get Col | ecti on(" peopl e")

/'l Yields a DocResult object

$result = $col | ection
->find('job like :job and age > :age')
->bind(['job' => "Butler', 'age' => 16])
->sort (' age desc')
->execute();

var _dunp($resul t->fetchAll())
2>

The above example will output something similar to:

array(2) {

[0] =>
array(4) {
["_id"]=>
string(28) "00005b6b53610000000000000123"
["age"] =>
int(42)
["job"]=>

344

http://www.php.net/mysql_xdevapiDocResult::fetchAll

DocResul t:: fetchOne

string(6) "Butler"

["name"] =>

string(8) "Reginald"
}

[1]=>
array(4) {
["_id"]=>
string(28) "00005b6b53610000000000000122"
["age"] =>
int(18)
["job"]=>
string(6) "Butler"
["name"] =>
string(6) "Alfred"

5.17.3 DocResul t:: fetchOne

Copyright 1997-2019 the PHP Documentation Group.
e DocResult::fetchOne
Get one row

Description

public Object nysqgl _xdevapi\DocResult::fetchOne();
Fetch one result from a result set.
Parameters
This function has no parameters.
Return Values
The result, as an associative array.
Examples

Example 5.78 nysql _xdevapi \ DocResul t: : f et chOne example

<?php

$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;
$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e() ;

$schenma = $sessi on- >get Schenma(" addr essbook") ;

$create = $schemn- >creat eCol | ecti on(" peopl e");

$create->add(' {"nane": "Alfred", "age": 18, "job": "Butler"}')->execute();
$creat e->add(' {"nane": "Reginald", "age": 42, "job": "Butler"}')->execute();
/1

$col | ecti on = $schenm- >get Col | ecti on(" peopl e");

345

http://www.php.net/mysql_xdevapiDocResult::fetchOne

DocResul t:: get War ni ngs

/1 Yields a DocResult object

$result = $coll ection
->find('job like :job and age > :age')
->bind(['job' => "Butler', 'age' => 16])
->sort (' age desc')
->execute();

var _dunp($resul t->fetchOne());
?>

The above example will output something similar to:

array(4) {
["_id"]=>
string(28) "00005b6b53610000000000000125"
["age"] =>
int(42)
["job"]=>
string(6) "Butler"
["nanme"] =>
string(8) "Reginald"

5.17.4 DocResul t : : get War ni ngs

Copyright 1997-2019 the PHP Documentation Group.
* DocResul t:: get V\r ni ngs
Get warnings from last operation

Description

public Array nysql _xdevapi\ DocResul t:: get Warni ngs();
Fetches warnings generated by MySQL server's last operation.
Parameters
This function has no parameters.
Return Values
An array of warnings raised by the last operation, or FALSE if no warnings are present.

Examples

Example 5.79 nysql xdevapi \ DocResul t:: get \ar ni ngs example

<?php

$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;
$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e() ;

346

http://www.php.net/mysql_xdevapiDocResult::getWarnings

DocResul t: : get Var ni ngsCount

$schena = $sessi on- >get Scherma(" addr essbook")

$create = $schemn- >creat eCol | ecti on(" peopl e")

$create->add(' {"nane": "Alfred", "age": 18, "job": "Butler"}')->execute()
$creat e->add(' {"nane": "Reginald", "age": 42, "job": "Butler"}')->execute()
/1

$col | ecti on = $schenm- >get Col | ecti on(" peopl e")

/1 Yields a DocResult object

$result = $col | ection
->find('job like :job and age > :age')
->bind(['job' => "Butler', 'age' => 16])
->sort (' age desc')
->execute();

if (!$result->getWarningsCount()) {
echo "There was an error:\n"
print_r($result->get Warnings());
exit;

}

var _dunp($resul t->fetchOne())
?>

The above example will output something similar to:

There was an error:

Array

(
[0] => nysql _xdevapi \ Warni ng Cbj ect

(

[message] => Sonet hi ng bad and so on
[level] => 2
[code] => 1365

)
[1] => nysql _xdevapi \ Warni ng bj ect

(

[message] => Sonet hi ng bad and so on
[level] => 2
[code] => 1365

5.17.5 DocResul t : : get War ni ngsCount
Copyright 1997-2019 the PHP Documentation Group.
* DocResul t:: get War ni ngsCount
Get warning count from last operation

Description

public integer mysqgl _xdevapi\DocResul t:: get War ni ngsCount ()

347

DocResul t: : get Var ni ngsCount

Returns the number of warnings raised by the last operation. Specifically, these warnings are raised by the
MySQL server.

Parameters

This function has no parameters.

Return Values

The number of warnings from the last operation, or FALSE if there are no warnings.
Examples

Example 5.80 nysql _xdevapi \ DocResul t: : get War ni ngsCount example

<?php

$sessi on = nysql _xdevapi \ get Sessi on("nysql x: // user: passwor d@ ocal host");
$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e();

$schema = $sessi on- >get Schema(" addr essbook")

$create = $schemn->createCol | ecti on("peopl e")

$create->add(' {"nanme": "Alfred", "age": 18, "job": "Butler"}')->execute()
$create->add(' {"nane": "Reginald", "age": 42, "job": "Butler"}')->execute()
/1

$col | ecti on = $schema- >get Col | ecti on(" peopl e")

/1 Yields a DocResult object

$result = $col | ection
->find('job like :job and age > :age')
->bind(['job' => 'Butler', 'age' => 16])
->sort (' age desc')
->execut e();

if (!$result->getWarningsCount()) {
echo "There was an error:\n"
print_r($result->get Warnings());
exit;

}

var _dunp($resul t->fetchOne())
?>

The above example will output something similar to:

array(4) {
["_id"]=>
string(28) "00005b6b53610000000000000135"
["age"] =>
int(42)
["job"]=>
string(6) "Butler"
["nanme"] =>
string(8) "Reginald"

348

http://www.php.net/mysql_xdevapiDocResult::getWarningsCount

Driver class

5.18 Driver class

Copyright 1997-2019 the PHP Documentation Group.

nysql _xdevapi \ Dri ver {
nmysql _xdevapi \ Dri ver

Const ant s
const string
nysql _xdevapi \ Dri ver::version
= =8.0.3

Construct or

private nysql _xdevapi\Driver::__construct();

nysql _xdevapi
\Driver::version

5.18.1Driver:: construct

Copyright 1997-2019 the PHP Documentation Group.
e Driver:: _construct

Driver constructor

Description
private nysqgl _xdevapi\Driver::__construct();
Warning
This function is currently not documented; only its argument list is available.
Parameters

This function has no parameters.
Examples

Example 5.81 nysql xdevapi\Driver:: construct example

<?php
0% oo ®f

?>

349

http://www.php.net/mysql_xdevapiDriver::__construct

Exception class

5.19 Exception class

Copyright 1997-2019 the PHP Documentation Group.

nmysql _xdevapi \ Excepti on {
nmysql _xdevapi \ Excepti onext ends Runti meExcepti on

Thr owabl e

}

5.20 Executable interface

Copyright 1997-2019 the PHP Documentation Group.

nysql _xdevapi \ Execut abl e {
nysql _xdevapi \ Execut abl e

Met hods

abstract public nmysqgl _xdevapi\ Result nysqgl _xdevapi \ Execut abl e: : execut e()

}
5.20.1 Execut abl e: : execut e
Copyright 1997-2019 the PHP Documentation Group.
* Execut abl e: : execute
Execute statement

Description

abstract public nmysqgl _xdevapi\ Result nysqgl _xdevapi \ Execut abl e: : execut e()

Execute the statement from either a collection operation or a table query; this functionality allows for
method chaining.

Parameters

This function has no parameters.

Return Values

One of the Result objects, such as Result or SqlStatementResult.
Examples

Example 5.82 execute() examples

<?php

350

ExecutionStatus class

$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;
$result _sqgl = $sessi on->sql (" CREATE DATABASE addr essbook") - >execute();

var _dunp($resul t_sql);

$schema
$col | ection

$sessi on- >get Schenu(" addr essbook") ;
$schena- >cr eat eCol | ecti on("humans") ;

$resul t _coll ection = $col |l ecti on->add(
"{"nanme": "Jane",
"jobs": [{"title":"Scientist","Salary": 18000}, {"title":"Mther","Salary":0}],
"hobbi es": ["Wal ki ng", "Maki ng pies"]}"');
$result_col | ection_executed = $result_col | ecti on->execute();

var _dunp($resul t _col | ection);

var _dunp($resul t _col | ecti on_execut ed) ;
?>

The above example will output something similar to:

obj ect (mysql _xdevapi \ Sgl St at enent Resul t) #3 (0) {
}

obj ect (mysql _xdevapi \ Col | ecti onAdd) #5 (0) {

}

obj ect (mysql _xdevapi \ Resul t)#7 (0) {
}

5.21 ExecutionStatus class

Copyright 1997-2019 the PHP Documentation Group.

nmysql _xdevapi \ Executi onSt at us {
nmysql _xdevapi \ Execut i onSt at us

Properties

public
affectedltens ;

public
mat chedl t ens ;

public
foundl tens ;

public
lastlnsertld ;

public
| ast Docunent I d ;

351

ExecutionStatus:: __construct

Construct or

private nysql _xdevapi \ ExecutionStatus::__construct();

af fectedl tens
mat chedl t ens
foundl t ens

lastlnsertld

| ast Docunent | d

5.21.1 ExecutionStatus:: _construct

Copyright 1997-2019 the PHP Documentation Group.
 ExecutionStatus:: _construct

ExecutionStatus constructor

Description
private nysql _xdevapi \ ExecutionStatus::__construct();
Warning
This function is currently not documented; only its argument list is available.
Parameters

This function has no parameters.
Examples

Example 5.83 nysql xdevapi \ ExecutionStatus:: construct example

<?php
[* ... %]

2>

5.22 Expression class

Copyright 1997-2019 the PHP Documentation Group.

nmysql _xdevapi \ Expressi on {
nmysql _xdevapi \ Expr essi on

352

http://www.php.net/mysql_xdevapiExecutionStatus::__construct

Expression:: __construct

Properties

public
name ;

Construct or

publ i ¢ nysql _xdevapi \ Expressi on:: __construct (
string expression);

nane

5.22.1 Expression:: __construct
Copyright 1997-2019 the PHP Documentation Group.
e Expression::__construct
Expression constructor

Description

publ i ¢ nysql _xdevapi \ Expressi on::__construct (
string expression);

Warning
I This function is currently not documented; only its argument list is available.
Parameters
expr essi on

Examples

Example 5.84 nysql xdevapi \ Expression:: __construct example

<?php
0= oo *

?>

5.23 FieldMetadata class

Copyright 1997-2019 the PHP Documentation Group.

nmysql _xdevapi \ Fi el dMet adat a {
nmysql _xdevapi \ Fi el dMet adat a

353

http://www.php.net/mysql_xdevapiExpression::__construct

FieldMetadata class

type

type_nane

name

ori gi nal _nane
tabl e

original _table
schema

cat al og

coll ation

354

Fi el dMet adat a: : __construct

fractional _digits
[ength
flags

content _type

5.23.1 Fi el dMet adat a: : __construct

Copyright 1997-2019 the PHP Documentation Group.
 Fiel dvetadata::__construct
FieldMetadata constructor

Description

private nysql _xdevapi\Fi el dMet adata: : __construct ()

Provides metadata about a table. A FieldMetadata object is provided by other methods, such as
RowResult::getColumns() as demonstrated in the example that follows.

Parameters
This function has no parameters.
Examples

Example 5.85 nysql _xdevapi \ RowResul t : : get Col unms example

<?php
$sessi on = nysql _xdevapi \ get Sessi on("nysql x: // user: passwor d@ ocal host");

$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on- >sql (" CREATE DATABASE fo00") - >execute();

$sessi on- >sql (" CREATE TABLE foo.test_table(x int)")->execute();

$sessi on->sql ("1 NSERT | NTO addr essbook. nanes val ues ('John', 42), ('Sani, 33)")->execute();
$sql = $session->sql ("SELECT * from addr essbook. nanes") - >execut e();

$col s = $sql - >get Col ums();

print_r($cols);

The above example will output something similar to:

Array
[0] => nysqgl _xdevapi\ Fi el dMet adat a Cbj ect

[type] => 7

[type_name] => BYTES

[nane] => nane
[original _nane] => nane
[tabl e] => nanmes

355

http://www.php.net/mysql_xdevapiRowResult::getColumns

Result class

)

[original _table] => nanmes
[schema] => addr essbook
[catal og] => def
[collation] => 255
[fractional _digits] => 0
[l ength] => 65535

[flags] => 0

[content _type] => 0O

[1] => nysqgl _xdevapi\ Fi el dMet adat a Cbj ect

(

[type] =>1

[type_nanme] => SINT

[nane] => age

[original _nane] => age
[tabl e] => names
[original _table] => nanmes
[schema] => addr essbook
[catal og] => def
[collation] => 0
[fractional _digits] => 0
[length] => 11

[flags] => 0O

[content _type] => 0O

5.24 Result class

Copyright 1997-2019 the PHP Documentation Group.

nmysql _xdevapi \ Resul t {
nmysql _xdevapi \ Resul t

}

5241 Resul t::

nmysql _xdevapi \ BaseResul t

Traver sabl e

Met hods

public int nmysqgl_xdevapi\Result::getAutol ncrenent Val ue();
public ArrayOrlnt nysqgl _xdevapi \ Resul t:: get Gener at edl ds()
public array nysql xdevapi\ Resul t:: get War ni ngs()

public integer mysql _xdevapi\Result:: getWrni ngsCount ()

__construct

Copyright 1997-2019 the PHP Documentation Group.

e Result::

Description

__construct

Result constructor

356

Resul t:: get Aut ol ncr enmrent Val ue

private mysql _xdevapi\Result::__construct();

An object that retrieves generated IDs, AUTO_INCREMENT values, and warnings, for a Result set.

Parameters
This function has no parameters.
Examples

Example 5.86 nysql _xdevapi \ Resul t::__construct example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;
$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e();
$sessi on->sql ("

CREATE TABLE addr essbook. nanes

(id INT NOT NULL AUTO | NCREMENT, name VARCHAR(30), age | NT, PRI MARY KEY (id))

")->execute();

$schena = $sessi on- >get Scherma(" addr essbook") ;

$tabl e = $schema- >get Tabl e(" nanes");

$result = S$tabl e->i nsert("nanme", "age")->val ues(["Suzanne", 31],["Julie",
$result = S$tabl e->i nsert("name", "age")->val ues(["Suki", 34])->execute();
$ai = $result->get Aut ol ncrenent Val ue() ;

var _dunp($ai) ;

2>

The above example will output:

int(3)

5.24.2 Resul t : : get Aut ol ncr enent Val ue
Copyright 1997-2019 the PHP Documentation Group.
* Resul t::getAutol ncrenent Val ue
Get autoincremented value

Description

public int nysqgl_xdevapi\Result::getAut ol ncrenent Val ue();
Get the last AUTO_INCREMENT value (last insert id).
Parameters
This function has no parameters.

Return Values

43]) - >execut e() ;

357

http://www.php.net/mysql_xdevapiResult::__construct

Resul t:: get Cener at edl ds

The last AUTO_INCREMENT value.
Examples

Example 5.87 nysql _xdevapi \ Resul t: : get Aut ol ncr enent Val ue example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$sessi on->sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;
$sessi on->sql (" CREATE DATABASE addr essbook") ->execut e();
$sessi on->sql ("
CREATE TABLE addr essbook. nanes
(id INT NOT NULL AUTO_| NCREMENT, nane VARCHAR(30), age |NT, PRI MARY KEY (id))
")->execute();

$schema = $sessi on- >get Schenma(" addr essbook") ;

$table = $schenm->get Tabl e(" nanes");

$result = $tabl e->i nsert("nane", "age")->val ues(["Suzanne", 31],["Julie", 43])->execute();
$result = $tabl e->i nsert("nanme", "age")->val ues(["Suki", 34])->execute();

$ai = $resul t->get Aut ol ncr enent Val ue() ;

var _dunp($ai)

?>

The above example will output:

int(3)

5.24.3 Resul t : : get Gener at edl ds

Copyright 1997-2019 the PHP Documentation Group.
* Result::getGeneratedlds
Get generated ids

Description

public ArrayOrlnt nysql _xdevapi \ Resul t:: get Gener at edl ds()

Fetch the generated _id values from the last operation. The unique _id field is generated by the MySQL
server.

Parameters

This function has no parameters.

Return Values

An array of generated _id's from the last operation.

Examples

358

http://www.php.net/mysql_xdevapiResult::getAutoIncrementValue

Resul t:: get War ni ngs

Example 5.88 nysql xdevapi \ Resul t:: get Gener at edl ds example

<?php

$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;
$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e();

$schema
$create

= $sessi on- >get Schema(" addr essbook") ;
= $schenm- >cr eat eCol | ecti on(" peopl e");

$col | ecti on = $schenm- >get Col | ecti on(" peopl e");

$result = $col | ecti on->add(
"{"nanme": "Bernie",

"jobs": [{"title":"Cat Herder","Sal ary": 42000}, {"title":"Father","Salary":0}],

"hobbi es": ["Sports", " Mking cupcakes"]}"',
"{"nanme": "Jane",

"jobs": [{"title":"Scientist","Salary":18000}, {"title":"Mther","Salary":0}],

"hobbi es": ["Wal ki ng", "Maki ng pies"]}"')->execute();

$i ds = $resul t->get Generatedl ds();
var _dunp($i ds) ;
?>

The above example will output something similar to:

array(2) {
[0]=>
string(28) "00005b6b53610000000000000064"
[1]=>
string(28) "00005b6b53610000000000000065"
}

5.24.4 Resul t: : get War ni ngs

Copyright 1997-2019 the PHP Documentation Group.
* Resul t::getWarnings
Get warnings from last operation

Description

public array nysql xdevapi\ Resul t:: get War ni ngs()
Retrieve warnings from the last Result operation.
Parameters
This function has no parameters.

Return Values

An array of Warning objects from the last operation. Each object defines an error 'message’, error 'level’,

and error 'code’.

359

http://www.php.net/mysql_xdevapiResult::getGeneratedIds

Resul t: : get Var ni ngsCount

Examples

Example 5.89 nysql _xdevapi \ RowResul t: : get Var ni ngs example

<?php
$session = nysql _xdevapi \ get Sessi on("nysql x: // user : passwor d@ ocal host ") ;

$sessi on->sql (" CREATE DATABASE f oo")->execut e();
$sessi on- >sql (" CREATE TABLE foo.test_table(x int)")->execute();

$schema
$tabl e

= $sessi on- >get Schema("foo0");
= $schema- >get Tabl e("test _table");

$tabl e->insert ([' x'])->val ues([1])->val ues([2])->execute();

$res = $table->select(['x/0 as bad_x'])->execute();
$war ni ngs = $res->get War ni ngs() ;

print_r($war ni ngs) ;
2>

The above example will output something similar to:

Array
[0] => nysql _xdevapi \ War ni ng bj ect
(
[message] => Division by 0

[level] => 2
[code] => 1365

)
[1] => nysql _xdevapi \ War ni ng bj ect
(
[message] => Division by 0

[level] => 2
[code] => 1365

5.24.5 Resul t: : get War ni ngsCount
Copyright 1997-2019 the PHP Documentation Group.
* Resul t:: get War ni ngsCount
Get warning count from last operation

Description

public integer nysql_xdevapi\Result::getWrni ngsCount ();
Retrieve the number of warnings from the last Result operation.
Parameters

This function has no parameters.

360

http://www.php.net/mysql_xdevapiRowResult::getWarnings

RowResult class

Return Values

The number of warnings generated by the last operation, or FALSE if the result set is empty or there are no
warnings.

Examples

Example 5.90 nysql xdevapi \ RowResul t : : get Var ni ngsCount example

<?php
$sessi on

= nysql _xdevapi \ get Sessi on("nysql x: // user: passwor d@ ocal host");

$sessi on- >sql (" DROP DATABASE | F EXI STS fo00") - >execut e();
$sessi on- >sql (" CREATE DATABASE fo00") - >execute();
$sessi on- >sql (" CREATE TABLE foo.test_table(x int)")->execute();

$schema
$t abl e

$sessi on- >get Schena("f 00") ;
$schema- >get Tabl e("test _table");

$tabl e->insert (['x'])->val ues([1])->val ues([2])->execute();

$res = $tabl e->select(['x/0 as bad_x'])->execute();

echo $res->get War ni ngsCount () ;

?>

The above example will output something similar to:

5.25 RowResult class

Copyright 1997-2019 the PHP Documentation Group.

nysql _xdevapi \ RowResul t {
nysql _xdevapi \ RowResul t

nysql _xdevapi \ BaseResul t

Traver sabl e

Met hods

public array nysql xdevapi\RowResult::fetchAll ();

public
public
public
public

public

obj ect mysql _xdevapi \ RowResul t:: fetchOne();

i nt eger nysql _xdevapi \ RowResul t : : get Col ummCount () ;
array mysql _xdevapi \ RowResul t : : get Col ummNanes() ;
array mysql _xdevapi \ RowResul t: : get Col utms() ;

array mysql _xdevapi \ RowResul t : : get War ni ngs() ;

361

http://www.php.net/mysql_xdevapiRowResult::getWarningsCount

RowResul t:: __construct

public integer mysql _xdevapi\ RowResul t: : get War ni ngsCount ()

}
5.25.1 RowResul t:: construct
Copyright 1997-2019 the PHP Documentation Group.
* RowResult:: construct
RowResult constructor

Description

private nysql _xdevapi \ RowResult::__construct()
Represents the result set obtained from querying the database.
Parameters
This function has no parameters.
Examples

Example 5.91 nysql _xdevapi \ RowResul t:: __construct example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$schena = $sessi on- >get Schenma(" addr essbook") ;
$tabl e = $schema- >get Tabl e(" nanes");
$row = $tabl e->sel ect (' nane', 'age')->where('age > 18')->execute()->fetchAll();

print_r($row;

The above example will output something similar to:

Array
[0] => Array
[name] => John
[age] => 42
[1] L> Array

[name] => Sam
[age] => 33

5.25.2 RowResul t:: fetchAl l

Copyright 1997-2019 the PHP Documentation Group.

362

http://www.php.net/mysql_xdevapiRowResult::__construct

RowResul t:: fet chOne

e RowResul t::fetchAll
Get all rows from result

Description

public array nysql _xdevapi\RowResult::fetchAll ();
Fetch all the rows from the result set.
Parameters
This function has no parameters.
Return Values
A numerical array of results, with each row as an array.
Examples

Example 5.92 nysql _xdevapi \ RowResul t: : f et chAl | example

<?php
$sessi on = nysql _xdevapi \ get Sessi on("nysql x: // user: passwor d@ ocal host");

$sessi on- >sql (" DROP DATABASE addr essbook") - >execute();

$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e();

$sessi on- >sql (" CREATE TABLE addr essbook. nanes(nanme text, age int)")->execute();

$sessi on->sql ("1 NSERT | NTO addr essbook. nanes val ues ('John', 42), ('Sani, 33)")->execute();

$schema = $sessi on- >get Schema(" addr essbook");
$table = $schemn->get Tabl e(" nanes");
$row = $tabl e->sel ect (' nane', 'age')->execute()->fetchAl();

print_r($row;

The above example will output something similar to:

Array
[0] => Array
[nanme] => John
[age] => 42
[1] => Array

[name] => Sam
[age] => 33

5.25.3 RowResul t:: fetchOne

Copyright 1997-2019 the PHP Documentation Group.

363

http://www.php.net/mysql_xdevapiRowResult::fetchAll

RowResul t : : get Col umCount

e RowResult::fetchOne
Get row from result

Description

public object nysqgl _xdevapi\ RowResult::fetchOne();
Fetch one result from the result set.
Warning
This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.

Return Values

Examples

Example 5.93 nysql _xdevapi \ RowResul t: : f et chOne example

<?php

$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$sessi on- >sql (" DROP DATABASE addr essbook") - >execut e();

$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e();

$sessi on- >sql (" CREATE TABLE addr essbook. names(nanme text, age int)")->execute();

$sessi on- >sql ("I NSERT | NTO addr essbook. nanes val ues ('John', 42), ('Sam, 33)")->execute();

$schenma = $sessi on- >get Schenma(" addr essbook") ;
$tabl e = $schema- >get Tabl e(" nanes");

$row = $tabl e->sel ect (' nane', 'age')->where('age < 40')->execute()->fetchOne();

print_r($row;

The above example will output something similar to:

Array
(

[nane] => Sam
[age] => 33

5.25.4 RowResul t : : get Col utmCount
Copyright 1997-2019 the PHP Documentation Group.
* RowResul t: : get Col umCount

Get column count

364

http://www.php.net/mysql_xdevapiRowResult::fetchOne

RowResul t : : get Col utmNanes

Description

public integer mysqgl _xdevapi\ RowResul t: : get Col utmCount () ;
Retrieve the column count for columns present in the result set.
Parameters
This function has no parameters.
Return Values
The number of columns, or FALSE if the result set is empty.
Examples

Example 5.94 nysql _xdevapi \ RowResul t : : get Col uimCount example

<?php
$session = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$sessi on- >sql (" DROP DATABASE addr essbook") - >execut e();

$sessi on- >sql (" CREATE DATABASE fo00") - >execute();

$sessi on- >sql (" CREATE TABLE foo.test_table(x int)")->execute();

$sessi on->sql ("I NSERT | NTO addr essbook. names val ues ('John', 42), ('Sam, 33)")->execute();

$sgl = $session->sql ("SELECT * from addr essbook. nanes") - >execut e() ;

echo $sql - >get Col utmCount () ;

The above example will output something similar to:

5.25.5 RowResul t : : get Col umNanes

Copyright 1997-2019 the PHP Documentation Group.
* RowResul t: : get Col umNanes
Get all column names

Description

public array nysql _xdevapi \ RowResul t: : get Col unmNanes() ;
Retrieve column names for columns present in the result set.
Warning
This function is currently not documented; only its argument list is available.

Parameters

365

http://www.php.net/mysql_xdevapiRowResult::getColumnCount

RowResul t : : get Col ums

This function has no parameters.

Return Values

A numerical array of table columns names, or FALSE if the result set is empty.

Examples

Example 5.95 nysql xdevapi \ RowResul t : : get Col utmNanes example

<?php
$session = nysql _xdevapi \ get Sessi on("nysql x: // user : passwor d@ ocal host ") ;

$sessi on->sql (" DROP DATABASE addr essbook") - >execut e()
$sessi on->sql (" CREATE DATABASE f 00")->execut e()
$sessi on->sql (" CREATE TABLE foo.test_table(x int)")->execute();

$sessi on->sql ("I NSERT | NTO addr essbook. nanes val ues ('John', 42), ('Sani,

$sql = $session->sql ("SELECT * from addr essbook. nanes") - >execut e() ;
$col nanes = $sql - >get Col ummNanes() ;

print_r($col nanes)

The above example will output something similar to:

0] => nane
[1] => age

5.25.6 RowResul t : : get Col ums

Copyright 1997-2019 the PHP Documentation Group.
* RowResul t:: get Col ums
Get column metadata

Description

public array mysql _xdevapi \ RowResul t: : get Col umms() ;
Retrieve column metadata for columns present in the result set.

Warning

33)")->execute();

This function is currently not documented; only its argument list is available.

Parameters
This function has no parameters.

Return Values

366

http://www.php.net/mysql_xdevapiRowResult::getColumnNames

RowResul t : : get Col ums

An array of FieldMetadata objects representing the columns in the result, or FALSE if the result set is

empty.
Examples

Example 5.96 nysql _xdevapi \ RowResul t : : get Col unms example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host")

$sessi on- >sql (" DROP DATABASE addr essbook") - >execut e()
$sessi on- >sql (" CREATE DATABASE fo00") - >execut e()
$sessi on- >sql (" CREATE TABLE foo.test_table(x int)")->execute()
$sessi on- >sql ("I NSERT | NTO addr essbook. nanes val ues ('John', 42), ('Sam,

$sgl = $session->sql ("SELECT * from addr essbook. nanes") - >execut e()

$col s = $sql - >get Col umms() ;

print_r($col s);

The above example will output something similar to:

Array
[0] => nysql _xdevapi\ Fi el dvet adat a Cbj ect

[type] =>7
[type_nane] => BYTES
[nane] => nane
[ori gi nal _nane]
[tabl e] => nanes
[original _table] => nanes
[schema] => addressbook
[catal og] => def
[collation] => 255
[fractional _digits]
[l ength] => 65535
[flags] => 0
[content _type]

=> nane

= 0

= 0
)

[1] => nysql _xdevapi\ Fi el dvet adat a Cbj ect
(

[type] => 1
[type_nane] => SINT
[nane] => age
[ori gi nal _nane]
[tabl e] => nanes
[original _table] => nanes
[schema] => addressbook
[catal og] => def
[collation] => 0
[fractional _digits]
[length] => 11
[flags] => 0
[content _type]

=> age

= 0

= 0

33)")->execute();

367

http://www.php.net/mysql_xdevapiRowResult::getColumns

RowResul t : : get WAr ni ngs

5.25.7 RowResul t : : get War ni ngs
Copyright 1997-2019 the PHP Documentation Group.
« RowResul t:: get War ni ngs
Get warnings from last operation

Description

public array nysqgl _xdevapi \ RowResul t: : get War ni ngs()
Retrieve warnings from the last RowResult operation.
Parameters
This function has no parameters.
Return Values

An array of Warning objects from the last operation. Each object defines an error ‘'message’, error ‘level’,
and error ‘code’.

Examples

Example 5.97 nysql _xdevapi \ RowResul t : : get \ar ni ngs example

<?php
$session = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$sessi on- >execut eSql (" CREATE DATABASE fo0")
$sessi on- >execut eSql (" CREATE TABLE foo.test_table(x int)")

$schema
$t abl e

$sessi on- >get Schema("f 00")
$schenm- >get Tabl e("test _tabl e")

$tabl e->i nsert ([' x"])->val ues([1])->val ues([2])->execute()

$res = $tabl e->select(['x/0 as bad_x'])->execute()
$war ni ngs = $res- >get War ni ngs()

print _r($war ni ngs)
?>

The above example will output something similar to:

Array

[0] => nysql _xdevapi \ Warni ng Obj ect
(
[message] => Division by 0
[level] => 2
[code] => 1365
)
[1] => nysql _xdevapi \ Warni ng Obj ect
(

[message] => Division by O

368

http://www.php.net/mysql_xdevapiRowResult::getWarnings

RowResul t : : get Var ni ngsCount

[level] => 2
[code] => 1365

5.25.8 RowResul t : : get War ni ngsCount
Copyright 1997-2019 the PHP Documentation Group.
* RowResul t: : get War ni ngsCount
Get warning count from last operation

Description

public integer mysql _xdevapi\ RowResul t: : get War ni ngsCount () ;
Retrieve the number of warnings from the last RowResult operation.
Parameters
This function has no parameters.
Return Values

The number of warnings generated by the last operation, or FALSE if the result set is empty or there are no
warnings.

Examples

Example 5.98 nysql _xdevapi \ RowResul t : : get \ar ni ngsCount example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$sessi on->sql (" DROP DATABASE | F EXI STS foo") - >execut e();
$sessi on->sql (" CREATE DATABASE f oo")->execut e();
$sessi on->sql (" CREATE TABLE foo.test _table(x int)")->execute();

$sessi on- >get Schema(" f 00") ;
$schenma- >get Tabl e("t est _t abl e");

$schema
$tabl e

$tabl e->insert ([' x'])->val ues([1])->val ues([2])->execute();
$res = $tabl e->select(['x/0 as bad_x'])->execute();

echo $res->get War ni ngsCount () ;
?>

The above example will output something similar to:

369

http://www.php.net/mysql_xdevapiRowResult::getWarningsCount

Schema class

5.26 Schema class

Copyright 1997-2019 the PHP Documentation Group.

nmysql _xdevapi \ Schema {
nmysql _xdevapi \ Schema

nmysql _xdevapi \ Dat abase(bj ect
Properties

public
nane ;

Met hods

publ i ¢ nysql _xdevapi \ Col | ecti on nysql _xdevapi \ Schena: : creat eCol | ecti on(
string name);

publ i c bool nysqgl _xdevapi\ Schena: : dropCol | ecti on(
string coll ection_nane);

public bool nysql _xdevapi\ Schema: : exi st sl nDat abase() ;

publ i c nysql _xdevapi \ Col | ecti on nysql _xdevapi \ Schena: : get Col | ecti on(
string name);

publ i c nmysql _xdevapi \ Tabl e nmysql _xdevapi \ Schema: : get Col | ecti onAsTabl e(
string nane);

public array nysql _xdevapi\ Schema: : get Col | ecti ons();
public string nysql _xdevapi\ Schema: : get Nane();
publ i c nmysql _xdevapi \ Sessi on nysqgl _xdevapi \ Schena: : get Sessi on() ;

publ i c nmysql _xdevapi \ Tabl e mysql _xdevapi \ Schema: : get Tabl e(
string nane);

public array nysql _xdevapi\ Schema: : get Tabl es();

nane

5.26.1 Schenm: : __construct

Copyright 1997-2019 the PHP Documentation Group.

e Schema:: __construct
constructor
Description
private mysql _xdevapi\Schema:: __construct();

The Schema object provides full access to the schema (database).

Parameters

370

Schema: : creat eCol | ecti on

This function has no parameters.
Examples

Example 5.99 Schema::___construct example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$sessi on- >sql (" DROP DATABASE | F EXI STS food") - >execut e()
$sessi on- >sql (" CREATE DATABASE food") - >execut e()
$sessi on- >sql (" CREATE TABLE food. fruit(name text, rating text)")->execute()

$schena = $sessi on- >get Scherma("food")
$schenm- >creat eCol | ection("trees")

print_r($schema->gettabl es())
print_r($schema->getcol | ections())

The above example will output something similar to:

Array
[fruit] => nysqgl _xdevapi\ Tabl e Obj ect

[name] => fruit

Array
[trees] => nysql _xdevapi\Col |l ecti on Object

[nanme] => trees

5.26.2 Schema: : creat eCol | ecti on
Copyright 1997-2019 the PHP Documentation Group.
* Schemm: : createCol | ection
Add collection to schema

Description

publ i c nmysql _xdevapi\ Col | ecti on nysql _xdevapi \ Schena: : creat eCol | ecti on(
string nane);

Create a collection within the schema.
Warning
This function is currently not documented; only its argument list is available.

Parameters

371

Schema: : dropCol | ection

nane

Return Values

Examples

Example 5.100 Schema::createCollection example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$sessi on- >sql (" DROP DATABASE | F EXI STS food") - >execut e()
$sessi on- >sql (" CREATE DATABASE food") - >execut e()
$sessi on- >sql (" CREATE TABLE food. fruit(name text, rating text)")->execute()

$schena = $sessi on- >get Scherma("f ood")
$schenm- >creat eCol | ection("trees")

print_r($schema->gettabl es())
print_r($schema->getcol | ections())

The above example will output something similar to:

Array
[fruit] => nysqgl _xdevapi\ Tabl e Obj ect

[name] => fruit

Array
[trees] => nysql _xdevapi\Col | ecti on Object

[nane] => trees

5.26.3 Schema: : dropCol | ecti on

Copyright 1997-2019 the PHP Documentation Group.
» Schenm: : dropCol | ection
Drop collection from schema

Description

publ i ¢ bool nysql _xdevapi\ Schena: : dropCol | ecti on(
string coll ection_nane)

Warning

This function is currently not documented; only its argument list is available.

372

Schena: : exi st sl nDat abase

Parameters
col | ecti on_nane

Return Values

Examples

Example 5.101 Schema::dropCollection example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$sessi on- >sql (" DROP DATABASE | F EXI STS food") - >execute();
$sessi on- >sql (" CREATE DATABASE food") - >execute();

$sessi on- >sql (" CREATE TABLE food. fruit(name text, rating text)")->execute();
$schena = $sessi on- >get Schema("food");

$schena- >creat eCol | ection("trees");

$schena- >dropCol | ecti on("trees");

$schenm- >creat eCol | ecti on("bui | di ngs");

print_r($schema->gettabl es());
print_r($schema->getcol | ections());

The above example will output something similar to:

Array
[fruit] => nysqgl _xdevapi\ Tabl e Object
[name] => fruit

)
Array

[bui I di ngs] => nysql _xdevapi\ Col | ecti on Obj ect
(

[nanme] => buil di ngs

5.26.4 Schema: : exi st sl nDat abase
Copyright 1997-2019 the PHP Documentation Group.
* Schenm: : exi st sl nDat abase
Check if exists in database

Description

publ i c bool nysql _xdevapi\ Schema: : exi st sl nDat abase()

373

Schema: : get Col | ecti on

Checks if the current object (schema, table, collection, or view) exists in the schema object.
Warning
This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

TRUE if the schema, table, collection, or view still exists in the schema, else FALSE.

Examples

Example 5.102 Schema::existsinDatabase example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$sessi on- >sql (" DROP DATABASE | F EXI STS food") - >execut e()
$sessi on- >sql (" CREATE DATABASE food") - >execut e()
$sessi on- >sql (" CREATE TABLE food. fruit(name text, rating text)")->execute()

$schenma = $sessi on- >get Scherma("f ood")
$schenm- >creat eCol | ection("trees")

/1

$trees = $schemm- >get Col | ecti on("trees")

/1
/Il Is this collection still in the database (schems)?
i f ($trees->existslnDatabase()) {
echo "Yes, the 'trees' collection is still present.";
}

The above example will output something similar to:

Yes, the '"trees' collection is still present.

5.26.5 Schenm: : get Col | ecti on

Copyright 1997-2019 the PHP Documentation Group.
e Schema: : get Col | ection
Get collection from schema

Description

publ i c mysql xdevapi\ Col | ecti on nysql xdevapi \ Schena: : get Col | ecti on(
string nane);

374

Schena: : get Col | ecti onAsTabl e

Get a collection from the schema.

Parameters

name Collection name to retrieve.
Return Values

The Collection object for the selected collection.

Examples

Example 5.103 Schema::getCollection example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$sessi on- >sql (" DROP DATABASE | F EXI STS food") - >execute();
$sessi on- >sql (" CREATE DATABASE food") - >execute();

$schena = $sessi on- >get Schema("food");
$schena- >creat eCol | ection("trees");

...
$trees = $schemm- >get Col | ection("trees");

var _dunp($trees)

The above example will output something similar to:

obj ect (mysqgl _xdevapi \ Col | ection)#3 (1) {
["name"] =>
string(5) "trees"

}

5.26.6 Schenm: : get Col | ecti onAsTabl e

Copyright 1997-2019 the PHP Documentation Group.
e Schenm: : get Col | ecti onAsTabl e
Get collection table object

Description

publ i c nmysql _xdevapi \ Tabl e mysql _xdevapi \ Schema: : get Col | ecti onAsTabl e(
string name);

Get a collection, but as a Table object instead of a Collection object.
Parameters

nane Name of the collection to instantiate a Table object from.

375

Schena: : get Col | ecti ons

Return Values
A table object for the collection.
Examples

Example 5.104 Schema::getCollectionAsTable example

<?php

$session = nysql _xdevapi \ get Sessi on("nysql x: // user : passwor d@ ocal host ") ;
$sessi on->sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on->sql (" CREATE DATABASE addr essbook") ->execut e();

$schema = $sessi on- >get Schena(" addr essbook") ;

$col | ect = $schenm- >creat eCol | ecti on(" peopl e");

$col | ect ->add(' {"nane": "Fred", "age": 21, "job": "Construction"}')->execute();
$col | ect ->add(' {"nane": "WIm", "age": 23, "job": "Teacher"}')->execute();

$t abl e $schenma- >get Col | ect i onAsTabl e(" peopl ") ;

$col | ecti on = $schenm- >get Col | ecti on(" peopl e");
var _dunp($t abl e) ;
var _dunp($col | ection);

The above example will output something similar to:

obj ect (mysql _xdevapi \ Tabl e) #4 (1) {
["nanme"] =>
string(6) "people"

}

obj ect (mysqgl _xdevapi \ Col | ection)#5 (1) {
["nane"] =>
string(6) "people"

}

5.26.7 Schenma: : get Col | ecti ons

Copyright 1997-2019 the PHP Documentation Group.
» Schenm: : get Col | ecti ons
Get all schema collections

Description

public array nysql xdevapi\ Schena: : get Col | ecti ons();
Fetch a list of collections for this schema.
Parameters
This function has no parameters.

Return Values

376

Schema: : get Nane

Array of all collections in this schema, where each array element value is a Collection object with the
collection name as the key.

Examples

Example 5.105 nysql _xdevapi \ Schena: : get Col | ecti ons example

<?php

$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;
$sessi on->sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on->sql (" CREATE DATABASE addr essbook")->execut e();

$schema = $sessi on- >get Schenma(" addr essbook") ;

$col | ect = $schenmm- >creat eCol | ecti on(" peopl e");

$col | ect ->add(' {"nanme": "Fred", "age": 21, "job": "Construction"}')->execute();
$col | ect->add(' {"nanme": "WIm", "age": 23, "job": "Teacher"}')->execute();

$col | ecti ons = $schema- >get Col | ecti ons();

var _dunp($col | ecti ons);
?>

The above example will output something similar to:

array(1) {
["peopl e"] =>
obj ect (mysqgl _xdevapi \ Col | ection)#4 (1) {
["nanme"] =>
string(6) "people"
}
}

5.26.8 Schena: : get Nane

Copyright 1997-2019 the PHP Documentation Group.
e Schenma: : get Nane
Get schema name

Description

public string nysqgl_xdevapi\ Schema: : get Nane()
Get the name of the schema.
Parameters
This function has no parameters.
Return Values
The name of the schema connected to the schema object, as a string.

Examples

377

http://www.php.net/mysql_xdevapiSchema::getCollections

Schenma: : get Sessi on

Example 5.106 nysql xdevapi \ Schema: : get Nane example

<?php

$sessi on = nysql _xdevapi \ get Sessi on("nysql x: // user : passwor d@ ocal host ") ;
$sessi on->sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on->sql (" CREATE DATABASE addr essbook")->execut e();

$schema = $sessi on- >get Schena(" addr essbook") ;
/1

var _dunp($schema- >get Nane()) ;
2>

The above example will output something similar to:

string(11) "addressbook"

5.26.9 Schena: : get Sessi on
Copyright 1997-2019 the PHP Documentation Group.
» Schenm: : get Sessi on
Get schema session
Description
publ i c nysqgl _xdevapi\ Sessi on nysql _xdevapi \ Schema: : get Sessi on()
Get a new Session object from the Schema object.
Parameters
This function has no parameters.
Return Values
A Session object.
Examples

Example 5.107 nysql _xdevapi \ Schema: : get Sessi on example

<?php

$sessi on = nysql _xdevapi \ get Sessi on("nysql x: // user: passwor d@ ocal host");
$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;
$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e();

$schema = $sessi on- >get Schema(" addr essbook");

/1

378

http://www.php.net/mysql_xdevapiSchema::getName
http://www.php.net/mysql_xdevapiSchema::getSession

Schenma: : get Tabl e

$newsessi on = $schenm- >get Sessi on() ;

var _dunp($sessi on) ;
var _dunp($newsessi on) ;
?>

The above example will output something similar to:

obj ect (mysql _xdevapi \ Sessi on) #1 (0) {
}

obj ect (mysql _xdevapi \ Sessi on) #3 (0) {
}

5.26.10 Schenm: : get Tabl e
Copyright 1997-2019 the PHP Documentation Group.
e Schemm: : get Tabl e
Get schema table

Description

publ i c nysql _xdevapi \ Tabl e nysql _xdevapi \ Schena: : get Tabl e(
string name);

Fetch a Table object for the provided table in the schema.
Parameters

name Name of the table.
Return Values

A Table object.

Examples

Example 5.108 nysql _xdevapi \ Schema: : get Tabl e example

<?php
$sessi on = nysql _xdevapi \ get Sessi on("nysql x: // user : passwor d@ ocal host ") ;

$sessi on->sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on->sql (" CREATE DATABASE addr essbook") ->execut e();

$sessi on->sql (" CREATE TABLE addr essbook. nanes(nane text, age int)")->execute();

$sessi on->sql ("I NSERT | NTO addr essbook. nanes val ues ('John', 42), ('Sami, 33)")->execute();

$schema = $sessi on- >get Schema(" addr essbook") ;
$table = $schenm->get Tabl e(" nanes");
$row = $tabl e->sel ect (' nane', 'age')->execute()->fetchAl();

print_r($row);

379

http://www.php.net/mysql_xdevapiSchema::getTable

Schema: : get Tabl es

?>

The above example will output something similar to:

Array
[0] => Array
[name] => John
[age] => 42
[1] => Array

[name] => Sam
[age] => 33

5.26.11 Schenma: : get Tabl es
Copyright 1997-2019 the PHP Documentation Group.
e Schenm: : get Tabl es
Get schema tables

Description

public array nysql _xdevapi\ Schena: : get Tabl es();

Warning

This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.

Return Values

Array of all tables in this schema, where each array element value is a Table object with the table name as

the key.
Examples

Example 5.109 nysql xdevapi \ Schema: : get Tabl es example

<?php
$session = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host")

$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e()
$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e()

$sessi on- >sql (" CREATE TABLE addr essbook. names(name text, age int)")->execute()

380

http://www.php.net/mysql_xdevapiSchema::getTables

SchemaObiject interface

$sessi on->sql ("I NSERT | NTO addr essbook. nanes val ues ('John', 42), ('Sam, 33)")->execute()

$sessi on- >sql (" CREATE TABLE addressbook. cities(name text, population int)")->execute()
$sessi on- >sql ("I NSERT | NTO addr essbook. names val ues (' Portland', 639863), ('Seattle', 704352)")->execute()

$schema
$t abl es

$sessi on- >get Schenu(" addr essbook")
$schena- >get Tabl es()

var _dunp($t abl es) ;
?>

The above example will output something similar to:

array(2) {
["cities"]=>
obj ect (mysql _xdevapi \ Tabl e) #3 (1) {
["nanme"] =>
string(6) "cities"

}

["names"]=>
obj ect (nmysql _xdevapi \ Tabl e) #4 (1) {
["name"] =>
string(5) "nanes"
}
}

5.27 SchemaObiject interface

Copyright 1997-2019 the PHP Documentation Group.

nmysql _xdevapi \ SchemaObj ect {
nmysql _xdevapi \ SchemaObj ect

nmysql _xdevapi \ Dat abase(bj ect
Met hods
abstract nysql _xdevapi\ Schema nysql _xdevapi \ SchenaObj ect : : get Schema() ;
}

5.27.1 Schema(bj ect : : get Schenma
Copyright 1997-2019 the PHP Documentation Group.
e Schemabj ect : : get Schema
Get schema object

Description

abstract nysql _xdevapi\ Schema nysql _xdevapi \ SchenaObj ect : : get Schema() ;

Used by other objects to retrieve a schema object.

381

Session class

Parameters

This function has no parameters.
Return Values

The current Schema object.
Examples

Example 5.110 nysql _xdevapi \ Sessi on: : get Schema example

<?php
$sessi on = nmysqgl _xdevapi \ get Sessi on(" nmysql x: // user: passwor d@ ocal host") ;
$schema = $sessi on- >get Schema(" addr essbook") ;

print_r($schema);

The above example will output something similar to:

nmysql _xdevapi \ Schema Cbj ect
(

)

[nane] => addr essbook

5.28 Session class

Copyright 1997-2019 the PHP Documentation Group.

nmysql _xdevapi \ Sessi on {
nmysql _xdevapi \ Sessi on

Met hods
publ i c bool nysqgl _xdevapi\ Sessi on:: cl ose();
public Object nysql_xdevapi\ Session::commit();

publ i ¢ nmysql _xdevapi \ Schema nmysql _xdevapi \ Sessi on: : cr eat eSchenma(
string schema_nane);

publ i c bool nysqgl _xdevapi\ Sessi on: : dr opSchena(
string schema_nane);

public Object nysql xdevapi\ Sessi on: : execut eSql (
string statenent);

public string mysql xdevapi\ Sessi on: : generat eUUl D() ;
public integer nysql_xdevapi\Session::getCientld();

publ i ¢ nmysql _xdevapi \ Schema mnysqgl _xdevapi \ Sessi on: : get Schema(
string schema_nane);

382

http://www.php.net/mysql_xdevapiSession::getSchema

Session: : cl ose

public array mnysql _xdevapi\ Sessi on: : get Schemas()
public integer mysqgl _xdevapi\ Sessi on: : get Server Ver si on()

publ i c object nysql _xdevapi\Session::killdient(
integer client_id);

public array nysql _xdevapi\Session::listClients()

public string nmysql _xdevapi\ Sessi on: : quot eNane(
string nane)

public void nysqgl _xdevapi\ Sessi on: : rel easeSavepoi nt (
string name);

public void nysql _xdevapi\ Sessi on: :roll back();

public void nysql _xdevapi \ Sessi on: :rol | backTo(
string nane)

public string nysqgl _xdevapi\ Sessi on: : set Savepoi nt (
string nane)

publ i c nmysql _xdevapi\ Sql St at ement mysql _xdevapi \ Sessi on: : sql (
string query);

public void nysql _xdevapi\ Sessi on: : startTransaction();
}
5.28.1 Sessi on: : cl ose
Copyright 1997-2019 the PHP Documentation Group.
» Session::close
Close session

Description

publ i c bool nysql _xdevapi\ Sessi on: : cl ose()
Close the session with the server.
Parameters
This function has no parameters.
Return Values
TRUE if the session closed.
Examples

Example 5.111 nmysql _xdevapi \ Sessi on: : cl ose example

<?php
$session = nysql _xdevapi \ get Sessi on("nysql x: // user : passwor d@ ocal host ") ;

$schema
$tabl e

$sessi on- >get Schenma(" addr essbook") ;
$schena- >get Tabl e(" names") ;

383

http://www.php.net/mysql_xdevapiSession::close

Session::comm t

$sessi on- >cl ose();

5.28.2 Sessi on: : conmi t
Copyright 1997-2019 the PHP Documentation Group.
* Session::conmit
Commit transaction
Description
public Object mnysql _xdevapi\ Session::commt();
Commit the transaction.
Parameters
This function has no parameters.
Return Values
An SqlStatementResult object.
Examples

Example 5.112 nysql _xdevapi \ Sessi on: : conmi t example

<?php
$sessi on
$col | ection

nysql _xdevapi \ get Sessi on("nysql x: // user: passwor d@ ocal host");
$sessi on- >get Schena(" addr essbook") - >get Col | ecti on("friends");

$sessi on->start Transacti on();

$col | ecti on->add(' {"John": 42, "Sani:33}')->execute();
$savepoi nt = $sessi on- >set Savepoi nt () ;

$sessi on->commi t () ;
$sessi on- >cl ose();

5.28.3 Sessi on:: _construct
Copyright 1997-2019 the PHP Documentation Group.
e Session::__construct
Description constructor

Description

private nysql _xdevapi\ Session::__construct();
A Session object, as initiated by getSession().

Parameters

384

http://www.php.net/mysql_xdevapiSession::commit

Sessi on: : creat eSchema

This function has no parameters.
Examples

Example 5.113 nysql _xdevapi \ Sessi on: : __construct example

<?php

$session = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;
$sessi on- >cl ose();

2>

5.28.4 Sessi on: : cr eat eSchema
Copyright 1997-2019 the PHP Documentation Group.
» Session::createSchema
Create new schema

Description

publ i c nysql _xdevapi \ Schema nysql _xdevapi \ Sessi on: : cr eat eSchena(
string schema_nane);

Creates a new schema.

Parameters

schema_nane Name of the schema to create.
Return Values

A Schema object on success, and emits an exception on failure.
Examples

Example 5.114 nysql _xdevapi \ Sessi on: : cr eat eSchena example

<?php

$uri = 'nysql x: // happyuser: passwor d@27. 0. 0. 1: 33060/ ' ;
$sess = nysql _xdevapi \ get Sessi on($uri);

try {

if ($schema = $sess->createSchema(' fruit')) {
echo "Info: | created a schema naned 'fruit'\n";
}

} catch (Exception $e) {

echo $e- >get Message();

385

http://www.php.net/mysql_xdevapiSession::__construct
http://www.php.net/mysql_xdevapiSession::createSchema

Sessi on: : dropSchema

The above example will output something similar to:

Info: | created a schema nanmed ‘fruit

5.28.5 Sessi on: : dropSchenma
Copyright 1997-2019 the PHP Documentation Group.
» Session::dropSchema
Drop a schema

Description

publ i ¢ bool nysql _xdevapi\ Sessi on: : dr opSchena(
string schema_nane)

Drop a schema (database).

Parameters

schenma_nane Name of the schema to drop.

Return Values

TRUE if the schema is dropped, or FALSE if it does not exist or can't be dropped.
An E_WARNI NG level error is generated if the schema does not exist.

Examples

Example 5.115 nmysql _xdevapi \ Sessi on: : dr opSchema example

<?php
$session = nysql _xdevapi \ get Sessi on("nysql x: // user : passwor d@ ocal host ") ;
$sessi on- >dr opSchenma(" addr essbook") ;

$sessi on- >cl ose();
2>

5.28.6 Sessi on: : execut eSql
Copyright 1997-2019 the PHP Documentation Group.
» Session: : execut eSql
Execute an SQL statement

Description

public Object mysql xdevapi\ Sessi on: : execut eSql (
string statenent);

386

http://www.php.net/mysql_xdevapiSession::dropSchema

Sessi on: : generat eUU D

Execute an SQL statement, similar to executing the sql() and execute() methods.
Parameters

st at enent SQL statement to execute

Return Values

An SqlStatementResult object on success, or throws an Exception if the SQL statement fails.
Examples

Example 5.116 nysql _xdevapi \ Sessi on: : execut eSgl example

<?php
$session = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host")

$sessi on- >execut eSql (" CREATE DATABASE addr essbook")

5.28.7 Sessi on: : gener at eUUl D
Copyright 1997-2019 the PHP Documentation Group.
e Session:: generat eUU D
Get new UUID

Description

public string mysql xdevapi\ Sessi on: : generat eUUl D() ;
Generate a Universal Unique IDentifier (UUID) generated according to RFC 4122.
Parameters
This function has no parameters.
Return Values
The UUID; a string with a length of 32.
Examples

Example 5.117 nysql _xdevapi \ Sessi on: : gener at eUui d example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$uui d = $sessi on- >gener at eUui d() ;

var _dunp($uui d) ;

The above example will output something similar to:

387

http://www.php.net/mysql_xdevapiSession::executeSql
http://www.faqs.org/rfcs/rfc4122
http://www.php.net/mysql_xdevapiSession::generateUuid

Session::getCientld

string(32) "484B18AC7980F8DAFE84613CDASEE84B"

5.28.8 Session::getCientld

Copyright 1997-2019 the PHP Documentation Group.
e Session::getdientld
Get client ID

Description

public integer nysqgl_xdevapi\Session::getClientld()
Get ID of the connected client.
Parameters
This function has no parameters.
Return Values
ID of the connected client.

Examples

Example 5.118 mysql _xdevapi \ Sessi on: : get C i ent | d example

<?php
$sessi on = nysql _xdevapi \ get Sessi on("nysql x: // user : passwor d@ ocal host ") ;

$clientid = $session->getClientld();

var _dunp($clientid);

The above example will output something similar to:

i nt (53)

5.28.9 Sessi on: : get Schema
Copyright 1997-2019 the PHP Documentation Group.
» Session:: get Schema
Get a new schema object

Description

388

http://www.php.net/mysql_xdevapiSession::getClientId

Sessi on: : get Schenas

publ i c nmysql _xdevapi \ Schema nmysql _xdevapi \ Sessi on: : get Schema(
string schema_nane);

A new Schema object for the provided schema name.

Parameters

schena_nane Name of the schema (database) to fetch a Schema object for.
Return Values

A Schema object.

Examples

Example 5.119 mysql _xdevapi \ Sessi on: : get Schema example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host")
$schena = $sessi on- >get Scherma(" addr essbook")

print_r($schema)

The above example will output something similar to:

nysql _xdevapi \ Schema Obj ect

[nane] => addressbook

5.28.10 Sessi on: : get Schenmas
Copyright 1997-2019 the PHP Documentation Group.
e Sessi on: : get Schenmas
Get the schemas

Description

public array nysql _xdevapi\ Sessi on: : get Schemas()
Get schema objects for all schemas available to the session.
Parameters
This function has no parameters.
Return Values
An array containing objects that represent all of the schemas available to the session.

Examples

389

http://www.php.net/mysql_xdevapiSession::getSchema

Sessi on: : get Server Ver si on

Example 5.120 nysql xdevapi \ Sessi on: : get Schenas example

<?php
$sessi on = nysql _xdevapi \ get Sessi on("nysql x: // user : passwor d@ ocal host ") ;
$schemas = $sessi on- >get Schenmas();

print_r($schenas);

The above example will output something similar to:

Array
[0] => nysql _xdevapi \ Schema bj ect
([nane] => addressbook
[1] l> nmysql _xdevapi \ Schema bj ect

[name] => information_schema

5.28.11 Sessi on: : get Server Ver si on
Copyright 1997-2019 the PHP Documentation Group.
e Session:: get Server Version
Get server version

Description

public integer nysqgl_xdevapi\ Sessi on: : get Server Ver si on()
Retrieve the MySQL server version for the session.
Parameters
This function has no parameters.
Return Values
The MySQL server version for the session, as an integer such as "80012".
Examples

Example 5.121 nysql _xdevapi \ Sessi on: : get Ser ver Ver si on example

<?php
$sessi on = nysql _xdevapi \ get Sessi on("nysql x: // user: passwor d@ ocal host");

$versi on = $sessi on- >get Server Versi on() ;

390

http://www.php.net/mysql_xdevapiSession::getSchemas
http://www.php.net/mysql_xdevapiSession::getServerVersion

Session::killdient

var _dunp($ver si on) ;

The above example will output something similar to:

i nt (80012)

5.28.12 Session: : kil l Cient
Copyright 1997-2019 the PHP Documentation Group.
e Session::killdient
Kill the client

Description

publ i c object nysql _xdevapi\ Session::killdient(
integer client_id)

Kill the selected client and terminate the collection
Warning
I This function is currently not documented; only its argument list is available.
Parameters
client_id A connection's client ID.

Return Values

Examples

Example 5.122 nysql _xdevapi \ Sessi on: : ki | | C i ent example

<?php
$sessi on = nysql _xdevapi \ get Sessi on("nysql x: // user : passwor d@ ocal host ") ;

$clientid = $session->getClientld();
I ...

$session->kill dient($clientid)

528.13Session::listClients

Copyright 1997-2019 the PHP Documentation Group.
e Session::listClients

Get client list

391

http://www.php.net/mysql_xdevapiSession::killClient

Sessi on: : quot eNane

Description

public array nysql _xdevapi\Session::listCients()
Get a list of client connections to the session's MySQL server.
Parameters
This function has no parameters.

Return Values

An array containing the currently logged clients. The array elements are "client_id", "user", "host", and
"sqgl_session".

Examples

Example 5.123 nysql _xdevapi \ Session::listCients example

<?php

$sessi on = nysql _xdevapi \ get Sessi on("nysql x: // user: passwor d@ ocal host")
$ids = $session->listCients()

var _dunp($i ds)
?>

The above example will output something similar to:

array(1) {

[0]=>

array(4) {
["client_id"]=>
int(61)
["user"]=>
string(4) "root"
["host"] =>
string(9) "local host"
["sql _session"]=>
int(72)

5.28.14 Sessi on: : quot eNane
Copyright 1997-2019 the PHP Documentation Group.
e Sessi on: : quot eNane
Add quotes

Description

public string nysql _xdevapi\ Sessi on: : quot eNang(
string nane)

392

http://www.php.net/mysql_xdevapiSession::listClients

Session: : rel easeSavepoi nt

A quoting function to escape SQL names and identifiers. It escapes the identifier given in accordance to
the settings of the current connection. This escape function should not be used to escape values.

Parameters

name The string to quote.
Return Values

The quoted string.

Examples

Example 5.124 nysql _xdevapi \ Sessi on: : quot eNanme example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$first = "MWSQ's test";

var _dunp($first);

var _dunp($sessi on- >quot eNanme($first));
$second = ' Another “test’ "like" “this’

var _dunp($second) ;

var _dunp($sessi on- >quot eNane($second)) ;
?>

The above example will output something similar to:

string(12) "MySQ.'s test"
string(14) ""WSQ.'s test™"

string(28) "Another “test”™ "like" “this™"
string(34) " Another ““test " "like" ““this "

5.28.15 Sessi on: : r el easeSavepoi nt
Copyright 1997-2019 the PHP Documentation Group.
e Session: :rel easeSavepoi nt
Release set savepoint

Description

public void nysqgl _xdevapi\ Sessi on: : rel easeSavepoi nt (
string nane);

Release a previously set savepoint.
Parameters

nane Name of the savepoint to release.

393

http://www.php.net/mysql_xdevapiSession::quoteName

Sessi on: :rol |l back

Return Values
An SqlStatementResult object.
Examples

Example 5.125 mysql _xdevapi \ Sessi on: : rel easeSavepoi nt example

<?php
$sessi on
$col | ection

nmysql _xdevapi \ get Sessi on(" nmysql x: // user: passwor d@ ocal host") ;
$sessi on- >get Schenma(" addr essbook") - >get Col | ecti on("fri ends");

$sessi on->start Transaction();
$col | ection->add('{"test1":1, "test2":2}')->execute();

$savepoi nt = $sessi on- >set Savepoi nt () ;
$col | ection->add('{"test3":3, "test4":4}')->execute();
$sessi on- >r el easeSavepoi nt ($savepoi nt) ;

$sessi on->rol | back();
2>

5.28.16 Sessi on: :rol | back

Copyright 1997-2019 the PHP Documentation Group.
e Session::roll back
Rollback transaction

Description

public void nysqgl _xdevapi \ Sessi on: : rol | back();
Rollback the transaction.
Parameters
This function has no parameters.
Return Values
An SglStatementResult object.
Examples

Example 5.126 nysql _xdevapi \ Sessi on: : rol | back example

<?php
$sessi on
$col | ection

nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host");
$sessi on- >get Schema(" addr essbook") - >get Col | ecti on(" nanes") ;

$sessi on->start Transaction();
$col | ection->add('{"testl1":1, "test2":2}')->execute();

394

http://www.php.net/mysql_xdevapiSession::releaseSavepoint
http://www.php.net/mysql_xdevapiSession::rollback

Session: :roll backTo

$savepoi nt = $sessi on- >set Savepoi nt () ;
$col | ection->add('{"test3":3, "test4":4}')->execute();

$sessi on->r el easeSavepoi nt ($savepoi nt) ;
$sessi on->rol | back();
?>

5.28.17 Sessi on: :rol | backTo
Copyright 1997-2019 the PHP Documentation Group.
» Session::roll backTo
Rollback transaction to savepoint

Description

public void nysql _xdevapi \ Sessi on: : rol | backTo(
string name);

Rollback the transaction back to the savepoint.

Parameters

nane Name of the savepoint to rollback to; case-insensitive.
Return Values

An SqlStatementResult object.

Examples

Example 5.127 nysql _xdevapi \ Sessi on: : rol | backTo example

<?php
$sessi on
$col | ection

nmysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;
$sessi on- >get Schema(" addr essbook™) - >get Col | ecti on(" nanes");

$sessi on->start Transaction();
$col | ection->add('{"testl1":1, "test2":2}')->execute();

$savepoi nt 1 = $sessi on- >set Savepoi nt () ;
$col | ection->add('{"test3":3, "test4":4}')->execute();
$savepoi nt 2 = $sessi on- >set Savepoi nt () ;

$sessi on- >rol | backTo($savepoi nt 1) ;
?>

5.28.18 Sessi on: : set Savepoi nt
Copyright 1997-2019 the PHP Documentation Group.

* Session: : set Savepoi nt

395

http://www.php.net/mysql_xdevapiSession::rollbackTo

Sessi on: : sql

Create savepoint

Description

public string nysqgl _xdevapi\ Sessi on: : set Savepoi nt (
string nane)

Create a new savepoint for the transaction.
Warning

This function is currently not documented; only its argument list is available.

Parameters

nanme The name of the savepoint. The name is auto-generated if the optional
nane parameter is not defined as 'SAVEPOINT1', 'SAVEPOINT2', and
SO on.

Return Values
The name of the save point.
Examples

Example 5.128 nysql _xdevapi \ Sessi on: : set Savepoi nt example

<?php
$sessi on
$col | ection

nysql _xdevapi \ get Sessi on("nysql x: // user: passwor d@ ocal host ")
$sessi on- >get Schenma(" addr essbook") - >get Col | ecti on(" nanes")

$sessi on->start Transaction();
$col | ection->add('{"testl1":1, "test2":2}')->execute()

$savepoi nt = $sessi on- >set Savepoi nt ()
$col | ection->add('{"test3":3, "test4":4}')->execute()
$sessi on- >r el easeSavepoi nt ($savepoi nt)

$sessi on->rol | back()
2>

5.28.19 Sessi on: : sql

Copyright 1997-2019 the PHP Documentation Group.
e Session:: sql
Execute SQL query

Description

publi c nysql _xdevapi\ Sgl St at enent nysql _xdevapi \ Sessi on: : sql (
string query)

Create a native SQL statement. Placeholders are supported using the native "?" syntax. Use the execut e
method to execute the SQL statement.

396

http://www.php.net/mysql_xdevapiSession::setSavepoint

Session::start Transacti on

Parameters

query SQL statement to execute.
Return Values

An SqglStatement object.

Examples

Example 5.129 nysql _xdevapi \ Sessi on: : sql example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e();
?>

5.28.20 Sessi on::start Transacti on
Copyright 1997-2019 the PHP Documentation Group.
* Session::startTransaction
Start transaction

Description

public void nysqgl _xdevapi\ Sessi on: : start Transaction();
Start a new transaction.
Parameters
This function has no parameters.
Return Values
An SqlStatementResult object.
Examples
Example 5.130 nysql _xdevapi \ Sessi on: : start Transacti on example
<?php

$sessi on
$col | ection

nmysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host");
$sessi on- >get Schena(" addr essbook") - >get Col | ecti on("fri ends");

$sessi on->start Transaction();
$col | ection->add('{"test1":1, "test2":2}')->execute();

$savepoi nt = $sessi on- >set Savepoi nt () ;

$col | ection->add('{"test3":3, "test4":4}')->execute();

397

http://www.php.net/mysql_xdevapiSession::sql
http://www.php.net/mysql_xdevapiSession::startTransaction

SqlStatement class

$sessi on->r el easeSavepoi nt ($savepoi nt) ;

$sessi on->rol | back();
?>

5.29 SqlStatement class

Copyright 1997-2019 the PHP Documentation Group.

nysql _xdevapi \ Sgl St at ement {
nysql _xdevapi \ Sgl St at emrent

Const ant s
const integer
nysql _xdevapi \ Sgl St at enent : : EXECUTE_ASYNC
= :]_;
const integer
nmysql _xdevapi \ Sql St at enent : : BUFFERED
= :2,

Properties

public
statenent ;

Met hods

publ i c nmysql _xdevapi\ Sql St at ement mysql _xdevapi \ Sql St at enent : : bi nd(
string paramn;

public nysql _xdevapi \ Result nysql _xdevapi\ Sgl St at enent : : execut e();
publ i c nmysql _xdevapi\ Result mysql _xdevapi\ Sqgl St at enent : : get Next Resul t () ;
public nysqgl _xdevapi \ Result nysql _xdevapi\ Sgl St at enent:: get Resul t();

publ i c bool nysqgl xdevapi\ Sqgl St at ement : : hasMr eResul t s() ;

}
st at ement
nmysql _xdevapi

\ Sgl St at emrent : : EXECUTE_ASYNC

nysql _xdevapi
\ Sql St at enent : : BUFFERED

5.29.1 Sgl St at enent : : bi nd
Copyright 1997-2019 the PHP Documentation Group.
* Sql Statenent: : bind

Bind statement parameters

398

Sql Statenment:: ___construct

Description

publ i c nysql _xdevapi \ Sgl St at enent nysql _xdevapi \ Sgl St at enent : : bi nd(
string param;

I Warning

This function is currently not documented; only its argument list is available.
Parameters
param

Return Values

Examples

Example 5.131 nysql xdevapi \ Sql St at enent : : bi nd example

<?php
0= oo =

2>

5.29.2Sql Statenent:: _construct
Copyright 1997-2019 the PHP Documentation Group.
e Sql Statenent:: _construct

Description constructor

Description
private nysqgl _xdevapi\Sgl Statenent::__construct ()
Warning
This function is currently not documented; only its argument list is available.
Parameters

This function has no parameters.
Examples

Example 5.132 nysql xdevapi \ Sgl St at enent:: __construct example

<?php

[* o0

399

http://www.php.net/mysql_xdevapiSqlStatement::bind
http://www.php.net/mysql_xdevapiSqlStatement::__construct

Sql St at enent : : execut e

?>

5.29.3 Sgl St at enent : : execut e
Copyright 1997-2019 the PHP Documentation Group.
* Sql Statenent: : execute
Execute the operation

Description

publ i c nysql _xdevapi \ Result nysql _xdevapi\ Sgl St at enent : : execute();

Warning
I This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.

Return Values

Examples

Example 5.133 nysql _xdevapi \ Sgl St at enent : : execut e example

<?php
[* ... %

?>

5.29.4 Sql St at enent : : get Next Resul t
Copyright 1997-2019 the PHP Documentation Group.
e Sgl St at enent: : get Next Resul t
Get next result

Description

public nysqgl _xdevapi \ Result mnysql _xdevapi\ Sgl St at ement : : get Next Resul t () ;

Warning
This function is currently not documented; only its argument list is available.

Parameters

400

http://www.php.net/mysql_xdevapiSqlStatement::execute

Sql St at ement : : get Resul t

This function has no parameters.

Return Values

Examples

Example 5.134 nysql xdevapi \ Sgl St at enent : : get Next Resul t example

<?php
[* .0 %

?>

5.29.5 Sql St at enent : : get Resul t
Copyright 1997-2019 the PHP Documentation Group.
e Sgl St atenent: : get Resul t
Get result

Description

public nysqgl _xdevapi \ Result nysql _xdevapi\ Sgl St at enent: : get Resul t ();

I Warning

This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.

Return Values

Examples

Example 5.135 nysql _xdevapi \ Sgl St at ement : : get Resul t example

<?php
0= oo *

?>

5.29.6 Sql St at enent : : hasMor eResul ts

Copyright 1997-2019 the PHP Documentation Group.

401

http://www.php.net/mysql_xdevapiSqlStatement::getNextResult
http://www.php.net/mysql_xdevapiSqlStatement::getResult

SqlStatementResult class

e« Sql Statenent: : hasMoreResul ts
Check for more results

Description

publ i c bool nysqgl xdevapi\ Sqgl St at ement : : hasMr eResul ts() ;

Warning
This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.
Return Values
TRUE if the result set has more objects to fetch.
Examples

Example 5.136 nysql xdevapi \ Sgl St at enent : : hasMor eResul t s example

<?php
[* ... %]

?>

5.30 SqlStatementResult class

Copyright 1997-2019 the PHP Documentation Group.

nmysql _xdevapi \ Sgl St at enent Resul t {
nysql _xdevapi \ Sgl St at enent Resul t

nysql _xdevapi \ BaseResul t
Traversabl e
Met hods

public array nysql _xdevapi\Sqgl St atenment Result::fetchAll();
publ i c obj ect mnysql _xdevapi\ Sql St at enent Resul t:: fetchOne();
public integer mysqgl xdevapi\ Sql St at enent Resul t: : get Af f ect edl t ensCount () ;
public integer nysqgl_xdevapi\ Sgl St at ement Resul t: : get Col ummCount () ;
public array mnysql _xdevapi\ Sqgl St at ement Resul t : : get Col utmNanes() ;

public Array nysql _xdevapi\ Sgl St at enent Resul t: : get Col umms() ;

402

http://www.php.net/mysql_xdevapiSqlStatement::hasMoreResults

Sqgl Statenment Resul t:: __construct

public array nysql _xdevapi\ Sql St at enent Resul t: : get Gener at edl ds() ;

public String nmysql _xdevapi\ Sql St at enent Resul t:: get Lastlnsertld();

public array mnmysql xdevapi\ Sql St at enent Resul t: : get War ni ngs() ;

public integer mysql _xdevapi\ Sql St at enent Resul t: : get War ni ngCount s() ;

publ i c bool nysql _xdevapi\ Sgl St at enment Resul t: : hasDat a();

publ i c nmysql _xdevapi\ Result mysql _xdevapi\ Sql St at enent Resul t: : next Resul t ();

}
5.30.1 Sgl St at enent Resul t:: construct
Copyright 1997-2019 the PHP Documentation Group.
e Sql Statenment Result:: construct
Description constructor

Description

private mysql _xdevapi\ Sql Statenent Result::__construct();

Warning

This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.
Examples

Example 5.137 nysql xdevapi \ Sgl St at enent Resul t:: _construct example

<?php
[* o0 %]

?>

5.30.2 Sql St at enent Resul t: : fetchAll
Copyright 1997-2019 the PHP Documentation Group.
» Sqgl Statenent Resul t::fetchAll
Get all rows

Description

public array mnysql _xdevapi\ Sqgl St at ement Resul t::fetchAll();

403

http://www.php.net/mysql_xdevapiSqlStatementResult::__construct

Sql St atenent Resul t: : fetchOne

I Warning

This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.

Return Values

Examples

Example 5.138 nysql _xdevapi\ Sgl St at ement Resul t: : fet chAl | example

<?php
[* ... %]

2>

5.30.3 Sql St atenent Resul t:: fetchOne
Copyright 1997-2019 the PHP Documentation Group.
» Sgl St atenent Resul t:: fetchOne
Get single row

Description

publ i c object nysqgl _xdevapi\ Sgl St at ement Resul t:: fetchOne();

Warning
I This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.

Return Values

Examples

Example 5.139 nysql _xdevapi \ Sgl St at ement Resul t: : f et chOne example

<?php
0 oo #f

?>

404

http://www.php.net/mysql_xdevapiSqlStatementResult::fetchAll
http://www.php.net/mysql_xdevapiSqlStatementResult::fetchOne

Sql St at emrent Resul t: : get Af f ect edl t ensCount

5.30.4 Sgl St at enent Resul t: : get Af f ect edl t ensCount
Copyright 1997-2019 the PHP Documentation Group.
e Sgl St at enent Resul t:: get Aff ect edl t ensCount
Get affected row count

Description

public integer nysqgl_xdevapi\ Sgl St at ement Resul t:: get Aff ect edl t emsCount () ;

I Warning

This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.

Return Values

Examples

Example 5.140 mysql _xdevapi \ Sgl St at enent Resul t: : get Af f ect edl t ensCount example

<?php
I* o0

?>

5.30.5 Sgl St at enent Resul t : : get Col umCount
Copyright 1997-2019 the PHP Documentation Group.
e Sql St at enent Resul t: : get Col utmCount
Get column count

Description

public integer nmysql _xdevapi\ Sql St at enent Resul t: : get Col uimCount () ;

I Warning

This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.

Return Values

405

http://www.php.net/mysql_xdevapiSqlStatementResult::getAffectedItemsCount

Sql St at enent Resul t: : get Col utmNanes

Examples

Example 5.141 nmysql _xdevapi \ Sgl St at enent Resul t : : get Col umCount example

<?php
0% coo #f

?>

5.30.6 Sql St at enent Resul t: : get Col untmNanes
Copyright 1997-2019 the PHP Documentation Group.
» Sgl St at enent Resul t: : get Col umNanes
Get column names

Description

public array nysql _xdevapi\ Sgl St at enent Resul t: : get Col utmNanes() ;

I Warning

This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.

Return Values

Examples

Example 5.142 nmysql _xdevapi \ Sgl St at enent Resul t : : get Col utmNanes example

<?php
0% oo ®f

2>

5.30.7 Sgl St at enent Resul t: : get Col ums
Copyright 1997-2019 the PHP Documentation Group.
» Sgl St at ement Resul t: : get Col unms

Get columns

406

http://www.php.net/mysql_xdevapiSqlStatementResult::getColumnCount
http://www.php.net/mysql_xdevapiSqlStatementResult::getColumnNames

Sql St at ement Resul t: : get Gener at edl ds

Description

public Array nysql _xdevapi\ Sqgl St at ement Resul t : : get Col utms() ;

I Warning

This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.

Return Values

Examples

Example 5.143 nysql xdevapi \ Sql St at enent Resul t: : get Col unms example

<?php
[* ... %]

?>

5.30.8 Sgl St at enent Resul t: : get Gener at edl ds
Copyright 1997-2019 the PHP Documentation Group.
» Sgl St at enent Resul t: : get Gener at edl ds
Get generated ids

Description

public array nysql _xdevapi\ Sgl St at enent Resul t: : get Gener at edl ds() ;

Warning
I This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.
Return Values
An array of generated IDs from the last operation.

Examples

Example 5.144 nysql _xdevapi \ Sgl St at ement Resul t: : get Gener at edl ds example

407

http://www.php.net/mysql_xdevapiSqlStatementResult::getColumns
http://www.php.net/mysql_xdevapiSqlStatementResult::getGeneratedIds

Sql Statenment Resul t:: getlLastlinsertld

<?php
0% coo #f

?>

5.30.9 Sgl St at enent Resul t: : getLastlnsertld
Copyright 1997-2019 the PHP Documentation Group.
» Sgl Statenent Resul t::getlLastlnsertld
Get last insert id

Description

public String mysql xdevapi\ Sql St at enent Resul t:: getLastlnsertld();

I Warning

This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.
Return Values
The ID for the last insert operation.
Examples

Example 5.145 mysql _xdevapi \ Sgl St at enent Resul t: : get Last | nsert | d example

<?php
[* ... %

?>

5.30.10 Sgl St at enent Resul t: : get War ni ngs
Copyright 1997-2019 the PHP Documentation Group.
» Sql St at enment Resul t:: get War ni ngs
Get warnings from last operation

Description

public array nysql _xdevapi\ Sgl St at ement Resul t: : get War ni ngs()

408

http://www.php.net/mysql_xdevapiSqlStatementResult::getLastInsertId

Sql St at enent Resul t: : get War ni ngsCount

I Warning

This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.
Return Values
All warnings raised by the last CRUD operation, as an array.
Examples

Example 5.146 nysql _xdevapi \ Sgl St at ement Resul t: : get War ni ngs example

<?php
[* o0 %]

?>

5.30.11 Sql St at enent Resul t: : get War ni ngsCount
Copyright 1997-2019 the PHP Documentation Group.
» Sgl St at enent Resul t: : get War ni ngsCount
Get warning count from last operation

Description

public integer mysqgl xdevapi\ Sqgl St at enent Resul t: : get War ni ngCount s() ;

Warning
I This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.
Return Values
The number of warnings raised during the last CRUD operation.
Examples

Example 5.147 nysql xdevapi \ Sql St at enent Resul t: : get War ni ngsCount example

<?php

Ie ooo =

409

http://www.php.net/mysql_xdevapiSqlStatementResult::getWarnings
http://www.php.net/mysql_xdevapiSqlStatementResult::getWarningsCount

Sql St at ement Resul t: : hasDat a

?>

5.30.12 Sgl St at enent Resul t: : hasDat a
Copyright 1997-2019 the PHP Documentation Group.
e Sql St atenment Resul t: : hasDat a
Check if result has data

Description

publ i c bool nysqgl _xdevapi\ Sgl St at enent Resul t: : hasDat a();

Warning
I This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.
Return Values
TRUE if the result set has data.

Examples

Example 5.148 nysql _xdevapi \ Sgl St at ement Resul t : : hasDat a example

<?php
[* .0 %

?>

5.30.13 Sgl St at enent Resul t: : next Resul t
Copyright 1997-2019 the PHP Documentation Group.
e Sqgl St at enent Resul t: : next Resul t
Get next result

Description

publ i c nmysql _xdevapi \ Result mysql _xdevapi\ Sql St at enent Resul t: : next Resul t ();

I Warning

This function is currently not documented; only its argument list is available.

Parameters

410

http://www.php.net/mysql_xdevapiSqlStatementResult::hasData

Statement class

This function has no parameters.

Return Values

The next Result object from the result set.
Examples

Example 5.149 nysql xdevapi \ Sgl St at enent Resul t: : next Resul t example

<?php
[* .0 %

?>

5.31 Statement class

Copyright 1997-2019 the PHP Documentation Group.

nmysql _xdevapi \ St at ement {
nmysql _xdevapi \ St at ement

Const ant s
const integer
mysql _xdevapi \ St at ement : : EXECUTE_ASYNC
= =il
const integer
nysql _xdevapi \ St at enent : : BUFFERED
= :2;
Met hods
publ i c nmysql xdevapi\ Result mysql xdevapi\ St at enent: : get Next Resul t () ;
publ i c nmysql _xdevapi\ Result mysql _xdevapi\ St at ement: : get Resul t () ;

public bool nysql _xdevapi\ Statenent:: hasMreResults();

nysql _xdevapi
\ St at ement : : EXECUTE_ASYNC

nysql _xdevapi
\ St at enent : : BUFFERED

5.31.1 Statenent:: _construct
Copyright 1997-2019 the PHP Documentation Group.

e Statenment::___construct

411

http://www.php.net/mysql_xdevapiSqlStatementResult::nextResult

St at enent : : get Next Resul t

Description constructor

Description
private nmysql _xdevapi\Statenment::__construct();
Warning
This function is currently not documented; only its argument list is available.
Parameters

This function has no parameters.
Examples

Example 5.150 nysql _xdevapi \ St atement: : __construct example

<?php
I coa

2>

5.31.2 St at enent : : get Next Resul t
Copyright 1997-2019 the PHP Documentation Group.
e Statenent::get Next Resul t
Get next result

Description

publ i c nmysql _xdevapi \ Result mysql _xdevapi\ St at ement : : get Next Resul t () ;

I Warning

This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.

Return Values

Examples

Example 5.151 nysql xdevapi \ St at enent : : get Next Resul t example

<?php

412

http://www.php.net/mysql_xdevapiStatement::__construct
http://www.php.net/mysql_xdevapiStatement::getNextResult

St at enent : : get Resul t

[* o0 */

?>

5.31.3 Stat enent : : get Resul t
Copyright 1997-2019 the PHP Documentation Group.
e Statenent::getResult
Get result

Description

publ i c nysqgl _xdevapi \ Result nysql _xdevapi\ Statenent::getResult();

Warning
I This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.

Return Values

Examples

Example 5.152 nysql _xdevapi \ St at enent : : get Resul t example

<?php
[* ... %]

?>

5.31.4 St at enent : : hasMoreResul ts
Copyright 1997-2019 the PHP Documentation Group.
* Statenent::hasMoreResults
Check if more results

Description

public bool nysql _xdevapi\ Statenent:: hasMreResul ts();

I Warning

This function is currently not documented; only its argument list is available.

413

http://www.php.net/mysql_xdevapiStatement::getResult

Table class

Parameters
This function has no parameters.

Return Values

Examples

Example 5.153 mysql _xdevapi \ St at enent : : hasMor eResul t s example

<?php
[* .0 %]

?>

5.32 Table class

Copyright 1997-2019 the PHP Documentation Group.

Provides access to the table through INSERT/SELECT/UPDATE/DELETE statements.
nmysql _xdevapi \ Tabl e {
nmysql _xdevapi \ Tabl e
nysql _xdevapi \ SchenaObj ect
Properties

public
nane ;

Met hods

public integer mysql _xdevapi\ Tabl e:: count();

publ i c nysql _xdevapi \ Tabl eDel et e nysql _xdevapi \ Tabl e: : del et e();

publ i c bool nysql xdevapi\ Tabl e: : exi st sl nDat abase() ;

public string nmysql xdevapi\ Tabl e: : get Nanme() ;

publ i c nmysql _xdevapi \ Schema nmysql _xdevapi \ Tabl e: : get Schema() ;

publi c nysqgl _xdevapi \ Sessi on nysql _xdevapi \ Tabl e: : get Sessi on();

publ i c nmysql xdevapi\ Tabl el nsert nysql xdevapi \ Tabl e: : i nsert (
m xed col ums,
mxed ...);

publ i c bool nysql _xdevapi\Table::isView);

publ i c nmysql _xdevapi \ Tabl eSel ect mysql _xdevapi \ Tabl e: : sel ect (
m xed col ums,

mxed ...);

publi ¢ nysql _xdevapi \ Tabl eUpdat e nysql _xdevapi \ Tabl e: : updat e() ;

414

http://www.php.net/mysql_xdevapiStatement::hasMoreResults

Tabl e:: __construct

nane

5.32.1 Tabl e:: __construct
Copyright 1997-2019 the PHP Documentation Group.
e« Table:: _construct
Table constructor

Description

private mysql _xdevapi\Table::__construct();
Construct a table object.
Parameters
This function has no parameters.
Examples
Example 5.154 nysql xdevapi\ Tabl e:: construct example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$schena = $sessi on- >get Scherma(" addr essbook")
$tabl e = $schemn- >get Tabl e(" nanes")
2>

5.32.2 Tabl e: : count

Copyright 1997-2019 the PHP Documentation Group.
e Tabl e: : count
Get row count

Description

public integer nysqgl_xdevapi\ Tabl e:: count ()
Fetch the number of rows in the table.
Parameters
This function has no parameters.
Return Values

The total number of rows in the table.

415

http://www.php.net/mysql_xdevapiTable::__construct

Tabl e: : del et e

Examples

Example 5.155 nysql _xdevapi \ Tabl e: : count example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e() ;

$sessi on- >sql (" CREATE TABLE addr essbook. names(nanme text, age int)")->execute();
$sessi on- >sgl ("I NSERT | NTO addr essbook. names val ues ('John', 42), ('Sam, 33)")->execute()

$schema
$tabl e

$sessi on- >get Schena(" addr essbook") ;
$schenm- >get Tabl e(" names") ;

var _dunp($t abl e- >count ());
2>

The above example will output:

int(2)

5.32.3 Tabl e: : del et e
Copyright 1997-2019 the PHP Documentation Group.
* Tabl e::delete
Delete rows from table

Description

publ i c nysql _xdevapi \ Tabl eDel et e nysql _xdevapi \ Tabl e: : del et e();
Deletes rows from a table.
Parameters
This function has no parameters.
Return Values
A TableDelete object; use the execute() method to execute the delete query.
Examples

Example 5.156 mysql _xdevapi \ Tabl e: : del et e example

<?php
$sessi on = nysql _xdevapi \ get Sessi on("nysql x: // user : passwor d@ ocal host ") ;

$sessi on->sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;
$sessi on->sql (" CREATE DATABASE addr essbook") ->execut e();

416

http://www.php.net/mysql_xdevapiTable::count
http://www.php.net/mysql_xdevapiTable::delete

Tabl e: : exi st sl nDat abase

$sessi on- >sql (" CREATE TABLE addr essbook. names(nanme text, age int)")->execute();
$sessi on->sql ("I NSERT | NTO addr essbook. nanes val ues ('John', 42), ('Sam, 33)")->execute();

$schena = $sessi on- >get Schenma(" addr essbook") ;

$tabl e = $schema- >get Tabl e(" nanes");

$t abl e- >del et e() - >where("nanme = :nanme")->orderby("age DESC')->limt(1)->bind(['name’ => 'John'])->execute(]
?>

5.32.4 Tabl e: : exi st sl nDat abase

Copyright 1997-2019 the PHP Documentation Group.
e Tabl e: : exi st sl nDat abase
Check if table exists in database
Description
publi c bool nysql _xdevapi\ Tabl e: : exi st sl nDat abase() ;
Verifies if this table exists in the database.
Parameters
This function has no parameters.
Return Values
Returns TRUE if table exists in the database, else FALSE if it does not.
Examples

Example 5.157 nysql xdevapi \ Tabl e: : exi st sl nDat abase example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e() ;

$sessi on- >sql (" CREATE TABLE addr essbook. names(nanme text, age int)")->execute();

$sessi on- >sgl ("I NSERT | NTO addr essbook. names val ues ('John', 42), ('Sam, 33)")->execute();

$schema
$t abl e

= $sessi on- >get Schema(" addr essbook") ;
= $schema- >get Tabl e(" nanes") ;
i f ($tabl e->exi stslnDatabase()) {
echo "Yes, this table still exists in the session's schema.";

}

2>

The above example will output something similar to:

Yes, this table still exists in the session's schena.

417

http://www.php.net/mysql_xdevapiTable::existsInDatabase

Tabl e: : get Nane

5.32.5 Tabl e: : get Nane
Copyright 1997-2019 the PHP Documentation Group.
» Tabl e: : get Nane
Get table name
Description
public string nmysql _xdevapi\ Tabl e: : get Nane() ;
Returns the name of this database object.
Parameters
This function has no parameters.
Return Values
The name of this database object.
Examples

Example 5.158 nysql xdevapi \ Tabl e: : get Nane example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e();

$sessi on- >sql (" CREATE TABLE addr essbook. names(nanme text, age int)")->execute();

$sessi on->sql ("I NSERT | NTO addr essbook. nanes val ues ('John', 42), ('Sam, 33)")->execute();

$schema
$t abl e

$sessi on- >get Schenu(" addr essbook") ;
$schenm- >get Tabl e(" nanmes") ;

var _dunp($t abl e- >get Nane()) ;
?>

The above example will output something similar to:

string(5) "nanmes"

5.32.6 Tabl e: : get Schenma
Copyright 1997-2019 the PHP Documentation Group.
e Tabl e: : get Schenma

Get table schema

418

http://www.php.net/mysql_xdevapiTable::getName

Tabl e: : get Sessi on

Description

publ i c nysqgl _xdevapi\ Schema nysql _xdevapi \ Tabl e: : get Schema()

Fetch the schema associated with the table.

Parameters

This function has no parameters.

Return Values

A Schema object.

Examples

Example 5.159 mysql _xdevapi \ Tabl e: : get Schena example

<?php
$sessi on

$sessi on->sql ("

nmysql _xdevapi \ get Sessi on(" nmysql x: // user: passwor d@ ocal host ")

$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e()
$sessi on- >sql (" CREATE TABLE addr essbook. names(nanme text, age int)")->execute()
$sessi on->sql ("I NSERT | NTO addr essbook. nanes val ues (' John'

$schema
$t abl e

$sessi on- >get Schenu(" addr essbook")
$schenm- >get Tabl e(" nanmes")

var _dunp($t abl e- >get Schema())

?>

The above example will output something similar to:

obj ect (mysql _xdevapi \ Schema) #9 (1) {
["name"] =>
string(11) "addressbook"

}

5.32.7 Tabl e: : get Sessi on

Copyright 1997-2019 the PHP Documentation Group.

e Tabl e: : get Sessi on

Get table session

Description

DROP DATABASE | F EXI STS addr essbook") - >execut e()

42),

publ i c nmysql _xdevapi \ Sessi on nysql _xdevapi \ Tabl e: : get Sessi on() ;

Get session associated with the table.

Parameters

(" San,

33)")->execute();

419

http://www.php.net/mysql_xdevapiTable::getSchema

Tabl e: : i nsert

This function has no parameters.
Return Values
A Session object.

Examples

Example 5.160 nysql xdevapi \ Tabl e: : get Sessi on example

<?php
$session = nysql _xdevapi \ get Sessi on("nysql x: // user : passwor d@ ocal host ") ;

$sessi on->sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on->sql (" CREATE DATABASE addr essbook")->execut e();

$sessi on->sql (" CREATE TABLE addr essbook. nanes(nane text, age int)")->execute();

$sessi on->sql ("I NSERT | NTO addr essbook. nanes val ues ('John', 42), ('Sani, 33)")->execute()

$schema
$tabl e

$sessi on- >get Schena(" addr essbook") ;
$schenma- >get Tabl e(" nanmes") ;

var _dunp($t abl e- >get Sessi on());
?>

The above example will output something similar to:

obj ect (mysql _xdevapi \ Sessi on)#9 (0) {
}

5.32.8 Tabl e: : 1 nsert

Copyright 1997-2019 the PHP Documentation Group.
e Tabl e::insert
Insert table rows

Description

publi ¢ nysql _xdevapi \ Tabl el nsert nysql _xdevapi \ Tabl e: :i nsert (
m xed col umms
mxed ...);

Inserts rows into a table.
Parameters

col ums The columns to insert data into. Can be an array with one or more
values, or a string.

Additional columns definitions.

Return Values

420

http://www.php.net/mysql_xdevapiTable::getSession

Tabl e: : i sVi ew

A Tablelnsert object; use the execute() method to execute the insert statement.
Examples

Example 5.161 mysql _xdevapi \ Tabl e: : i nsert example

<?php
$session = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e()

$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e()

$sessi on- >sql (" CREATE TABLE addr essbook. names(name text, age int)")->execute()

$sessi on->sql ("I NSERT | NTO addr essbook. names val ues ('John', 42), ('Sam, 33)")->execute()

$schena = $sessi on- >get Scherma(" addr essbook")
$tabl e = $schema- >get Tabl e(" nanmes")
$tabl e ->i nsert("nane", "age")

->val ues(["Suzanne", 31],["Julie", 43])
->execute();
2>

5329 Tabl e::isView
Copyright 1997-2019 the PHP Documentation Group.
* Table::isView
Check if table is view

Description

publ i c bool nysqgl _xdevapi\Table::isView);
Determine if the underlying object is a view or not.
Parameters
This function has no parameters.
Return Values
TRUE if the underlying object is a view, otherwise FALSE.
Examples

Example 5.162 nysql _xdevapi \ Tabl e: : i sVi ewexample

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e();

$sessi on- >sql (" CREATE TABLE addr essbook. names(nanme text, age int)")->execute();

$sessi on->sql ("I NSERT | NTO addr essbook. nanes val ues ('John', 42), ('Sam, 33)")->execute();

421

http://www.php.net/mysql_xdevapiTable::insert
http://www.php.net/mysql_xdevapiTable::isView

Tabl e: : sel ect

$schema
$t abl e

= $sessi on- >get Schema(" addr essbook")
= $schenma- >get Tabl e(" nanes
if ($table->isViewm)) {
echo "This is a view";
} else {
echo "This is not a view";

}

?>

The above example will output:

int(2)

5.32.10 Tabhl e: : sel ect

Copyright 1997-2019 the PHP Documentation Group.
e Tabl e: : sel ect
Select rows from table

Description
publ i c nmysql _xdevapi \ Tabl eSel ect mnysql _xdevapi \ Tabl e: : sel ect (

m xed col ums
mxed ...);

Fetches data from a table.
Parameters

col ums The columns to select data from. Can be an array with one or more
values, or a string.

Additional columns parameter definitions.
Return Values
A TableSelect object; use the execute() method to execute the select and return a RowResult object.
Examples

Example 5.163 nmysql _xdevapi \ Tabl e: : count example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e() ;

$sessi on- >sql (" CREATE TABLE addr essbook. names(nanme text, age int)")->execute();

$sessi on->sql ("I NSERT | NTO addr essbook. names val ues ('John', 42), ('Sam, 33)")->execute();

$schema
$t abl e

$sessi on- >get Schena(" addr essbook") ;
$schenm- >get Tabl e(" nanmes") ;

422

http://www.php.net/mysql_xdevapiTable::count

Tabl e: : updat e

$row = $tabl e->sel ect (' nane', 'age')->execute()->fetchAl();

print_r($row;

The above example will output something similar to:

Array
(
[0] => Array
[nane] => John
[age] => 42
)
[1] => Array

(
[name] => Sam
[age] => 33

5.32.11 Tabl e: : updat e

Copyright 1997-2019 the PHP Documentation Group.
e Tabl e: : updat e
Update rows in table
Description
publ i c nysql _xdevapi \ Tabl eUpdat e nysql _xdevapi \ Tabl e: : updat e() ;
Updates columns in a table.
Parameters
This function has no parameters.
Return Values
A TableUpdate object; use the execute() method to execute the update statement.
Examples

Example 5.164 nysql _xdevapi \ Tabl e: : updat e example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e() ;

$sessi on- >sql (" CREATE TABLE addr essbook. names(nanme text, age int)")->execute();

$sessi on- >sgl ("I NSERT | NTO addr essbook. nanmes val ues ('John', 42), ('Sam, 33)")->execute();

423

http://www.php.net/mysql_xdevapiTable::update

TableDelete class

$schema
$t abl e

$sessi on- >get Schenn(" addr essbook") ;
$schenm- >get Tabl e(" nanmes") ;

$t abl e- >updat e() - >set (' age' , 34) ->where(' name = "Sani'')->limt(1)->execute();
?>

5.33 TableDelete class

Copyright 1997-2019 the PHP Documentation Group.

A statement for delete operations on Table.
mysql _xdevapi \ Tabl eDel ete {
nmysql _xdevapi \ Tabl eDel et e
nmysql _xdevapi \ Execut abl e
Met hods

publ i c nmysql _xdevapi \ Tabl eDel et e nmysql _xdevapi \ Tabl eDel et e: : bi nd(
array pl acehol der _val ues);

publ i c mysql xdevapi\ Result mysqgl xdevapi\ Tabl eDel et e: : execut e() ;

publ i ¢ nmysql _xdevapi \ Tabl eDel et e nmysql _xdevapi \ Tabl eDel ete::limt(
i nteger rows);

publ i c nmysql _xdevapi \ Tabl eDel et e nmysql _xdevapi \ Tabl eDel et e: : of f set (
i nteger position);

publ i c nysql _xdevapi \ Tabl eDel et e nysql _xdevapi \ Tabl eDel et e: : or der by(
string orderby_expr);

publ i c nmysql _xdevapi \ Tabl eDel et e nmysql _xdevapi \ Tabl eDel et e: : wher e(
string where_expr);

}
5.33.1 Tabl eDel et e: : bi nd

Copyright 1997-2019 the PHP Documentation Group.
» Tabl eDel et e: : bi nd
Bind delete query parameters

Description

publ i c nmysql _xdevapi \ Tabl eDel et e nmysql xdevapi \ Tabl eDel et e: : bi nd(
array pl acehol der _val ues);

Binds a value to a specific placeholder.
Parameters
pl acehol der _val ues The name of the placeholder and the value to bind.

Return Values

424

Tabl eDel ete:: __construct

A TableDelete object.

Examples

Example 5.165 nmysql xdevapi \ Tabl eDel et e: : bi nd example

<?php
$sessi on = nysql _xdevapi \ get Sessi on("nysql x: // user : passwor d@ ocal host ") ;

$sessi on->sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on->sql (" CREATE DATABASE addr essbook") ->execut e();

$sessi on->sql (" CREATE TABLE addr essbook. nanes(nane text, age int)")->execute();

$sessi on->sql ("I NSERT | NTO addr essbook. nanes val ues ('John', 42), ('Sanmi, 33)")->execute()

$schema
$tabl e

$sessi on- >get Schenma(" addr essbook") ;
$schenma- >get Tabl e(" nanmes") ;

$t abl e- >del et e()
->where("nanme = :nane")
->bi nd([' name' => 'John'])
->or der by("age DESC')
->limit(1)

->execute();

?>

5.33.2 Tabl eDel ete:: __construct

Copyright 1997-2019 the PHP Documentation Group.
e Tabl eDel ete:: __construct
TableDelete constructor

Description

private nysqgl _xdevapi\ Tabl eDel ete::__construct ()
Initiated by using the delete() method.
Parameters
This function has no parameters.

Examples

Example 5.166 nysql xdevapi \ Tabl eDel ete:: _construct example

<?php
$sessi on = nysql _xdevapi \ get Sessi on("nysql x: // user : passwor d@ ocal host ") ;

$sessi on->sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on->sql (" CREATE DATABASE addr essbook")->execut e();

$sessi on->sql (" CREATE TABLE addr essbook. nanes(nane text, age int)")->execute();

$sessi on->sql ("I NSERT | NTO addr essbook. nanes val ues ('John', 42), ('Sani, 33)")->execute()

425

http://www.php.net/mysql_xdevapiTableDelete::bind
http://www.php.net/mysql_xdevapiTableDelete::__construct

Tabl eDel et e: : execut e

$schema
$t abl e

$sessi on- >get Schenn(" addr essbook") ;
$schenm- >get Tabl e(" nanmes") ;

$t abl e- >del et e()
->where("nanme = :nane")
->bi nd([' name' => 'John'])
->or der by("age DESC')
->limt (1)

->execute();

?>

5.33.3 Tabl eDel et e: : execut e

Copyright 1997-2019 the PHP Documentation Group.
» Tabl eDel et e: : execut e
Execute delete query
Description
publ i c nysqgl _xdevapi \ Result nysql _xdevapi\ Tabl eDel et e: : execut e();
Execute the delete query.
Parameters
This function has no parameters.
Return Values
A Result object.
Examples

Example 5.167 nysql _xdevapi \ Tabl eDel et e: : execut e example

<?php
$session = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on- >sql (" CREATE DATABASE addr essbook") - >execute();

$sessi on- >sql (" CREATE TABLE addr essbook. names(nanme text, age int)")->execute();

$sessi on->sql ("I NSERT | NTO addr essbook. names val ues ('John', 42), ('Sam, 33)")->execute();

$schema
$t abl e

= $sessi on- >get Scherma(" addr essbook") ;
= $schema- >get Tabl e(" nanes") ;
$t abl e- >del et e()

->wher e("nane = :nane")

->bi nd([' name' => 'John'])

->orderby("age DESC')

->limt(1)

->execute();

?>

426

http://www.php.net/mysql_xdevapiTableDelete::execute

Tabl eDel ete::limt

5.33.4 Tabl eDel ete::limt
Copyright 1997-2019 the PHP Documentation Group.
 Tabl eDelete::limt
Limit deleted rows

Description

publ i c mysql xdevapi \ Tabl eDel et e mysql xdevapi \ Tabl eDel ete::limt(
i nteger rows);

Sets the maximum number of records or documents to delete.

Parameters

r ows The maximum number of records or documents to delete.
Return Values

TableDelete object.

Examples

Example 5.168 nysql xdevapi \ Tabl eDel ete: : i mt example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e()

$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e()

$sessi on- >sql (" CREATE TABLE addr essbook. names(nanme text, age int)")->execute()

$sessi on->sql ("I NSERT | NTO addr essbook. names val ues ('John', 42), ('Sam, 33)")->execute()

$schema
$t abl e

$sessi on- >get Schena(" addr essbook")
$schena- >get Tabl e(" names"

$t abl e- >del et e()
->wher e(" nane = : nane"
->bi nd([' name' => 'John'])
->orderby("age DESC')
->limt(1)

- >execut e()

?>

5.33.5 Tabl eDel et e: : of f set

Copyright 1997-2019 the PHP Documentation Group.
e Tabl eDel et e: : of f set
Set delete limit offset

Description

publ i c nmysql _xdevapi \ Tabl eDel et e nmysql _xdevapi \ Tabl eDel et e: : of f set (

427

http://www.php.net/mysql_xdevapiTableDelete::limit

Tabl eDel et e: : or der by

i nteger position);

Sets the limit offset.

Parameters

position The limit offset.

Return Values

A TableDelete object.

Examples

Example 5.169 nysql _xdevapi \ Tabl eDel et e: : of f set example

<?php
$sessi on

= nysql _xdevapi \ get Sessi on("nysql x: // user: passwor d@ ocal host");

$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;
$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e() ;

$sessi on- >sql (" CREATE TABLE addr essbook. names(nanme text, age int)")->execute();
$sessi on->sql ("I NSERT | NTO addr essbook. names val ues ('John', 42), ('Sam, 33),

$schema
$t abl e

$sessi on- >get Schenu(" addr essbook") ;
$schenm- >get Tabl e(" nanmes") ;

$t abl e- >del et e()
->where("age = :age")
->bind([' age' => 42])
->or der by (" name DESC")
->limt (1)

->of fset (1)
->execute();

?>

5.33.6 Tabl eDel et e: : or der by

Copyright 1997-2019 the PHP Documentation Group.

e Tabl eDel et e: : order by

Set delete sort criteria

Description

publ i ¢ nysql _xdevapi \ Tabl eDel et e nysql _xdevapi \ Tabl eDel et e: : or der by(
string orderby_expr);

Set the order options for a result set.

Parameters

order by _expr The sort definition.

Return Values

A TableDelete object.

("Julie'

42) ") - >execut e()

428

http://www.php.net/mysql_xdevapiTableDelete::offset

Tabl eDel et e: : wher e

Examples

Example 5.170 mysql _xdevapi \ Tabl eDel et e: : or der By example

<?php
$session = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$schema
$t abl e

$sessi on- >get Schema(" addr essbook") ;
$schena- >get Tabl e(" names") ;

$t abl e- >del et e()
->where("age = :age")
->bi nd([' age' => 42])
->or der by("name DESC')
->limt(1)
->execute();

?>

5.33.7 Tabl eDel et e: : where
Copyright 1997-2019 the PHP Documentation Group.
» Tabl eDel et e: : where
Set delete search condition

Description

publ i c nysql _xdevapi \ Tabl eDel et e nysql _xdevapi \ Tabl eDel et e: : wher e(
string where_expr)

Sets the search condition to filter.

Parameters

wher e_expr Define the search condition to filter documents or records.
Return Values

TableDelete object.

Examples

Example 5.171 nysql _xdevapi \ Tabl eDel et e: : wher e example

<?php
$session = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host")

$sessi on- >get Schena(" addr essbook™)
$schenm- >get Tabl e(" names")

$schema =
$table =
$t abl e- >del et e()
->where("id = :id")
->bind(["id => 42])
->limt(1)
->execut e();

429

http://www.php.net/mysql_xdevapiTableDelete::orderBy
http://www.php.net/mysql_xdevapiTableDelete::where

Tablelnsert class

?>

5.34 Tablelnsert class

Copyright 1997-2019 the PHP Documentation Group.

A statement for insert operations on Table.
nysql _xdevapi \ Tabl el nsert {
nysql _xdevapi \ Tabl el nsert
nysql _xdevapi \ Execut abl e
Met hods
publ i c mysql xdevapi\Result mysqgl xdevapi\ Tabl el nsert: : execut e()

publi ¢ nysql _xdevapi \ Tabl el nsert nysql _xdevapi \ Tabl el nsert: : val ues(
array row_val ues)

}
5.34.1 Tabl el nsert:: _construct
Copyright 1997-2019 the PHP Documentation Group.
e Tablelnsert::__construct
Tablelnsert constructor

Description

private nysql _xdevapi\Tabl el nsert::__construct();
Initiated by using the insert() method.
Parameters
This function has no parameters.
Examples

Example 5.172 nysql _xdevapi \ Tabl el nsert::__construct example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e();

$sessi on- >sql (" CREATE TABLE addr essbook. names(nanme text, age int)")->execute();

$sessi on->sql ("I NSERT | NTO addr essbook. names val ues ('John', 42), ('Sam, 33)")->execute();

$schema
$t abl e

$sessi on- >get Schena(" addr essbook") ;
$schenm- >get Tabl e(" nanmes") ;

430

http://www.php.net/mysql_xdevapiTableInsert::__construct

Tabl el nsert:: execute

$tabl e
->insert("nanme", "age")
->val ues([" Suzanne", 31],["Julie", 43])

->execute();
?>

5.34.2 Tabl el nsert:: execute

Copyright 1997-2019 the PHP Documentation Group.
e Tabl el nsert::execute
Execute insert query

Description

publ i c mysql _xdevapi \ Result mysql _xdevapi\ Tabl el nsert:: execute();
Execute the statement.
Parameters
This function has no parameters.
Return Values
A Result object.
Examples

Example 5.173 nysql xdevapi \ Tabl el nsert: : execut e example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e();

$sessi on- >sql (" CREATE TABLE addr essbook. names(nanme text, age int)")->execute();

$sessi on->sql ("I NSERT | NTO addr essbook. nanes val ues ('John', 42), ('Sam, 33)")->execute();

$schena = $sessi on- >get Scherma(" addr essbook") ;
$tabl e = $schema- >get Tabl e(" nanes");
$tabl e

->insert("nanme", "age")

->val ues(["Suzanne", 31],["Julie", 43])

->execute();
?>

5.34.3 Tabl el nsert::val ues

Copyright 1997-2019 the PHP Documentation Group.
e Tabl el nsert::val ues

Add insert row values

431

http://www.php.net/mysql_xdevapiTableInsert::execute

TableSelect class

Description

publ i c nmysql xdevapi \ Tabl el nsert mnysql xdevapi \ Tabl el nsert: : val ues(
array row_val ues)

Set the values to be inserted.

Parameters

row_val

ues Values (an array) of columns to insert.

Return Values

A Tablelnsert object.

Examples

Example 5.174 nysql xdevapi \ Tabl el nsert: : val ues example

<?php
$sessi on

= nmysqgl _xdevapi \ get Sessi on(" mysqgl x: // user: passwor d@ ocal host")

$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e()

$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e()
$sessi on- >sql (" CREATE TABLE addr essbook. names(nane text,

age int)")->execute()

$sessi on->sql ("I NSERT | NTO addr essbook. nanes val ues ('John', 42)

$schema
$tabl e

$tabl e
->i nse
->val u
- >exec

?>

$sessi on- >get Schema(" addr essbook")
$schena- >get Tabl e(" nanes")

rt("name”, "age")
es(["Suzanne", 31],["Julie", 43])
ute();

5.35 TableSelect class

Copyright 1997-2019 the PHP Documentation Group.

A statement for record retrieval operations on a Table.

nysql _xd
nysql _xd

evapi \ Tabl eSel ect {
evapi \ Tabl eSel ect

nmysql _xdevapi \ Execut abl e

Met hods

(" Sam,

publ i c nmysql _xdevapi \ Tabl eSel ect mysql _xdevapi \ Tabl eSel ect : : bi nd(
array pl acehol der _val ues);

publ i c mysql xdevapi \ RowResul t nysqgl _xdevapi \ Tabl eSel ect: : execut e()

publ i c mysql _xdevapi \ Tabl eSel ect nmysql _xdevapi \ Tabl eSel ect : : gr oupBy(
m xed sort_expr);

publ i c nmysql _xdevapi \ Tabl eSel ect mnysql _xdevapi \ Tabl eSel ect : : havi ng(

33)")->execute();

432

http://www.php.net/mysql_xdevapiTableInsert::values

Tabl eSel ect: : bi nd

string sort_expr)

publ i c nmysql _xdevapi \ Tabl eSel ect mysql _xdevapi \ Tabl eSel ect::limt(
i nteger rows);

publ i c nysql _xdevapi \ Tabl eSel ect nysql _xdevapi \ Tabl eSel ect: : | ockExcl usi ve(
i nteger | ock_waiting_option)

publ i c nmysql _xdevapi \ Tabl eSel ect nysql _xdevapi \ Tabl eSel ect : : | ockShar ed(
i nteger |ock_waiting_option);

publi ¢ nysql _xdevapi \ Tabl eSel ect nysql _xdevapi \ Tabl eSel ect: : of f set (
i nt eger position)

publ i c nmysql _xdevapi \ Tabl eSel ect mnysql _xdevapi \ Tabl eSel ect : : or der by(
m xed sort_expr
mxed ...);

publ i c mysql _xdevapi \ Tabl eSel ect mysql xdevapi \ Tabl eSel ect : : wher e(
string where_expr)

}
5.35.1 Tabl eSel ect : : bi nd
Copyright 1997-2019 the PHP Documentation Group.
» Tabl eSel ect: : bi nd
Bind select query parameters

Description

publ i ¢ nysql _xdevapi \ Tabl eSel ect nysql _xdevapi \ Tabl eSel ect : : bi nd(
array pl acehol der_val ues)

Binds a value to a specific placeholder.

Parameters

pl acehol der _val ues The name of the placeholder, and the value to bind.
Return Values

A TableSelect object.

Examples

Example 5.175 mysql _xdevapi \ Tabl eSel ect : : bi nd example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host")

$schema
$tabl e

$sessi on- >get Schena(" addr essbook")
$schenm- >get Tabl e(" nanmes")

$result = $tabl e->sel ect (' nane', ' age')
->where(' name |i ke :nane and age > :age')
->bi nd([' name' => 'John', 'age' => 42])
->execut e();

$row = $result->fetchAll ()

433

http://www.php.net/mysql_xdevapiTableSelect::bind

Tabl eSel ect:: __construct

print_r($row);
?>

The above example will output something similar to:

Array
[0] => Array
[name] => John
[age] => 42
|)
5.35.2 Tabl eSel ect:: _construct

Copyright 1997-2019 the PHP Documentation Group.
e Tabl eSel ect:: __construct
TableSelect constructor

Description

private mysql _xdevapi\ Tabl eSel ect::__construct();
An object returned by the select() method; use execute() to execute the query.
Parameters
This function has no parameters.
Examples

Example 5.176 mysql _xdevapi \ Tabl eSel ect::__construct example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e();

$sessi on- >sql (" CREATE TABLE addr essbook. names(nanme text, age int)")->execute();
$sessi on- >sql ("I NSERT | NTO addr essbook. nanes val ues ('John', 42), ('Sam, 33)")->execute();

$schema
$t abl e

= $sessi on- >get Schema(" addr essbook") ;

= $schenm- >get Tabl e(" nanmes") ;

$result = $tabl e->sel ect (' nane', ' age')
->where(' nanme |ike :nane and age > :age')
->bi nd([' name' => 'John', 'age' => 42])
->order By(' age desc')
->execute();

$row = $result->fetchAll();
print_r($row);

434

http://www.php.net/mysql_xdevapiTableSelect::__construct

Tabl eSel ect : : execut e

?>

The above example will output something similar to:

Array
[0] => Array

[name] => John
[age] => 42

5.35.3 Tabl eSel ect: : execut e
Copyright 1997-2019 the PHP Documentation Group.
» Tabl eSel ect: : execut e
Execute select statement

Description

publ i c nysqgl _xdevapi \ RowResul t nysql _xdevapi \ Tabl eSel ect : : execut e();
Execute the select statement by chaining it with the execute() method.
Parameters
This function has no parameters.

Return Values
A RowResult object.
Examples

Example 5.177 mysql _xdevapi \ Tabl eSel ect : : execut e example

<?php
$sessi on = nysql _xdevapi \ get Sessi on("nysql x: // user: passwor d@ ocal host");

$schema
$t abl e

$sessi on- >get Schenma(" addr essbook") ;
$schema- >get Tabl e(" nanmes") ;

$result = $tabl e->sel ect (' nane', ' age')
->where(' nane |ike :name and age > :age')
->bind([' name' => 'John', 'age' => 42])
->orderBy(' age desc')
->execute();

$row = $result->fetchAll();
?>

435

http://www.php.net/mysql_xdevapiTableSelect::execute

Tabl eSel ect : : gr oupBy

The above example will output something similar to:

Array
[0] => Array

[nane] => John
[age] => 42

5.35.4 Tabl eSel ect : : gr oupBy
Copyright 1997-2019 the PHP Documentation Group.
e Tabl eSel ect : : groupBy
Set select grouping criteria

Description

publ i c nysql _xdevapi \ Tabl eSel ect nysql _xdevapi \ Tabl eSel ect : : gr oupBy/(
m xed sort_expr);

Sets a grouping criteria for the result set.

Parameters

sort _expr The grouping criteria.
Return Values

A TableSelect object.

Examples

Example 5.178 nysql _xdevapi \ Tabl eSel ect : : gr oupBy example

<?php
$session = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on- >sql (" CREATE DATABASE addr essbook") - >execute();

$sessi on- >sql (" CREATE TABLE addr essbook. names(name text, age int)")->execute();

$sessi on->sql ("I NSERT | NTO addr essbook. names val ues ('John', 42), ('Sam, 42)")->execute();

$sessi on->sql ("I NSERT | NTO addr essbook. names val ues (' Suki', 31)")->execute();
$schena = $sessi on- >get Schema(" addr essbook") ;

$tabl e = $schema->get Tabl e(" nanes");

$result = $tabl e->sel ect (' count(*) as count', 'age')

->groupBy(' age')->orderBy(' age asc')
->execute();

$row = $result->fetchA | ();
print_r($row;

72>

436

http://www.php.net/mysql_xdevapiTableSelect::groupBy

Tabl eSel ect : : havi ng

The above example will output something similar to:

Array

[a

[1

(

)

> Array
[count] => 1
[age] => 31
> Array

[count] => 2
[age] => 42

5.35.5 Tabl eSel ect : : havi ng

Copyright 1997-2019 the PHP Documentation Group.

e Tabl eSel ect: : havi ng

Set select having condition

Description

publi ¢ nysql _xdevapi \ Tabl eSel ect nysql _xdevapi \ Tabl eSel ect : : havi ng(
string sort_expr)

Sets a condition for records to consider in aggregate function operations.

Parameters

sort_expr

Return Values

A TableSelect object.

Examples

Example 5.179 nysql _xdevapi \ Tabl eSel ect : : havi ng example

<?php
$sessi on

= nysql _xdevapi \ get Sessi on("nysql x: // user: passwor d@ ocal host")

$sessi on->sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e()

$sessi on->sql (" CREATE DATABASE addr essbook") - >execut e()

$sessi on->sql (" CREATE TABLE addr essbook. nanes(nanme text, age int)")->execute()

$sessi on->sql ("I NSERT | NTO addr essbook. nanes val ues ('John', 42), ('Sani, 42)")->execute()
$sessi on->sql ("I NSERT | NTO addr essbook. nanmes val ues (' Suki', 31)")->execute()

$schema
$tabl e

$sessi on- >get Schenma(" addr essbook")
$schenma- >get Tabl e(" names")

A condition on the aggregate functions used on the grouping criteria.

437

http://www.php.net/mysql_xdevapiTableSelect::having

Tabl eSelect::limt

$result = $tabl e->sel ect (' count(*) as count', 'age')
->groupBy(' age')->orderBy(' age asc')
->havi ng(' count > 1')
->execute();

$row = $result->fetchAll();

print_r($row;
?>

The above example will output something similar to:

Array
[0] => Array
[count] => 2
[age] => 42
))
5.35.6 Tabl eSelect::limt

Copyright 1997-2019 the PHP Documentation Group.
e TableSelect::limt
Limit selected rows

Description

publ i c nysql _xdevapi \ Tabl eSel ect nysql _xdevapi \ Tabl eSel ect::limt(
i nteger rows);

Sets the maximum number of records or documents to return.

Parameters

r ows The maximum number of records or documents.
Return Values

A TableSelect object.

Examples

Example 5.180 nysql _xdevapi \ Tabl eSel ect::1imt example

<?php
$sessi on = nysql _xdevapi \ get Sessi on("nysql x: // user : passwor d@ ocal host ") ;

$schema = $sessi on- >get Schema(" addr essbook") ;
$table = $schenm->get Tabl e(" nanes");
$result = $tabl e->sel ect(' nane', 'age')

438

http://www.php.net/mysql_xdevapiTableSelect::limit

Tabl eSel ect: : | ockExcl usi ve

->limt (1)
->execute();

$row = $result->fetchAl();
print_r($row;
?>

The above example will output something similar to:

Array

(
[0] => Array

[name] => John
[age] => 42

5.35.7 Tabl eSel ect: : | ockExcl usi ve

Copyright 1997-2019 the PHP Documentation Group.
» Tabl eSel ect: : | ockExcl usi ve
Execute EXCLUSIVE LOCK

Description

publi c nysql _xdevapi \ Tabl eSel ect nysql _xdevapi \ Tabl eSel ect: : | ockExcl usi ve(
i nteger | ock_waiting_option);

Execute a read operation with EXCLUSIVE LOCK. Only one lock can be active at a time.
Parameters

| ock_wai ting_option The optional waiting option that defaults to MYSQLX_LOCK_DEFAULT.
Valid values are:

o MYSQLX LOCK_DEFAULT

o MYSQLX LOCK_NOWAI T

o MYSQLX_LOCK_SKI P_LOCKED
Return Values
TableSelect object.
Examples

Example 5.181 mysql _xdevapi \ Tabl eSel ect : : | ockExcl usi ve example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

439

http://www.php.net/mysql_xdevapiTableSelect::lockExclusive

Tabl eSel ect : : | ockShar ed

$schema
$t abl e

$sessi on- >get Schenu(" addr essbook") ;
$schenm- >get Tabl e(" nanmes") ;

$sessi on->start Transaction();

$result = $tabl e->sel ect (' name', 'age')
->| ockExcl usi ve(MYSQLX_LOCK_NOWAI T)
->execute();

$sessi on->comi t () ;

$row = $result->fetchAl();

print_r($row;
?>

The above example will output something similar to:

Array
[0] => Array
[nanme] => John
[age] => 42
[1] L> Array

[nanme] => Sam
[age] => 42

5.35.8 Tabl eSel ect: : | ockShar ed

Copyright 1997-2019 the PHP Documentation Group.
e Tabl eSel ect: : | ockShar ed
Execute SHARED LOCK

Description

publ i c nmysql xdevapi \ Tabl eSel ect mysql _xdevapi \ Tabl eSel ect: : | ockShar ed(
i nteger |ock_ waiting option)

Execute a read operation with SHARED LOCK. Only one lock can be active at a time.
Parameters

 ock_waiting_option The optional waiting option that defaults to MYSQLX_ LOCK_ DEFAULT.
Valid values are:

« MYSQLX_LOCK_DEFAULT
o MYSQLX_LOCK_NOWAI T

« MYSQLX_LOCK_SKI P_LOCKED

440

Tabl eSel ect : : of f set

Return Values
A TableSelect object.
Examples

Example 5.182 nysql xdevapi \ Tabl eSel ect: : | ockShar ed example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$schema
$t abl e

$sessi on- >get Schema(" addr essbook") ;
$schena- >get Tabl e(" nanmes") ;

$sessi on->start Transacti on();

$result = $tabl e->sel ect(' name', 'age')
- >| ockShar ed(MYSQLX_LOCK_NOWAI T)
->execute();

$sessi on->commi t () ;

$row = $result->fetchAl();

print_r($row;
?>

The above example will output something similar to:

Array
([0] => Array
([nane] => John
[age] => 42
[1] l> Array

(
[name] => Sam
[age] => 42

5.35.9 Tabl eSel ect : : of f set
Copyright 1997-2019 the PHP Documentation Group.
» Tabl eSel ect: : of f set
Set limit offset

Description

publ i c nmysql _xdevapi \ Tabl eSel ect nysql _xdevapi \ Tabl eSel ect : : of f set (
i nteger position);

Skip given number of rows in result.

441

http://www.php.net/mysql_xdevapiTableSelect::lockShared

Tabl eSel ect : : or der by

Parameters

posi tion The limit offset.
Return Values

A TableSelect object.

Examples

Example 5.183 nysql _xdevapi \ Tabl eSel ect : : of f set example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$sessi on- >sql (" DROP DATABASE | F EXI STS addr essbook") - >execut e() ;

$sessi on- >sql (" CREATE DATABASE addr essbook") - >execut e();

$sessi on- >sql (" CREATE TABLE addr essbook. names(nanme text, age int)")->execute();

$sessi on->sql ("I NSERT | NTO addr essbook. names val ues ('John', 42), ('Sam, 42)")->execute();

$schena = $sessi on- >get Scherma(" addr essbook") ;

$tabl e = $schema- >get Tabl e(" nanes");

$result = $tabl e->sel ect (' name', 'age')
->limt(1)

->of fset (1)
->execute();

$row = $result->fetchA | ();

print_r($row;
?>

The above example will output something similar to:

Array
[0] => Array

[name] => Sam
[age] => 42

5.35.10 Tabl eSel ect : : or der by
Copyright 1997-2019 the PHP Documentation Group.
e Tabl eSel ect : : order by
Set select sort criteria

Description

publ i c nmysql _xdevapi \ Tabl eSel ect nysql _xdevapi \ Tabl eSel ect : : or der by(
m xed sort_expr
mxed ...);

442

http://www.php.net/mysql_xdevapiTableSelect::offset

Tabl eSel ect: : where

Sets the order by criteria.
Parameters

sort_expr The expressions that define the order by criteria. Can be an array with
one or more expressions, or a string.

Additional sort_expr parameters.
Return Values
A TableSelect object.

Examples

Example 5.184 nysql xdevapi \ Tabl eSel ect : : or der By example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$schenma = $sessi on- >get Schema(" addr essbook") ;
$tabl e = $schema->get Tabl e(" nanes");
$result = $tabl e->sel ect (' name', 'age')

->orderBy(' nane desc')
->execute();

$row = $result->fetchAl();

print_r($row;
?>

The above example will output something similar to:

Array
([0] => Array
([name] => Sam
[age] => 42
[1])=> Array

[nane] => John
[age] => 42

5.35.11 Tabl eSel ect : : where

Copyright 1997-2019 the PHP Documentation Group.
e Tabl eSel ect : : where

Set select search condition

443

http://www.php.net/mysql_xdevapiTableSelect::orderBy

TableUpdate class

Description

publ i ¢ nysql _xdevapi \ Tabl eSel ect nysql _xdevapi \ Tabl eSel ect : : wher e(
string where_expr)

Sets the search condition to filter.

Parameters

wher e_expr Define the search condition to filter documents or records.
Return Values

A TableSelect object.

Examples

Example 5.185 nysql _xdevapi \ Tabl eSel ect : : wher e example

<?php
$sessi on = nysql _xdevapi \ get Sessi on("nysql x: // user : passwor d@ ocal host ") ;

$schema
$tabl e

$sessi on- >get Schena(" addr essbook") ;
$schenma- >get Tabl e(" nanmes") ;

$result = $tabl e->sel ect (' nane', ' age')
->where(' nanme |ike :nane and age > :age')
->bi nd([' name' => 'John', 'age' => 42])
->execute();

$row = $result->fetchAll();
print_r($row);
2>

The above example will output something similar to:

Array
[0] => Array

[nanme] => John
[age] => 42

5.36 TableUpdate class

Copyright 1997-2019 the PHP Documentation Group.

A statement for record update operations on a Table.

nmysql _xdevapi \ Tabl eUpdat e {
nmysql _xdevapi \ Tabl eUpdat e

444

http://www.php.net/mysql_xdevapiTableSelect::where

Tabl eUpdat e: : bi nd

mysql _xdevapi \ Execut abl e
Met hods

publ i c nmysql _xdevapi \ Tabl eUpdat e nmysql _xdevapi \ Tabl eUpdat e: : bi nd(
array pl acehol der _val ues);

publ i c nmysql _xdevapi \ Tabl eUpdat e nmysql _xdevapi \ Tabl eUpdat e: : execut e() ;

publ i c mysql _xdevapi \ Tabl eUpdat e mysql _xdevapi \ Tabl eUpdate::limt(
i nteger rows);

publ i ¢ nysql _xdevapi \ Tabl eUpdat e nysql _xdevapi \ Tabl eUpdat e: : or der by(
m xed orderby_expr,
mxed ...);

publi ¢ nysql _xdevapi \ Tabl eUpdat e nysql _xdevapi \ Tabl eUpdat e: : set (
string table_field,
string expression_or_literal);

publ i ¢ nysql _xdevapi \ Tabl eUpdat e nysql _xdevapi \ Tabl eUpdat e: : wher e(
string where_expr);

}
5.36.1 Tabl eUpdat e: : bi nd
Copyright 1997-2019 the PHP Documentation Group.
» Tabl eUpdat e: : bi nd
Bind update query parameters

Description

publ i ¢ nysql _xdevapi \ Tabl eUpdat e nysql _xdevapi \ Tabl eUpdat e: : bi nd(
array pl acehol der _val ues);

Binds a value to a specific placeholder.
Parameters

pl acehol der val ues The name of the placeholder, and the value to bind, defined as a JSON
array.

Return Values
A TableUpdate object.
Examples

Example 5.186 mysql _xdevapi \ Tabl eUpdat e: : bi nd example

<?php
$sessi on = nysql _xdevapi \ get Sessi on("nysql x: // user : passwor d@ ocal host ") ;

$schema
$tabl e

= $sessi on- >get Schema(" addr essbook") ;
= $schenma- >get Tabl e(" nanes") ;
$t abl e- >updat e()

->set('status', 'admn')

445

http://www.php.net/mysql_xdevapiTableUpdate::bind

Tabl eUpdat e: : __construct

->where(' name = :name and age > :age')
->bi nd([' name' => 'Bernie', 'age' => 2000])
->execute();

?>

5.36.2 Tabl eUpdat e: : __construct
Copyright 1997-2019 the PHP Documentation Group.
e Tabl eUpdate:: __construct
TableUpdate constructor

Description

private nysql _xdevapi\ Tabl eUpdate::__construct();
Initiated by using the update() method.
Parameters
This function has no parameters.
Examples

Example 5.187 mysql xdevapi \ Tabl eUpdat e: : __construct example

<?php
$sessi on = nysql _xdevapi \ get Sessi on("nysql x: // user : passwor d@ ocal host ") ;

$schema
$tabl e

$sessi on- >get Schena(" addr essbook") ;
$schenma- >get Tabl e(" nanmes") ;

$res = $tabl e->updat e()

->set('level', 3)
->where(' age > 15 and age < 22')
->limt(4)

->orderby([' age asc',' nanme desc'])
->execut e();

2>

5.36.3 Tabl eUpdat e: : execut e
Copyright 1997-2019 the PHP Documentation Group.
e Tabl eUpdat e: : execut e
Execute update query

Description

publ i c nmysql _xdevapi \ Tabl eUpdat e nmysql _xdevapi \ Tabl eUpdat e: : execut e() ;

Executes the update statement.

446

http://www.php.net/mysql_xdevapiTableUpdate::__construct

Tabl eUpdate::limt

Parameters

This function has no parameters.
Return Values

A TableUpdate object.
Examples

Example 5.188 nmysql xdevapi \ Tabl eUpdat e: : execut e example

<?php
$session = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$schena = $sessi on- >get Scherma(" addr essbook") ;
$tabl e = $schenm- >get Tabl e(" names");
$res = $tabl e->updat e()

->set('level', 3)

->where(' age > 15 and age < 22')

->limt(4)

->orderby(['age asc',' nane desc'])
->execute();

?>

5.36.4 Tabl eUpdate: :limt
Copyright 1997-2019 the PHP Documentation Group.
e Tabl eUpdate::limt
Limit update row count

Description

publ i c nmysql _xdevapi \ Tabl eUpdat e nmysql _xdevapi \ Tabl eUpdate::limt(
i nteger rows);

Set the maximum number of records or documents update.

Parameters

r ows The maximum number of records or documents to update.
Return Values

A TableUpdate object.

Examples

Example 5.189 nysql _xdevapi \ Tabl eUpdate: : i mt example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host")

447

http://www.php.net/mysql_xdevapiTableUpdate::execute
http://www.php.net/mysql_xdevapiTableUpdate::limit

Tabl eUpdat e: : or der by

$schena = $sessi on- >get Schenma(" addr essbook") ;
$tabl e = $schema- >get Tabl e(" nanes");
$res = $tabl e->updat e()

->set('level', 3)

->where(' age > 15 and age < 22')

->limt(4)

->orderby(['age asc',' name desc'])
->execute();

?>

5.36.5 Tabl eUpdat e: : or der by
Copyright 1997-2019 the PHP Documentation Group.
» Tabl eUpdat e: : or der by
Set sorting criteria

Description

publ i c nmysql xdevapi \ Tabl eUpdat e nmysql _xdevapi \ Tabl eUpdat e: : or der by(
m xed orderby_expr
mxed ...);

Sets the sorting criteria.
Parameters

order by _expr The expressions that define the order by criteria. Can be an array with
one or more expressions, or a string.

Additional sort_expr parameters.
Return Values
TableUpdate object.
Examples

Example 5.190 nmysql _xdevapi \ Tabl eUpdat e: : or der by example

<?php
$session = nysql _xdevapi \ get Sessi on("nysql x: // user : passwor d@ ocal host ") ;

$schema = $sessi on- >get Schena(" addr essbook") ;
$table = $schenm->get Tabl e(" nanes");
$res = $tabl e->updat e()

->set('level', 3)

->where(' age > 15 and age < 22')

->limt(4)

->orderby([' age asc',' nanme desc'])
->execute();
2>

448

http://www.php.net/mysql_xdevapiTableUpdate::orderby

Tabl eUpdat e: : set

5.36.6 Tabl eUpdat e: : set
Copyright 1997-2019 the PHP Documentation Group.
» Tabl eUpdat e: : set
Add field to be updated

Description
publi ¢ nysql _xdevapi \ Tabl eUpdat e nysql _xdevapi \ Tabl eUpdat e: : set (

string table_field
string expression_or_literal)

Updates the column value on records in a table.

Parameters
table field The column name to be updated.
expression_or_literal The value to be set on the specified column.

Return Values
TableUpdate object.
Examples

Example 5.191 nysql xdevapi \ Tabl eUpdat e: : set example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$schena = $sessi on- >get Scherma(" addr essbook") ;
$tabl e = $schenm- >get Tabl e(" names");
$res = $tabl e->updat e()

->set('level', 3)

->where(' age > 15 and age < 22')

->limt(4)

->orderby(['age asc',' nane desc'])
->execute();

?>

5.36.7 Tabl eUpdat e: : wher e
Copyright 1997-2019 the PHP Documentation Group.
e Tabl eUpdat e: : where
Set search filter

Description

publ i ¢ nysql _xdevapi \ Tabl eUpdat e nysql _xdevapi \ Tabl eUpdat e: : wher e(
string where_expr);

449

http://www.php.net/mysql_xdevapiTableUpdate::set

Warning class

Set the search condition to filter.

Parameters

wher e_expr The search condition to filter documents or records.
Return Values

A TableUpdate object.

Examples

Example 5.192 mysql _xdevapi \ Tabl eUpdat e: : wher e example

<?php
$sessi on = nysql _xdevapi \ get Sessi on(" nysql x: // user: passwor d@ ocal host") ;

$schena = $sessi on- >get Scherma(" addr essbook") ;
$tabl e = $schema- >get Tabl e(" nanes");
$res = $tabl e->updat e()

->set('level', 3)

->where(' age > 15 and age < 22')

->limt(4)

->orderby(['age asc',' name desc'])
->execute();

?>

5.37 Warning class

Copyright 1997-2019 the PHP Documentation Group.

nmysql _xdevapi \ War ni ng {
nmysql _xdevapi \ War ni ng

Properties

public
nessage

public
| evel ;

public
code ;

Const ruct or

private nysql _xdevapi \Warning::__construct();

nessage

| evel

450

http://www.php.net/mysql_xdevapiTableUpdate::where

War ni ng: : __construct

code

5.37.1 Warni ng:: __construct
Copyright 1997-2019 the PHP Documentation Group.
e Warning::__construct
Warning constructor

Description

private nysql _xdevapi \Warning::__construct();

I Warning

This function is currently not documented; only its argument list is available.

Parameters
This function has no parameters.

Examples

Example 5.193 nysql _xdevapi \ Varni ng: : __construct example

<?php
[* ... %

?>

5.38 XSession class

Copyright 1997-2019 the PHP Documentation Group.

nmysql _xdevapi \ XSessi on {
nmysql _xdevapi \ XSessi on

Construct or
private mysql _xdevapi\ XSession::__construct();

}

5.38.1 XSessi on:: __construct

Copyright 1997-2019 the PHP Documentation Group.

» XSession:: _construct

Description constructor

451

http://www.php.net/mysql_xdevapiWarning::__construct

XSession:: ___construct

Description
private mysql _xdevapi\ XSession::__construct();
Warning
This function is currently not documented; only its argument list is available.
Parameters

This function has no parameters.
Examples

Example 5.194 nmysql _xdevapi \ XSessi on::__construct example

<?php
[* .0 %]

?>

452

http://www.php.net/mysql_xdevapiXSession::__construct

Chapter 6 Original MySQL API

Table of Contents

Lo A 11y = T @] T [¢ o PP 454
L0 I A =T U 1= 0 =T L £ PN 454
L 2 |) =11 = 11 o PRSP 454
6.1.3 RUNtiME CoNfIQUIAtioNcoveiiii e e e e e e e e e e eaes 456
B.1.4 RESOUICE TYPBS ituiitiititei ettt et et et e et e et et e et e et e e et e e e e et e et e et e anaetneetn e et eeaneenaenns 457
LS 1 g T- T aTo 7= 0T I 457
6.3 Predefined CONSLANTSiiiiii e e et e e e et e e et e e e eaa e e e eta e eeeanas 458
L = 11 1]][459
6.4.1 MySQL extension oVerview eXamplecc.oiiiiiiiiiiiiiii e 459
6.5 MYSQL FUNCHONS ...ouiiiii it e e et e e e e e e e et e e et e e et e e et e e et e e et e ean s 460
6.5.1 MySQl _af f ECT U I OWS Loiieii i e e e e e 460
6.5.2 mysqgl _Client _eNCOUI NQ .iiuiiiiei e e e e e e e e e ans 462
B.5.3 MY SOl Ol 08 it e 463
LI R VA=Y o | I oo a1 > o S 464
6.5.5 MYSOl _Creat @ ab .o 467
6.5.6 MYSOl _dat @ _SEEK .oiiniie i 469
B.5.7 MYSOl _AD NI oo e 470
B.5.8 MY SOl A QU Y e e e e 472
6.5.9 MY SOl Al 0P D e 473
Lo KO I VA=Y o | = 1 o T 475
Lo N0t I V=Y o | = o 476
6.5.12 MY SOl €S CAPE ST T N iiiiiiiiei it e e e e e e e e e et e e e e e et aaaas 477
6.5.13 MY SOl T L CN Al T Y it e e e e 479
6.5.14 MYSOl T L CH @S SOC ittt e 481
6.5.15 MySql T et Ch i @l 0 i e e e e e e 483
6.5.16 Mysqgl _Fet Ch | @NQL NS e 485
6.5.17 Mysql _F et Ch_0D] @CT i e 486
6.5.18 MY SOl T L CN T O W et e e e e e 488
6.5.29 MYSOl i €1 A 1 A0S wiiiriiiiii i e e e 489
6.5.20 MYSOl T 1 @1 A | BN i e 491
6.5.21 MySOl i €l A NAME o 492
6.5.22 MYSOl i €1 A _SEEK ciriiieii e 493
6.5.23 Mysql i el d Al @ oo 494
6.5.24 MYSOl 1 @1 O L Y PO ciriiiii e e 495
6.5.25 MYSOl T rEe I eSUI b i e e a e 497
6.5.26 Mysqgl _get _Cli €Nt _ 1 NT O it e 498
6.5.27 Mysql _get _hOSt 1 NT O oo e 499
6.5.28 Mysqgl _get _Prot O i N O ciiiii e 500
6.5.29 MysSql _get _SEI Vel 1 N O it e 501
B.5.30 MY SOl T NT O ciiii e e aa e 502
LRI A VA=Y o | N 0 1= = o S o P 504
6.5.32 MYSOl |1 St DS i e 505
6.5.33 MYSQl |1 St _Ti @I U8 i e 506
6.5.34 MYSOl | I St Pr OC S S S ciiiiiiiiii ittt et e e e e e e e e e e 508
6.5.35 MYSQl |1 St _t @bl @S i 509
6.5.36 MYSOl _NUM T T €1 0S8 ciiniiiii i e e e eaanes 511
LRI I VA=Y o | I L0 T T e P 512
(eI TRCTc Iy VA=Y o | I o o0 o /g = o 513

Installing/Configuring

LR TRC e I g VA=Y o | I oI e
B.5.40 MY SOl UBT Y ittt et a e
6.5.41 mysql _real _SCaPe ST MO coiiiiiii i e e e e e e e e e e e eaes
B.5.42 MYSOl T @S Ul T i e
6.5.43 MYSQl Sl BCT D weiiriii
6.5.44 MYSl _SEL CRNAI SO ittt e
B.5.45 MY SOl ST Al ciiiiiiiii i e e e
6.5.46 MYSOl LAl ENAITE .iii i
6.5.47 MySOl TN a0 T 0 wirriiiii e
6.5.48 Mysgl _UNDUT T er €0 _QUEBT Y oriiee i e e e e e e e e e e eae e

Copyright 1997-2019 the PHP Documentation Group.

This extension is deprecated as of PHP 5.5.0, and has been removed as of PHP 7.0.0. Instead, either the
mysqli or PDO_MySQL extension should be used. See also the MySQL API Overview for further help while

choosing a MySQL API.

These functions allow you to access MySQL database servers. More information about MySQL can be
found at http://www.mysqgl.com/.

Documentation for MySQL can be found at http://dev.mysqgl.com/doc/.

6.1 Installing/Configuring

Copyright 1997-2019 the PHP Documentation Group.

6.1.1 Requirements

Copyright 1997-2019 the PHP Documentation Group.
In order to have these functions available, you must compile PHP with MySQL support.
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

6.1.2 Installation

Copyright 1997-2019 the PHP Documentation Group.
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

For compiling, simply use the - -wi t h-mysql [=DI R] configuration option where the optional [DI R]
points to the MySQL installation directory.

Although this MySQL extension is compatible with MySQL 4.1.0 and greater, it doesn't support the extra
functionality that these versions provide. For that, use the MySQLi extension.

454

http://www.mysql.com/
http://dev.mysql.com/doc/
http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/faq.databases.mysql.deprecated

Installation

If you would like to install the mysql extension along with the mysqli extension you have to use the same
client library to avoid any conflicts.

6.1.2.1 Installation on Linux Systems

Copyright 1997-2019 the PHP Documentation Group.

Note: [DI R] is the path to the MySQL client library files (headers and libraries), which can be downloaded

from MySQL.

Table 6.1 ext/mysql compile time support matrix

PHP Version Default Configure Configure Changelog
Options: mysqglnd |Options:
i bnysql client
4.xX.X libmysglclient Not Available --wi t hout - nysql |MySQL enabled
to disable by default, MySQL
client libraries are
bundled
5.0.x, 5.1.x, 5.2.x libmysglclient Not Available --with- MySQL is no longer
mysql =[DI R] enabled by default,
and the MySQL
client libraries are
no longer bundled
5.3.x libmysqlclient --With- --With- mysqlnd is now
mysql =nysql nd |nysql =[DI R] available
5.4.x mysqind --wi th-nysql --with- mysqind is now the
nysql =[DI R default

6.1.2.2 Installation on Windows Systems

Copyright 1997-2019 the PHP Documentation Group.

PHP 5.0.x, 5.1.x, 5.2.x

Copyright 1997-2019 the PHP Documentation Group.

MySQL is no longer enabled by default, so the php_nysql . dl | DLL must be enabled inside of php. i ni .
Also, PHP needs access to the MySQL client library. A file named | i brrysqgl . dl | is included in the
Windows PHP distribution and in order for PHP to talk to MySQL this file needs to be available to the
Windows systems PATH. See the FAQ titled "How do | add my PHP directory to the PATH on Windows"

for information on how to do this. Although copying | i brmysql . dI | to the Windows system directory also
works (because the system directory is by default in the system's PATH), it's not recommended.

As with enabling any PHP extension (such as php_nysqgl . dl |), the PHP directive extension_dir should
be set to the directory where the PHP extensions are located. See also the Manual Windows Installation
Instructions. An example extension_dir value for PHP 5is c: \ php\ ext

Note

If when starting the web server an error similar to the following occurs: " Unabl e

to load dynamc library

"/ php_nysqgl.dll"",thisis because

php_nysql . dl | and/or i brysqgl . dl | cannot be found by the system.

455

http://www.mysql.com/
http://www.php.net/manual/en/faq.installation.php#faq.installation.addtopath
http://www.php.net/manual/en/ini.core.php#ini.extension-dir
http://www.php.net/manual/en/install.windows.manual
http://www.php.net/manual/en/install.windows.manual

Runtime Configuration

PHP 5.3.0+
Copyright 1997-2019 the PHP Documentation Group.

The MySQL Native Driver is enabled by default. Include php_nysql . dl |, butlibnysqgl . dl | isno
longer required or used.

6.1.2.3 MySQL Installation Notes
Copyright 1997-2019 the PHP Documentation Group.
Warning
Crashes and startup problems of PHP may be encountered when loading this
extension in conjunction with the recode extension. See the recode extension for
more information.

Note

If you need charsets other than latin (default), you have to install external (not
bundled) libmysgiclient with compiled charset support.

6.1.3 Runtime Configuration
Copyright 1997-2019 the PHP Documentation Group.
The behaviour of these functions is affected by settings in php. i ni .

Table 6.2 MySQL Configuration Options

Name Default Changeable Changelog

mysql.allow_local_infile |"1" PHP_INI_SYSTEM

mysql.allow_persistent |"1" PHP_INI_SYSTEM

mysql.max_persistent "-1" PHP_INI_SYSTEM

mysqgl.max_links "-1" PHP_INI_SYSTEM

mysql.trace_mode "0" PHP_INI_ALL Available since PHP
4.3.0.

mysql.default_port NULL PHP_INI_ALL

mysql.default_socket NULL PHP_INI_ALL Available since PHP
4.0.1.

mysql.default_host NULL PHP_INI_ALL

mysql.default_user NULL PHP_INI_ALL

mysql.default_password |NULL PHP_INI_ALL

mysqgl.connect_timeout |"60" PHP_INI_ALL PHP_INI_SYSTEM in
PHP <=4.3.2. Available
since PHP 4.3.0.

For further details and definitions of the PHP_INI_* modes, see the http://www.php.net/manual/en/
configuration.changes.modes.

456

http://www.php.net/manual/en/ref.recode
http://www.php.net/manual/en/configuration.changes.modes
http://www.php.net/manual/en/configuration.changes.modes

Resource Types

Here's a short explanation of the configuration directives.

mysql . allow | ocal _infile
integer

mysql . al | ow_persi stent
boolean

mysql . max_per si st ent
integer

nmysql . max_I i nks integer

nysql . trace_node boolean

nmysql . def aul t _port string

nmysql . def aul t _socket
string

nysql . def aul t _host string
nysql . def aul t _user string

nysql . defaul t _password
string

nysql . connect _ti nmeout
integer

6.1.4 Resource Types

Allow accessing, from PHP's perspective, local files with LOAD DATA
statements

Whether to allow persistent connections to MySQL.

The maximum number of persistent MySQL connections per process.

The maximum number of MySQL connections per process, including
persistent connections.

Trace mode. When nysql . t race_node is enabled, warnings for table/
index scans, non free result sets, and SQL-Errors will be displayed.
(Introduced in PHP 4.3.0)

The default TCP port number to use when connecting to the database
server if no other port is specified. If no default is specified, the

port will be obtained from the MYSQL_TCP_PORT environment
variable, the nysql -t cp entry in/ et ¢/ ser vi ces or the compile-
time MYSQL_PORT constant, in that order. Win32 will only use the
MYSQL_PORT constant.

The default socket name to use when connecting to a local database
server if no other socket name is specified.

The default server host to use when connecting to the database server
if no other host is specified. Doesn't apply in SQL safe mode.

The default user name to use when connecting to the database server if
no other name is specified. Doesn't apply in SQL safe mode.

The default password to use when connecting to the database server if
no other password is specified. Doesn't apply in SQL safe mode.

Connect timeout in seconds. On Linux this timeout is also used for
waiting for the first answer from the server.

Copyright 1997-2019 the PHP Documentation Group.

There are two resource types used in the MySQL module. The first one is the link identifier for a database
connection, the second a resource which holds the result of a query.

6.2 Changelog

Copyright 1997-2019 the PHP Documentation Group.

The following changes have been made to classes/functions/methods of this extension.

General Changelog for the ext/mysqgl extension

This changelog references the ext/mysqgl extension.

457

http://www.php.net/manual/en/features.persistent-connections
http://www.php.net/manual/en/ini.core.php#ini.sql.safe-mode
http://www.php.net/manual/en/ini.core.php#ini.sql.safe-mode
http://www.php.net/manual/en/ini.core.php#ini.sql.safe-mode

Global ext/mysql changes

Global ext/mysql changes

The following is a list of changes to the entire ext/mysql extension.

Version Description

7.0.0 This extension was removed from PHP. For details,
see Section 2.3, “Choosing an API".

5.5.0 This extension has been deprecated. Connecting
to a MySQL database via mysqgl _connect,
nysqgl _pconnect or an implicit connection via
any other nysql _* function will generate an

E DEPRECATED error.

5.5.0 All of the old deprecated functions and aliases now
emit E_DEPRECATED errors. These functions are:

mysql(), mysqgl_fieldname(), mysql_fieldtable(),
mysql_fieldlen(), mysql_fieldtype(),
mysql_fieldflags(), mysql_selectdb(),
mysql_createdb(), mysql_dropdb(),
mysql_freeresult(), mysqgl_numfields(),
mysql_numrows(), mysql_listdbs(),
mysql_listtables(), mysql_listfields(),
mysql_db_name(), mysqgl_dbname(),
mysql_tablename(), and mysql_table_name().

Changes to existing functions

The following list is a compilation of changelog entries from the ext/mysql functions.

6.3 Predefined Constants

Copyright 1997-2019 the PHP Documentation Group.

The constants below are defined by this extension, and will only be available when the extension has either
been compiled into PHP or dynamically loaded at runtime.

It is possible to specify additional client flags for the nysqgl _connect and nysql _pconnect functions.
The following constants are defined:

Table 6.3 MySQL client constants

Constant Description

MYSQL_CLI ENT_COVPRESS Use compression protocol

MYSQL_CLI ENT_| GNORE_SPACE Allow space after function names

MYSQL_CLI ENT | NTERACTI VE Allow interactive_timeout seconds (instead of
wai t _ti meout) of inactivity before closing the
connection.

MYSQL_CLI ENT_SSL Use SSL encryption. This flag is only available with
version 4.x of the MySQL client library or newer.
Version 3.23.x is bundled both with PHP 4 and
Windows binaries of PHP 5.

458

Examples

The function nysqgl _fetch_array uses a constant for the different types of result arrays. The following
constants are defined:

Table 6.4 MySQL fetch constants

Constant Description

MYSQL_ASSCC Columns are returned into the array having the
fieldname as the array index.

MYSQ._BOTH Columns are returned into the array having both
a numerical index and the fieldname as the array
index.

MYSQL_NUM Columns are returned into the array having a

numerical index to the fields. This index starts with
0, the first field in the result.

6.4 Examples

Copyright 1997-2019 the PHP Documentation Group.

6.4.1 MySQL extension overview example

Copyright 1997-2019 the PHP Documentation Group.

This simple example shows how to connect, execute a query, print resulting rows and disconnect from a
MySQL database.

Example 6.1 MySQL extension overview example

<?php

/'l Connecting, selecting database

$link = nmysqgl _connect (' nysql _host', 'nysql _user', 'nysql _password')
or die('Could not connect: ' . mysql_error());

echo ' Connect ed successful ly';

nysql _sel ect _db(' ny_dat abase') or die(' Could not sel ect database');

/1 Perform ng SQL query
$query = ' SELECT * FROM ny_t abl e';
$result = nysql _query($query) or die(' Query failed: ' . nysql _error());

// Printing results in HTM
echo "<tabl e>\n";
while ($line = nysqgl _fetch_array($result, MYSQ._ASSCC)) {
echo "\t<tr>\n";
foreach ($line as $col _val ue) {
echo "\t\t<td>%col _val ue</td>\n";

echo "\t</tr>\n";

}

echo "</tabl e>\n";

/] Free resultset
nysql _free_result($result);

/1 d osing connection
nysql _cl ose($link);
?>

459

MySQL Functions

6.5 MySQL Functions

Copyright 1997-2019 the PHP Documentation Group.

Note

Most MySQL functions accept | i nk_i denti fi er as the last optional parameter.

If it is not provided, last opened connection is used. If it doesn't exist, connection is
tried to establish with default parameters defined in php. i ni . If it is not successful,
functions return FALSE.

6.5.1 nysql _affected _rows

Copyright 1997-2019 the PHP Documentation Group.
« mysql _affected rows
Get number of affected rows in previous MySQL operation
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

nmysqli _affected_rows
PDOSt at enent @ : r owCount

Description

int nysql _affected_rows(
resource link_identifier
= =NULL);

Get the number of affected rows by the last INSERT, UPDATE, REPLACE or DELETE query associated
with | i nk_identifier.

Parameters

[ink_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by nmysql _connect is assumed. If no such link is found,
it will try to create one as if nysql _connect had been called with no
arguments. If no connection is found or established, an E_WARNI NG
level error is generated.

Return Values
Returns the number of affected rows on success, and -1 if the last query failed.

If the last query was a DELETE query with no WHERE clause, all of the records will have been deleted
from the table but this function will return zero with MySQL versions prior to 4.1.2.

460

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::rowCount

nmysql _affected_rows

When using UPDATE, MySQL will not update columns where the new value is the same as the old value.
This creates the possibility that nysql _af f ect ed_r ows may not actually equal the number of rows
matched, only the number of rows that were literally affected by the query.

The REPLACE statement first deletes the record with the same primary key and then inserts the new
record. This function returns the number of deleted records plus the number of inserted records.

In the case of "INSERT ... ON DUPLICATE KEY UPDATE" queries, the return value will be 1 if an insert
was performed, or 2 for an update of an existing row.

Examples

Example 6.2 nysql _affected_r ows example

<?php
$link = nysql _connect ('l ocal host', 'nysql _user', 'nysql_password');
if (!$link) {
die(' Could not connect: ' . nysqgl_error());
}

nmysql _sel ect _db(' nydb');

/* this should return the correct nunbers of deleted records */
nysql _query(' DELETE FROM nytable WHERE id < 10');
printf("Records deleted: %\ n", nysql _affected_rows());

/* with a where clause that is never true, it should return 0 */
nysql _query(' DELETE FROM nyt abl e WHERE 0') ;

printf("Records deleted: %\ n", nysql _affected_rows());
2>

The above example will output something similar to:

Records del eted: 10
Records del eted: 0

Example 6.3 nysql _af f ect ed_r ows example using transactions

<?php
$li nk = nysqgl _connect ('l ocal host', 'mysqgl _user', 'nysqgl_password')
if (!$link) {
die(' Could not connect: ' . nysqgl_error())
}

nysql _sel ect _db(' nydb')

/* Update records */

nysql _query(" UPDATE nyt abl e SET used=1 WHERE id < 10")
printf ("Updated records: %\ n", nysql _affected_rows())
nmysql _query("COW T") ;

?>

The above example will output something similar to:

461

mysql _client_encodi ng

Updat ed Records:

Notes

See Also

mysql _num r ows
mysql _info

10

Transactions

If you are using transactions, you need to call mysqgl _af f ect ed_r ows after your
INSERT, UPDATE, or DELETE query, not after the COMMIT.

SELECT Statements

To retrieve the number of rows returned by a SELECT, it is possible to use
nmysql _num r ows.

Cascaded Foreign Keys

nysql _af fect ed r ows does not count rows affected implicitly through the use of
ON DELETE CASCADE and/or ON UPDATE CASCADE in foreign key constraints.

6.5.2 nysql _client _encodi ng

Copyright 1997-2019 the PHP Documentation Group.

« mysql _client_encoding

Returns the name of the character set

Description

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

nmysql i _character_set _nane

string nmysqgl _client_encodi ng(
resource |link_identifier

Retrieves the char act er _set variable from MySQL.

Parameters

[ink_ identifier The MySQL connection. If the link identifier is not specified, the last

link opened by nysql _connect is assumed. If no such link is found,
it will try to create one as if nysql _connect had been called with no

462

http://www.php.net/faq.databases.mysql.deprecated

nmysql _cl ose

arguments. If no connection is found or established, an E_ WARNI NG
level error is generated.

Return Values
Returns the default character set name for the current connection.
Examples

Example 6.4 nysql _cl i ent _encodi ng example

<?php
$li nk = nysql _connect ('l ocal host', 'nysql __user', 'nmysql_password');
$charset = nysql _client_encodi ng($link);

echo "The current character set is: $charset\n";
2>

The above example will output something similar to:

The current character set is: latinl

See Also

mysql _set charset
nmysql real escape_string

6.5.3 nysql cl ose

Copyright 1997-2019 the PHP Documentation Group.
* nmysql _cl ose
Close MySQL connection
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

nysql i _cl ose
PDO: Assign the value of NULL to the PDO object

Description

bool nysql _cl ose(
resource link_identifier
= =NULL);

nysql _cl ose closes the non-persistent connection to the MySQL server that's associated with the
specified link identifier. If | i nk_i denti fi er isn't specified, the last opened link is used.

463

http://www.php.net/faq.databases.mysql.deprecated

mysql _connect

Open non-persistent MySQL connections and result sets are automatically destroyed when a PHP script
finishes its execution. So, while explicitly closing open connections and freeing result sets is optional,
doing so is recommended. This will immediately return resources to PHP and MySQL, which can improve
performance. For related information, see freeing resources

Parameters

link identifier The MySQL connection. If the link identifier is not specified, the last link
opened by mysgl _connect is assumed. If no connection is found or
established, an E_WARNI NG level error is generated.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 6.5 nysql _cl ose example

<?php
$link = nysql _connect ('l ocal host', 'nysql _user', 'nysql_password')
if (!$link) {
di e(' Could not connect: ' . mysql_error());
}

echo ' Connect ed successful |y
nysql _cl ose($link);
?>

The above example will output:

Connect ed successful ly

Notes
Note
nysql _cl ose will not close persistent links created by nysql _pconnect . For
additional details, see the manual page on persistent connections.

See Also

nysqgl _connect
nmysqgl _free result

6.5.4 nysql _connect
Copyright 1997-2019 the PHP Documentation Group.
e mysql _connect

Open a connection to a MySQL Server

464

http://www.php.net/manual/en/language.types.resource.php#language.types.resource.self-destruct
http://www.php.net/manual/en/features.persistent-connections

mysql _connect

Description

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

nysql i _connect
PDO. : __construct

resour ce nysqgl _connect (

string server

= =ini_get("nmysql.default_host"),
string usernane
= =ini_get("nmysql.default_user"),
string password
= =ini_get("nmysql.default_password"),

bool new_| i nk
= =FALSE,

int client_flags

= :0) ;

Opens or reuses a connection to a MySQL server.

Parameters

server

user nane

passwor d

new | i nk

client _flags

Return Values

The MySQL server. It can also include a port number. e.g.
"hostname:port" or a path to a local socket e.g. ":/path/to/socket" for the
localhost.

If the PHP directive mysql.default_host is undefined (default), then the
default value is 'localhost:3306'. In SQL safe mode, this parameter is
ignored and value 'localhost:3306' is always used.

The username. Default value is defined by mysqgl.default_user. In SQL
safe mode, this parameter is ignored and the name of the user that
owns the server process is used.

The password. Default value is defined by mysql.default_password. In
SQL safe mode, this parameter is ignored and empty password is used.

If a second call is made to nysql _connect with the same arguments,
no new link will be established, but instead, the link identifier of the
already opened link will be returned. The new_| i nk parameter modifies
this behavior and makes nysqgl _connect always open a new link,
even if nysql _connect was called before with the same parameters.
In SQL safe mode, this parameter is ignored.

The cl i ent fl ags parameter can be a combination of

the following constants: 128 (enable LOAD DATA LOCAL

handling), MYySQL_ CLI ENT_SSL, MYSQL_CLI ENT_COVPRESS,
MYSQ._CLI ENT_| GNORE_SPACE or MYSQL_CLI ENT_| NTERACTI VE.
Read the section about Table 6.3, “MySQL client constants” for further
information. In SQL safe mode, this parameter is ignored.

465

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::__construct
http://www.php.net/manual/en/ini.core.php#ini.sql.safe-mode
http://www.php.net/manual/en/ini.core.php#ini.sql.safe-mode
http://www.php.net/manual/en/ini.core.php#ini.sql.safe-mode
http://www.php.net/manual/en/ini.core.php#ini.sql.safe-mode
http://www.php.net/manual/en/ini.core.php#ini.sql.safe-mode
http://www.php.net/manual/en/ini.core.php#ini.sql.safe-mode

mysql _connect

Returns a MySQL link identifier on success or FALSE on failure.

Changelog

Version Description

5.5.0 This function will generate an E_DEPRECATED error.
Examples

Example 6.6 nysql _connect example

<?php
$link = nysql _connect ('l ocal host', 'nysql _user'
if (!$link) {

die(' Could not connect: ' . nysql_error());
}

echo ' Connect ed successful |y’
nysql _cl ose($link);
?>

' mysql _password');

Example 6.7 nysql _connect example using host nane: port syntax

<?php
/! we connect to exanpl e.com and port 3307

$link = nysqgl _connect (' exanpl e. com 3307', 'nysql _user', 'nysql _password')

if (!$link) {
di e(' Coul d not connect: ' . nysql_error())
}

echo ' Connect ed successfully'
nysql _cl ose($li nk)

/! we connect to |ocal host at port 3307

$link = nmysql _connect (' 127.0.0. 1:3307', 'nysql _user', 'mysql_password')

if (!$link) {
di e(* Coul d not connect: ' . nysql_error())
}

echo ' Connected successfully'
nysql _cl ose($li nk)
?>

Example 6.8 nysql _connect example using ":/path/to/socket" syntax

<?php

/1 we connect to |ocal host and socket e.g. /tnp/nysql.sock

/'l variant 1: omt | ocal host

$link = mysqgl _connect(':/tnp/nmysqgl', 'nysql_user', 'nysql_password')
if (!$link) {

die(' Could not connect: ' . nysqgl_error())
}

echo ' Connected successfully'
nysql _cl ose($li nk)

466

mysql _create_db

[/ variant 2: with | ocal host
$link = nmysql _connect ('l ocal host:/tnp/nysql.sock', 'nysql_user', 'nysqgl_password');
if (!$link) {
die(' Could not connect: ' . nysqgl_error());
}

echo ' Connected successfully';
nysql _cl ose($link);

?>

Notes
Note
Whenever you specify "localhost" or "localhost:port” as server, the MySQL client
library will override this and try to connect to a local socket (named pipe on
Windows). If you want to use TCP/IP, use "127.0.0.1" instead of "localhost". If the
MySQL client library tries to connect to the wrong local socket, you should set the
correct path as nysql . def aul t _host string in your PHP configuration and
leave the server field blank.
Note
The link to the server will be closed as soon as the execution of the script ends,
unless it's closed earlier by explicitly calling nysql _cl ose.
Note
You can suppress the error message on failure by prepending a @ to the function
name.
Note
Error "Can't create TCP/IP socket (10106)" usually means that the variables_order
configure directive doesn't contain character E. On Windows, if the environment is
not copied the SYSTEMROOT environment variable won't be available and PHP will
have problems loading Winsock.

See Also

nmysql _pconnect
nmysql _cl ose

6.5.5nysql _create_db
Copyright 1997-2019 the PHP Documentation Group.
 mysql _create_db
Create a MySQL database
Warning

This function was deprecated in PHP 4.3.0, and it and the entire original MySQL
extension was removed in PHP 7.0.0. Instead, use either the actively developed
MySQLi or PDO_MySQL extensions. See also the MySQL: choosing an API guide
and its related FAQ entry for additional information. Alternatives to this function
include:

467

http://www.php.net/manual/en/language.operators.errorcontrol
http://www.php.net/manual/en/ini.core.php#ini.variables-orde
http://www.php.net/faq.databases.mysql.deprecated

mysql _create_db

mysql i _query
PDQ. : query

Description

bool nysql _create_db(
string database_nane,
resource link_identifier
= =NULL);

nmysqgl _creat e db attempts to create a new database on the server associated with the specified link
identifier.

Parameters
dat abase_nane The name of the database being created.
[ink_ identifier The MySQL connection. If the link identifier is not specified, the last

link opened by nysql _connect is assumed. If no such link is found,
it will try to create one as if mysql _connect had been called with no
arguments. If no connection is found or established, an E_WARNI NG
level error is generated.

Return Values

Returns TRUE on success or FALSE on failure.
Examples

Example 6.9 nysql creat e_db alternative example

The function nysqgl _creat e_db is deprecated. It is preferable to use nysql _query to issue an sql
CREATE DATABASE statement instead.

<?php
$link = nysqgl _connect('local host', 'nysql_user', 'nysql_password')
if (!$link) {
die(' Could not connect: ' . nysqgl _error())
}
$sgl = ' CREATE DATABASE ny_db'

if (mysqgl _query($sql, $link)) {
echo "Dat abase ny_db created successfully\n"

} else {

echo 'Error creating database: ' . nysql_error() . "\n";
}
2>

The above example will output something similar to:

Dat abase nmy_db created successfully

Notes

468

http://www.php.net/PDO::query

nmysql _dat a_seek

Note

For backward compatibility, the following deprecated alias may be used:
nysql _createdb

Note

This function will not be available if the MySQL extension was built against a
MySQL 4.x client library.

See Also

mysql _query
mysql _sel ect _db

6.5.6 nysql data_ seek
Copyright 1997-2019 the PHP Documentation Group.
* nysql _data_seek
Move internal result pointer
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

nmysql i _data_seek
PDO : FETCH_ ORI _ABS

Description

bool nysql _data_seek(
resource result,
int row_nunber);

nmysql _dat a_seek moves the internal row pointer of the MySQL result associated with the specified
result identifier to point to the specified row number. The next call to a MySQL fetch function, such as
nysql fetch _assoc, would return that row.

row_numnber starts at 0. The r ow_nunber should be a value in the range from 0 to nysqgl _num r ows -
1. However if the result set is empty (nysql _num r ows == 0), a seek to 0 will fail with a E_ WARNING and
mysql _dat a_seek will return FALSE.

Parameters

resul t The result resource that is being evaluated. This result comes from a
callto nysqgl _query.

row_nunber The desired row number of the new result pointer.

Return Values

Returns TRUE on success or FALSE on failure.

469

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/manual/en/errorfunc.constants.php#errorfunc.constants.errorlevels.e-warning

nmysql _db_nane

Examples

Example 6.10 nysql _dat a_seek example

<?php
$link = nmysql _connect (' local host', 'nysql_user', 'nysql_password');
if (!$link) {
di e(' Could not connect: ' . mysql_error());
}

$db_sel ected = nysql _sel ect _db(' sanpl e_db");
if (!$db_sel ected) {

di e(' Coul d not select database: ' . mysql _error());
}

$query = ' SELECT | ast_nane, first_name FROM friends';
$result = nysql _query($query);
if (!'$result) {
die('Query failed: ' . nmysqgl_error());
}

/* fetch rows in reverse order */
for ($i = nysqgl _numrows($result) - 1; $i >=0; $i--) {
if (!'nysql _data_seek($result, $i)) {

echo "Cannot seek to row $i: " . nysql _error() . "\n";
conti nue;
}
if (!($row = nysql _fetch_assoc($result))) {
conti nue;
}
echo $row'last_nane'] . ' ' . $rowf'first_name'] . "
\n";
}
nysql _free_result($result);
?>
Notes
Note
The function nysql _dat a_seek can be used in conjunction only with
nysql _query, not with mysql _unbuf f ered_query.
See Also
nysql _query

nysqgl _num r ows
nysqgl _fetch row
nysqgl _fetch assoc
nysql _fetch_array
nysql fetch_object

6.5.7 nysql _db_nane
Copyright 1997-2019 the PHP Documentation Group.
* nysql _db_nane

Retrieves database name from the call to nysql | i st _dbs

470

nmysql _db_nane

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.

Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL.:

choosing an API guide and related FAQ for more information. Alternatives to this
function include:

Query: SELECT DATABASE()

Description

string nysqgl _db_nane(
resource result,

int row,
m xed field
= =NULL);

Retrieve the database name from a call to mysql | i st _dbs.
Parameters
result The result pointer from a call to nysql _| i st _dbs.
r ow The index into the result set.
field The field name.

Return Values

Returns the database name on success, and FALSE on failure. If FALSE is returned, use nysql _error to

determine the nature of the error.

Changelog

Version Description

5.5.0 The nysql _I i st _dbs function is deprecated, and
emits an E_DEPRECATED level error.

Examples

Example 6.11 nysql _db_nane example

<?php
error_reporting(E_ALL);

$li nk = nysql _connect (' dbhost', 'usernane', 'password');
$db_|ist = nysqgl _|ist_dbs($link);

$i = 0;

$cnt = nysqgl _num rows($db _|ist);

while ($i < $cnt) {
echo nysql _db_nane($db_list, $i) . "\n";
$i ++;

Notes

471

http://www.php.net/faq.databases.mysql.deprecated

mysql _db_query

Note

For backward compatibility, the following deprecated alias may be used:
nysqgl _dbnane

See Also
nysqgl _Iist_dbs
nysql _t abl enane
6.5.8 nysqgl _db_query
Copyright 1997-2019 the PHP Documentation Group.
* nysql _db_query
Selects a database and executes a query on it
Warning

This function was deprecated in PHP 5.3.0, and it and the entire original MySQL
extension was removed in PHP 7.0.0. Instead, use either the actively developed
MySQLi or PDO_MySQL extensions. See also the MySQL: choosing an API guide
and its related FAQ entry for additional information. Alternatives to this function
include:

nysql i _sel ect _db then the query
PDO. : __construct

Description

resource nysql _db_query(
string database,
string query,
resource link_identifier
= =NULL);

nysqgl _db_query selects a database, and executes a query on it.

Parameters
dat abase The name of the database that will be selected.
query The MySQL query.
Data inside the query should be properly escaped.
[ink_identifier The MySQL connection. If the link identifier is not specified, the last

link opened by nysql _connect is assumed. If no such link is found,
it will try to create one as if mysql _connect had been called with no
arguments. If no connection is found or established, an E_WARNI NG
level error is generated.

Return Values

Returns a positive MySQL result resource to the query result, or FALSE on error. The function also returns
TRUE/FALSE for | NSERT/UPDATE/DELETE queries to indicate success/failure.

Changelog

472

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::__construct

nmysql _drop_db

Version Description

5.3.0 This function now throws an E_ DEPRECATED
notice.

Examples

Example 6.12 nysql _db_query alternative example

<?php

if (!$link = nysql _connect (' nysqgl _host', 'nysqgl _user', 'nysqgl_password')) {
echo ' Coul d not connect to mysql'

exit;

}

if (!nysql_sel ect_db('nysqgl _dbnane', $link)) {
echo ' Coul d not sel ect database’

exit;

}

$sql
$resul t

if (!'$result) {

' SELECT foo FROM bar WHERE id = 42'
nysql _query($sql, $link)

echo "DB Error, could not query the database\n"
echo 'MySQL Error: ' . nysql_error()

exit;

}

while ($row = nysql _fetch_assoc($result)) {
echo $rowf'foo'];

}

nysql _free_result($result)

?>

Notes

See Also

nmysqgl _query

Note

Be aware that this function does NOT switch back to the database you were
connected before. In other words, you can't use this function to temporarily run a
sql query on another database, you would have to manually switch back. Users are
strongly encouraged to use the dat abase. t abl e syntax in their sql queries or
nmysql _sel ect _db instead of this function.

nmysqgl _sel ect _db

6.5.9 nysql drop_db

Copyright 1997-2019 the PHP Documentation Group.

* nysql _drop_db

473

nmysql _drop_db

Drop (delete) a MySQL database
Warning

This function was deprecated in PHP 4.3.0, and it and the entire original MySQL
extension was removed in PHP 7.0.0. Instead, use either the actively developed
MySQLi or PDO_MySQL extensions. See also the MySQL: choosing an API guide
and its related FAQ entry for additional information. Alternatives to this function
include:

Execute a DROP DATABASE query

Description

bool nysql _drop_db(
string database_nane,
resource link_identifier
= =NULL)

nysql _drop_db attempts to drop (remove) an entire database from the server associated with the
specified link identifier. This function is deprecated, it is preferable to use nysql _query to issue an sql
DROP DATABASE statement instead.

Parameters
dat abase_nane The name of the database that will be deleted.
[ink_ identifier The MySQL connection. If the link identifier is not specified, the last

link opened by nysql _connect is assumed. If no such link is found,
it will try to create one as if mysql _connect had been called with no
arguments. If no connection is found or established, an E_WARNI NG
level error is generated.

Return Values
Returns TRUE on success or FALSE on failure.
Examples

Example 6.13 nysql _drop_db alternative example

<?php
$link = nmysql _connect (' local host', 'nysql _user', 'nysql_password')
if (!1$link) {
die(' Could not connect: ' . nysqgl_error())
}
$sql = ' DROP DATABASE ny_db’

if (mysql _query($sql, $link)) {
echo "Database ny_db was successful |y dropped\n"
} else {
echo 'Error dropping database: ' . nysqgl_error() . "\n";

}

?>

Notes

474

http://www.php.net/faq.databases.mysql.deprecated

nmysql _errno

Warning

This function will not be available if the MySQL extension was built against a
MySQL 4.x client library.

Note

For backward compatibility, the following deprecated alias may be used:
nmysql _dropdb

See Also
nmysqgl _query
6.5.10 nysqgl errno

Copyright 1997-2019 the PHP Documentation Group.
* nysql _errno
Returns the numerical value of the error message from previous MySQL operation
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

nysqgli _errno
PDQ. : error Code

Description

int nysqgl _errno(
resource link_identifier
= =NULL);

Returns the error number from the last MySQL function.

Errors coming back from the MySQL database backend no longer issue warnings. Instead, use

nmysql _errno to retrieve the error code. Note that this function only returns the error code from the most
recently executed MySQL function (not including mysql _error and nysql _errno), so if you want to use
it, make sure you check the value before calling another MySQL function.

Parameters

[ink_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by nysql _connect is assumed. If no such link is found,
it will try to create one as if mysql _connect had been called with no
arguments. If no connection is found or established, an E_WARNI NG
level error is generated.

Return Values
Returns the error number from the last MySQL function, or O (zero) if no error occurred.

Examples

475

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::errorCode

mysql _error

Example 6.14 nysql _errno example

<?php
$link = nysql _connect ("l ocal host", "nysql _user", "nysql _password");

if (!'nysql_select_db("nonexistentdb", $link)) {
echo nysql _errno($link) . ": " . nysqgl_error($link). "\n"
}

nysql _sel ect _db("kossu", $Iink);

if (!'nysqgl_query("SELECT * FROM nonexi stenttable", $link)) {
echo nysql _errno($link) . ": " . nmysqgl _error($link) . "\n";

}

2>

The above example will output something similar to:

1049: Unknown dat abase ' nonexi st ent db
1146: Tabl e ' kossu. nonexi stenttabl e’ doesn't exist

See Also

mysql _error
MySQL error codes

6.5.11 nysqgl error

Copyright 1997-2019 the PHP Documentation Group.
e mysql __error
Returns the text of the error message from previous MySQL operation
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

nmysqli _error
PDO :errorlnfo

Description

string nmysql _error(
resource link_identifier
= =NULL);

Returns the error text from the last MySQL function. Errors coming back from the MySQL database
backend no longer issue warnings. Instead, use nysql _err or to retrieve the error text. Note that

this function only returns the error text from the most recently executed MySQL function (not including
nmysqgl _error and nysql _errno), so if you want to use it, make sure you check the value before calling
another MySQL function.

476

http://dev.mysql.com/doc/mysql/en/error-handling.html
http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::errorInfo

nmysql _escape_string

Parameters

[ink identifier The MySQL connection. If the link identifier is not specified, the last
link opened by nmysql _connect is assumed. If no such link is found,
it will try to create one as if mysql connect had been called with no
arguments. If no connection is found or established, an E_ WARNI NG
level error is generated.

Return Values
Returns the error text from the last MySQL function, or ' ' (empty string) if no error occurred.
Examples

Example 6.15 nysql _error example

<?php
$link = nysql _connect ("l ocal host", "nysql _user", "nysql _password");

nysql _sel ect _db("nonexi stentdb", $Iink);
echo nysql _errno($link) . ": " . nysqgl_error($link). "\n"

nysql _sel ect _db("kossu", $link);

nysqgl _query("SELECT * FROM nonexi stenttable", $link);

echo nysql _errno($link) . ": " . nmysqgl _error($link) . "\n";
2>

The above example will output something similar to:

1049: Unknown dat abase ' nonexi st ent db
1146: Tabl e ' kossu. nonexi stenttabl e’ doesn't exist

See Also

nysql _errno
MySQL error codes

6.5.12 nysql escape_string
Copyright 1997-2019 the PHP Documentation Group.
» nysql escape_string
Escapes a string for use in a mysql_query
Warning

This function was deprecated in PHP 4.3.0, and it and the entire original MySQL
extension was removed in PHP 7.0.0. Instead, use either the actively developed
MySQLi or PDO_MySQL extensions. See also the MySQL: choosing an API guide
and its related FAQ entry for additional information. Alternatives to this function
include:

477

http://dev.mysql.com/doc/mysql/en/error-handling.html
http://www.php.net/faq.databases.mysql.deprecated

nmysql _escape_string

nmysql i _escape_string
PDQ. : quot e

Description

string nysqgl _escape_stri ng(
string unescaped_string);

This function will escape the unescaped_stri ng, so that it is safe to place itinanysql _query. This
function is deprecated.

This function is identical to mysql _real _escape_stri ng exceptthat mysql real escape_string
takes a connection handler and escapes the string according to the current character set.

nmysqgl _escape_stri ng does not take a connection argument and does not respect the current charset
setting.

Parameters
unescaped_string The string that is to be escaped.
Return Values

Returns the escaped string.

Changelog

Version Description

5.3.0 This function now throws an E_ DEPRECATED
notice.

4.3.0 This function became deprecated,
do not use this function. Instead, use
nmysql _real escape_string.

Examples

Example 6.16 nysql _escape_stri ng example

<?php

$item = "Zak's Laptop";

$escaped_item = nysql _escape_string($iten;
printf("Escaped string: %\n", $escaped_iten);
2>

The above example will output:

Escaped string: Zak\'s Laptop
Notes

Note
mysql _escape_stri ng does not escape %and _

478

http://www.php.net/PDO::quote

nmysql _fetch_array

See Also
nysqgl real escape _string

addsl ashes
The magic_quotes_gpc directive.

6.5.13 nysqgl _fetch_array
Copyright 1997-2019 the PHP Documentation Group.
 nysql _fetch_array
Fetch a result row as an associative array, a numeric array, or both
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

nysqgli _fetch array
PDOSt at enrent : : fetch

Description

array mysql _fetch_array(
resource result,
int result_type
= =MYSQ._BOTH);

Returns an array that corresponds to the fetched row and moves the internal data pointer ahead.

Parameters

result The result resource that is being evaluated. This result comes from a
call to mysqgl _query.

result _type The type of array that is to be fetched. It's a constant and can take the

following values: MYSQL_ASSOC, MYSQL_NUM and MYSQL_BOTH,
Return Values

Returns an array of strings that corresponds to the fetched row, or FALSE if there are no more rows.

The type of returned array depends on how r esul t _t ype is defined. By using M\YSQL_BOTH (default),
you'll get an array with both associative and number indices. Using MYSQL_ ASSCOC, you only get
associative indices (as mysql _f et ch_assoc works), using MYSQL_NUM you only get number indices (as
nysql _f et ch_r owworks).

If two or more columns of the result have the same field names, the last column will take precedence. To
access the other column(s) of the same name, you must use the numeric index of the column or make an
alias for the column. For aliased columns, you cannot access the contents with the original column name.

Examples

Example 6.17 Query with aliased duplicate field names

479

http://www.php.net/addslashes
http://www.php.net/manual/en/ini.core.php#ini.magic-quotes-gpc
http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::fetch

nmysql _fetch_array

SELECT tablel.field AS foo, table2.field AS bar FROM t abl el, table2

Example 6.18 nysql _fetch_array with MYSQL_NUM

<?php

nmysql _connect ("l ocal host", "mysqgl _user", "nmysqgl _password") or
die("Could not connect: " . nysqgl_error());

nysql _sel ect _db("nydb");

$result = nmysql _query("SELECT id, name FROM nyt abl e");

while ($row = nysql _fetch_array($result, MYSQL_NUM) {
printf("ID. % Name: %", $row0], $row1]);
}

nysql _free_result($result);
?>

Example 6.19 nysql fetch_array with MYSQL_ASSCC

<?php

nmysql _connect ("1 ocal host", "mysql _user", "mysql _password") or
die("Could not connect: " . nysqgl_error());

mysql _sel ect _db("nydb");

$result = nysql _query("SELECT id, name FROM nytabl e")

while ($row = nysql _fetch_array($result, MYSQ._ASSOC)) ({
printf("ID: % Nane: %", $rowf"id"], $row "name"]);
}

nysqgl _free_result($result)
2>

Example 6.20 nysql _fetch_array with MYSQL_BOTH

<?php

nmysql _connect ("l ocal host", "mysqgl _user", "nmysqgl _password") or
die("Could not connect: " . nysqgl_error());

nysql _sel ect _db("nydb");

$result = nmysql _query("SELECT id, name FROM nytabl e")
while ($row = nysql _fetch_array($result, MYSQL_BOTH)) {

printf ("ID: % Nane: %", $row 0], $row"nane"]);
}

nysql _free_result($result)
?>

Notes

480

nmysql _fetch_assoc

See Also

Performance

An important thing to note is that using nysql _f et ch_ar r ay is not significantly
slower than using mysql _f et ch_r ow, while it provides a significant added value.

Note
Field names returned by this function are case-sensitive.
Note

This function sets NULL fields to the PHP NULL value.

nmysql _fetch_row
nmysql _fetch_assoc
nmysql _dat a_seek

mysql _query

6.5.14 mysqgl fetch _assoc

Copyright 1997-2019 the PHP Documentation Group.

* nysql _fetch_assoc

Fetch a result row as an associative array

Description

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.

Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:

choosing an API guide and related FAQ for more information. Alternatives to this
function include:

nysqgli _fetch_assoc
PDOSt at enent : : f et ch(PDO. : FETCH_ASSOC)

array nysql _fetch_assoc(
resource result);

Returns an associative array that corresponds to the fetched row and moves the internal data pointer
ahead. nysql _fetch_assoc is equivalent to calling mysql fetch_array with MYSQL_ASSOC for the
optional second parameter. It only returns an associative array.

Parameters

result

Return Values

The result resource that is being evaluated. This result comes from a

call to mysqgl _query.

Returns an associative array of strings that corresponds to the fetched row, or FALSE if there are no more

rows.

If two or more columns of the result have the same field names, the last column will take precedence. To
access the other column(s) of the same name, you either need to access the result with numeric indices by

481

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::fetch(PDO::FETCH_ASSOC)

nmysql _fetch_assoc

using mysql _fetch_rowor add alias names. See the example at the nysql fetch_array description
about aliases.

Examples

Example 6.21 An expanded nmysqgl fetch _assoc example

<?php

$conn = nysql _connect ("l ocal host", "nysql _user", "mysqgl password");

if (!$conn) {
echo "Unable to connect to DB: " . nysql _error()
exit;

}

if (!nysqgl _sel ect_db("mydbnanme")) {
echo "Unabl e to sel ect nydbnane: " . nysql _error()
exit;

}

$sql = "SELECT id as userid, fullname, userstatus

FROM sonet abl e
WHERE userstatus = 1";

$result = nysql _query($sql)

if (!$result) {
echo "Coul d not successfully run query ($sql) fromDB: " . nysql _error();
exit;

}

if (nysql _numrows($result) == 0) {
echo "No rows found, nothing to print so am exiting"
exit;

}

/1l While a row of data exists, put that rowin $row as an associ ative array
/Il Note: If you're expecting just one row, no need to use a | oop
/1 Note: If you put extract($row); inside the follow ng |oop, you'l
I then create $userid, $fullnane, and $userstatus
while ($row = nysql _fetch_assoc($result)) {
echo $rowf "userid"];
echo $rowf "ful | name"];
echo $rowf "userstatus"];

}
nysql _free_result($result)

?>

Notes
Performance

An important thing to note is that using nysql f et ch_assoc is not significantly
slower than using mysql f et ch_row, while it provides a significant added value.

Note

Field names returned by this function are case-sensitive.

482

mysql _fetch field

Note
This function sets NULL fields to the PHP NULL value.
See Also

mysql _fetch_row
mysql _fetch_array
nmysql _dat a_seek
mysql _query

mysql _error

6.5.15 nysql _fetch field
Copyright 1997-2019 the PHP Documentation Group.
e mysql _fetch field
Get column information from a result and return as an object
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

nysqli_fetch_field
PDOSt at enent : : get Col unmiMet a

Description

obj ect nysql _fetch_field(
resource result,
int field_offset
= =0);

Returns an object containing field information. This function can be used to obtain information about fields
in the provided query result.

Parameters

result The result resource that is being evaluated. This result comes from a
call to nysql _query.

field offset The numerical field offset. If the field offset is not specified, the next

field that was not yet retrieved by this function is retrieved. The
field offset starts atO.

Return Values

Returns an object containing field information. The properties of the object are:

* name - column name

« table - name of the table the column belongs to, which is the alias name if one is defined

» max_length - maximum length of the column

483

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::getColumnMeta

nysqgl _fetch field

e not_null - 1 if the column cannot be NULL

» primary_key - 1 if the column is a primary key

* unique_key - 1 if the column is a unique key

e multiple_key - 1 if the column is a non-unique key
* numeric - 1 if the column is numeric

* blob - 1 if the column is a BLOB

* type - the type of the column

* unsigned - 1 if the column is unsigned

* zerofill - 1 if the column is zero-filled

Examples

Example 6.22 nysql _fetch_fi el d example

<?php
$conn = nysql _connect ('l ocal host', 'nysql _user', 'nysql_password')
if (!$conn) {
die(' Could not connect: ' . nysqgl_error())
}

nmysql _sel ect _db(' dat abase')
$result = nysql _query('select * fromtable')
if (!$result) {

die('Qery failed: ' . nysql _error())
}
/* get colum netadata */
$i = 0;

while ($i < nysqgl _numfields($result)) {
echo "Information for colum $i:
\n"
$meta = nysql _fetch field($result, $i)
if (!'$neta) {
echo "No information avail abl e
\n"

}

echo "<pre>
bl ob: $net a- >bl ob
max_| engt h: $et a- >max_| engt h
mul ti pl e_key: $neta->nultiple_key
name: $net a- >nanme
not _nul | : $met a- >not _nul
numeri c: $met a- >nuneri c
primary_key: $neta->primary_key
t abl e: $et a- >t abl e
type: $net a- >t ype
uni que_key: $met a- >uni que_key
unsi gned: $met a- >unsi gned
zerofill: $net a- >zer of i |
</ pre>";

$i ++;
}
nysql _free_result($result)
2>
Notes

484

mysql _fetch_l engths

Note
Field names returned by this function are case-sensitive.
Note

If field or tablenames are aliased in the SQL query the aliased name will
be returned. The original name can be retrieved for instance by using
mysqli _result::fetch _field.

See Also
nysqgl _field_seek
6.5.16 mysql fetch | engths
Copyright 1997-2019 the PHP Documentation Group.
* nysql _fetch_l engths
Get the length of each output in a result
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

nmysqli _fetch_| engths
PDCSt at enent : : get Col uimMet a

Description

array mysql _fetch_| engt hs(
resource result);

Returns an array that corresponds to the lengths of each field in the last row fetched by MySQL.

nmysql _fetch | engt hs stores the lengths of each result column in the last row returned by

nysql _fetch_row nysql _fetch_assoc,nysql _fetch_array,andmysqgl fetch_object inan
array, starting at offset 0.

Parameters

resul t The result resource that is being evaluated. This result comes from a
call to mysqgl _query.

Return Values
An array of lengths on success or FALSE on failure.
Examples

Example 6.23 A nysql _fetch_| engt hs example

485

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::getColumnMeta

mysql _fetch_object

<?php
$result = nysql _query("SELECT id, email FROM people WHERE id = '42'");
if (!'$result) {

echo 'Could not run query: ' . mnysql _error();
exit;

}

$r ow = mysql _fetch_assoc($result);

$l engt hs = nysql _fetch_l engt hs($result);

print_r($row;
print_r($l engths);
?>

The above example will output something similar to:

Array

(
[id] => 42
[email] => user @xanpl e.com

)
Array

(
[0] =2
[1] => 16

See Also
nysql _field_len

nysql _fetch_row
strlen

6.5.17 nysql fetch_obj ect
Copyright 1997-2019 the PHP Documentation Group.
* nysql _fetch_object
Fetch a result row as an object
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

nmysqli _fetch_object
PDGCst at enent : : f et ch(PDO. : FETCH_OBJ)

Description

obj ect nysql _fetch_object (
resource result,
string cl ass_nane,
array parans);

486

http://www.php.net/strlen
http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::fetch(PDO::FETCH_OBJ)

mysql _fetch_object

Returns an object with properties that correspond to the fetched row and moves the internal data pointer
ahead.

Parameters

resul t The result resource that is being evaluated. This result comes from a
call to mysqgl _query.

cl ass_nane The name of the class to instantiate, set the properties of and return. If
not specified, a st dCl ass object is returned.

par ans An optional array of parameters to pass to the constructor for

cl ass_nane objects.
Return Values

Returns an object with string properties that correspond to the fetched row, or FALSE if there are no more
rows.

Examples

Example 6.24 nysql _fetch_obj ect example

<?php
nysql _connect (" host nane", "user", "password");
nysql _sel ect _db("nydb");
$result = nysql _query("select * from nytable");
while ($row = nysql _fetch_object($result)) {
echo $row >user_id
echo $row >ful | nane;

nysql _free_result($result);
?>

Example 6.25 nysql fetch_obj ect example

<?php
class foo {
public $nane;

}

nysql _connect (" host name", "user", "password")
nmysql _sel ect _db("nydb")

$result = nysql __query("select name fromnytable limt 1")
$obj = nysql _fetch_object($result, 'foo')

var _dunp($obj) ;
2>

Notes
Performance

Speed-wise, the function is identical to mysql _f et ch_arr ay, and almost as quick
as nysql _f et ch_r ow (the difference is insignificant).

487

mysql _fetch_row

Note

nysql fetch _object issimilarto nysql fetch_array, with one difference -
an object is returned, instead of an array. Indirectly, that means that you can only
access the data by the field names, and not by their offsets (numbers are illegal
property names).

Note
Field names returned by this function are case-sensitive.
Note
This function sets NULL fields to the PHP NULL value.
See Also
nysqgl _fetch_array
nmysqgl _fetch_assoc
nysqgl _fetch_row

nysqgl _dat a_seek
nmysqgl _query

6.5.18 nysql fetch row

Copyright 1997-2019 the PHP Documentation Group.
 mysql _fetch_row
Get a result row as an enumerated array
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

nysqli_fetch_row
PDOSt at enent : : f et ch(PDO : FETCH_NUM

Description

array mysql _fetch_row
resource result);

Returns a numerical array that corresponds to the fetched row and moves the internal data pointer ahead.
Parameters

result The result resource that is being evaluated. This result comes from a
call to nysql _query.

Return Values

Returns an numerical array of strings that corresponds to the fetched row, or FALSE if there are no more
rows.

488

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::fetch(PDO::FETCH_NUM)

nmysql _field flags

nysqgl fetch_rowfetches one row of data from the result associated with the specified result identifier.
The row is returned as an array. Each result column is stored in an array offset, starting at offset 0.

Examples

Example 6.26 Fetching one row with nysql _fetch_row

<?php
$result = nysql _query("SELECT id, email FROM people WHERE id = '42'");
if (!'$result) {
echo 'Could not run query: ' . nysql _error();
exit;
}
$row = nysql _fetch_row $result);

echo $rowf0]; // 42

echo $rowf1]; // the enmil val ue
?>

Notes

Note
This function sets NULL fields to the PHP NULL value.
See Also

nysqgl _fetch_array
nysqgl _fetch_assoc
nysqgl _fetch_object
nysqgl _dat a_seek
nmysqgl _fetch_ | engths
nmysqgl _result

6.5.19 nysql field flags
Copyright 1997-2019 the PHP Documentation Group.
e nysql _field flags
Get the flags associated with the specified field in a result
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

nysqli _fetch_field_direct [flags]
PDOSt at enent : : get Col unmMet a [flags]

Description

string nysql _field_flags(
resource result,
int field offset);

489

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::getColumnMeta

nysqgl _field_flags

nysqgl field flags returns the field flags of the specified field. The flags are reported as a single word
per flag separated by a single space, so that you can split the returned value using expl ode.

Parameters

result The result resource that is being evaluated. This result comes from a
callto nysqgl _query.

field offset The numerical field offset. The fi el d_of f set starts at 0. If
field of fset does not exist, an error of level E_ WARNI NGis also
issued.

Return Values
Returns a string of flags associated with the result or FALSE on failure.

The following flags are reported, if your version of MySQL is current enough to support them:

“not_null","primary_key","uni que_key","nul tipl e_key", "bl ob", "unsi gned",
"zerofill","binary","enunt,"auto_increnment” and"ti mest anp".
Examples

Example 6.27 A nysql _fi el d_fl ags example

<?php
$result = nysql _query("SELECT id, emai| FROM people WHERE id = '42'");
if (!'$result) {
echo 'Could not run query: ' . nysql_error();
exit;
}
$flags = nysql _field_flags($result, 0);

echo $flags
print_r(explode(' ', $flags))
2>

The above example will output something similar to:

not_null primary_key auto_i ncrenent
Array
(

[0] => not_nul

[1] => prinmary_key

[2] => auto_increnent

Notes
Note
For backward compatibility, the following deprecated alias may be used:
nmysql _fiel dfl ags

See Also

490

http://www.php.net/explode

mysql _field_Ien

mysql _field_type
mysql _field_Ien

6.5.20 nysqgl _field |en
Copyright 1997-2019 the PHP Documentation Group.
« nysql _field_ len
Returns the length of the specified field
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

nysqli_fetch_field_direct [length]
PDOSt at enent : : get Col utmMet a [len]

Description
int nysql _field_len(

resource result,
int field_offset);

nysql _fi el d_I en returns the length of the specified field.

Parameters

resul t The result resource that is being evaluated. This result comes from a
call to mysqgl _query.

field offset The numerical field offset. The fi el d_of f set starts at 0. If
field offset does not exist, an error of level E WARNI NGis also
issued.

Return Values
The length of the specified field index on success or FALSE on failure.
Examples

Example 6.28 nysql fiel d | en example

<?php
$result = nysql _query("SELECT id, enai| FROM people WHERE id = '42'");
if (!'S$result) {

echo 'Could not run query: ' . mysql_error();

exit;
}
/Il WIIl get the length of the id field as specified in the database
/1 schema.

$length = nysql _field_len($result, 0);
echo $l engt h;
?>

491

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::getColumnMeta

mysql _fiel d_nane

Notes
Note
For backward compatibility, the following deprecated alias may be used:
nmysql _fieldlen

See Also

nysql _fetch_I engths
strlen

6.5.21 nysql _field nane
Copyright 1997-2019 the PHP Documentation Group.
 nysql _field name
Get the name of the specified field in a result
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

nysqgli _fetch_field_direct [name] or [orgname]
PDOSt at enent : : get Col unmMet a [name]

Description
string nysql _fiel d_nane(

resource result,
int field offset);

nmysql _fiel d_namne returns the name of the specified field index.

Parameters

resul t The result resource that is being evaluated. This result comes from a
call to mysqgl _query.

field offset The numerical field offset. The fi el d_of f set starts at 0. If
field_of fset does not exist, an error of level E_WARNI NGis also
issued.

Return Values
The name of the specified field index on success or FALSE on failure.
Examples

Example 6.29 nysql _fi el d_nane example

492

http://www.php.net/strlen
http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::getColumnMeta

mysql _fiel d_seek

<?php

/* The users table consists of three fields:
* user_id
* user name
* passwor d.

&
$link = nysql _connect ('l ocal host', 'nysql _user', 'nysql_password');
if (!'$link) {
die(' Could not connect to MySQ. server: ' . nysql _error());
}

$dbnane = ' nydb';
$db_sel ected = nysql _sel ect _db($dbnane, $link);
if (!$db_sel ected) {
di e("Could not set $dbnanme: " . nysql _error());
}

$res = nysql _query('select * fromusers', $link);
echo nysql _field_name($res, 0) . "\n";

echo nysql _field_name($res, 2);
?>

The above example will output:

user_id
passwor d
Notes
Note
I Field names returned by this function are case-sensitive.
Note
For backward compatibility, the following deprecated alias may be used:
nysql _fiel dnane
See Also

nysql _field type
nysqgl _field len

6.5.22 nysql _field seek
Copyright 1997-2019 the PHP Documentation Group.
« mysql _field seek
Set result pointer to a specified field offset
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.

Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:

choosing an API guide and related FAQ for more information. Alternatives to this
function include:

493

http://www.php.net/faq.databases.mysql.deprecated

nmysql _field_ table

mysqli _field seek
PDOSt at enent : : f et ch using the cur sor _ori ent ati on and of f set
parameters

Description

bool nysql _fiel d_seek(
resource result,
int field_offset);

Seeks to the specified field offset. If the next call to mysqgl _fetch_fi el d doesn'tinclude a field offset,
the field offset specified in mysql _fi el d_seek will be returned.

Parameters

result The result resource that is being evaluated. This result comes from a
call to nysql _query.

field offset The numerical field offset. The fi el d_of f set starts at 0. If
field of fset does not exist, an error of level E_ WARNI NGis also
issued.

Return Values
Returns TRUE on success or FALSE on failure.
See Also
mysql _fetch field
6.5.23nysqgl _field table
Copyright 1997-2019 the PHP Documentation Group.
* nysql _field table
Get name of the table the specified field is in
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

nysqgli _fetch_field_direct [table] or [orgtable]
PDOSt at enent : : get Col unmiet a [table]

Description
string nysql _field_table(

resource result,
int field_ offset);

Returns the name of the table that the specified field is in.

Parameters

494

http://www.php.net/PDOStatement::fetch
http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::getColumnMeta

mysql _field_type

resul t The result resource that is being evaluated. This result comes from a
call to mysqgl _query.

field offset The numerical field offset. The fi el d_of f set starts at 0. If
field of fset does not exist, an error of level E_ WARNI NGis also
issued.

Return Values
The name of the table on success.
Examples

Example 6.30 A nysqgl _field tabl e example

<?php
$query = "SELECT account.*, country.* FROM account, country WHERE country.name = 'Portugal' AND account. co

// get the result fromthe DB
$result = nysql _query($query);

/] Lists the table nane and then the field nane
for ($i = 0; $i < nysqgl_numfields($result); ++$i) {

$table = nysql _field table($result, $i);
$field = nysql _field nane($result, $i)
echo "S$table: $field\n"
}
?>
Notes
Note
For backward compatibility, the following deprecated alias may be used:
nmysql _fiel dtable
See Also

nysql _list_tables
6.5.24 nysqgl field type
Copyright 1997-2019 the PHP Documentation Group.
* nysql _field_type
Get the type of the specified field in a result
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL.:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

495

http://www.php.net/faq.databases.mysql.deprecated

mysql _field_type

nysqgli _fetch field direct [type]
PDOSt at enent : : get Col unmMet a [driver:decl_type] or [pdo_type]

Description

string nysql _field_type(
resource result,
int field offset);

nysqgl field typeissimilartothe nysql fiel d _nane function. The arguments are identical, but the
field type is returned instead.

Parameters

resul t The result resource that is being evaluated. This result comes from a
call to mysqgl _query.

field offset The numerical field offset. The fi el d_of f set starts at 0. If
field of fset does not exist, an error of level E_ WARNI NGis also
issued.

Return Values

The returned field type will be one of "i nt","real ", "string","bl ob", and others as detailed in the

MySQL documentation.
Examples

Example 6.31 nysql _fi el d_t ype example

<?php

nmysql _connect ("l ocal host", "nmysql _usernanme", "nmysql _password");
nysql _sel ect _db("nysql");

$result = nysql _query("SELECT * FROM func");

$fields = nysql _numfields($result);
$r ows = nmysqgl _num rows($result);
$table = nysql _field_ table($result, 0);

echo "Your '" . $table . "' table has " . $fields . " fields and " . $rows . " record(s)\n";
echo "The table has the followi ng fields:\n";
for ($i=0; $i < $fields; $i++) {

$type = nysql _field type($result, $i);
$nanme = nysql _field name($result, $i);
$len = nysql _field_len($result, $i);
$flags = nysql _field flags($result, $i);
echo $type . " " . $nane . " " . $len . " " . $flags . "\n";
}
nysql _free_resul t($result);
nysql _cl ose();
2>

The above example will output something similar to:

Your 'func' table has 4 fields and 1 record(s)
The table has the follow ng fields:

string nane 64 not_null primary_key binary

int ret 1 not_null

496

http://www.php.net/PDOStatement::getColumnMeta
http://dev.mysql.com/doc/

nmysql _free_result

string dl 128 not _nul
string type 9 not_null enum

Notes
Note
For backward compatibility, the following deprecated alias may be used:
nysqgl _fieldtype

See Also

nysql _fiel d_nane
nysql _field_len

6.5.25 nysqgl _free result
Copyright 1997-2019 the PHP Documentation Group.
 nysql _free result
Free result memory
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

nysqgli_free_ result
Assign the value of NULL to the PDO object, or PDOSt at enent : : cl oseCur sor

Description

bool nysql _free_result(
resource result);

nmysqgl free_result will free all memory associated with the result identifier r esul t .

nmysqgl _free_result only needs to be called if you are concerned about how much memory is being
used for queries that return large result sets. All associated result memory is automatically freed at the end
of the script's execution.

Parameters

resul t The result resource that is being evaluated. This result comes from a
call to mysqgl _query.

Return Values
Returns TRUE on success or FALSE on failure.

If a non-resource is used for the r esul t, an error of level E_WARNING will be emitted. It's worth noting
that mysql _query only returns a resource for SELECT, SHOW, EXPLAIN, and DESCRIBE queries.

Examples

497

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::closeCursor

mysql _get _client_info

Example 6.32 A nysqgl _free_result example

<?php
$result = nysql _query("SELECT id, ennil FROM people WHERE id = '42'");
if (!'$result) {
echo 'Could not run query: ' . nysql _error();
exit;
}
/* Use the result, assuming we're done with it afterwards */
$row = nysql _fetch_assoc($result);

/* Now we free up the result and continue on with our script */
nysql _free_resul t($result);

echo $rowf'id'];
echo $row'email'];

2>
Notes
Note
For backward compatibility, the following deprecated alias may be used:
nmysql _freeresult
See Also
nmysqgl _query

i s _resource

6.5.26 mysqgl get client _info

Copyright 1997-2019 the PHP Documentation Group.
« mysql _get _client_info
Get MySQL client info

Warning

Description

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

nysqli_get_client_info
PDO. : get Attri but e(PDO : ATTR_CLI ENT_VERSI ON)

string nysqgl _get_client_info();

nysqgl _get client i nfo returns a string that represents the client library version.

Return Values

The MySQL client version.

498

http://www.php.net/is_resource
http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::getAttribute(PDO::ATTR_CLIENT_VERSION)

mysql _get _host _info

Examples

Example 6.33 nysql _get _client i nfoexample

<?php
printf("MySQ client info: %\n", nmysqgl _get _client_info());
2>

The above example will output something similar to:

M/SQL client info: 3.23.39

See Also

nmysqgl _get host _info
nysql _get _proto_info
nysql _get _server_info

6.5.27 mysqgl _get _host _info
Copyright 1997-2019 the PHP Documentation Group.
* nysqgl _get _host _info
Get MySQL host info
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

nysqgli _get _host _info
PDQ. : get Attri but e(PDO. : ATTR_CONNECTI ON_STATUS)

Description

string nysqgl _get_host _i nfo(
resource |link_identifier
= =NULL);

Describes the type of connection in use for the connection, including the server host name.
Parameters

[ink_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by nysql _connect is assumed. If no such link is found,
it will try to create one as if mysql _connect had been called with no
arguments. If no connection is found or established, an E_WARNI NG
level error is generated.

499

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::getAttribute(PDO::ATTR_CONNECTION_STATUS)

mysql _get _proto_info

Return Values
Returns a string describing the type of MySQL connection in use for the connection or FALSE on failure.
Examples

Example 6.34 nysql get host i nf o example

<?php
$link = nmysql _connect('local host', 'nysql_user', 'nysql_password');
if (!$link) {

di e(' Could not connect: ' . mysql_error());

}
printf("MySQ host info: %\n", nysqgl_get_host_info());
?>

The above example will output something similar to:

M/SQL host info: Local host via UN X socket

See Also
nmysqgl _get _client_info

nmysqgl _get _proto_info
nmysqgl _get _server _info

6.5.28 nysqgl get proto_info
Copyright 1997-2019 the PHP Documentation Group.
 mysql _get _proto_info
Get MySQL protocol info
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

nysqgli _get _proto_info
Description

int nysql _get_proto_info(
resource link_identifier
= =NULL);

Retrieves the MySQL protocol.

Parameters

500

http://www.php.net/faq.databases.mysql.deprecated

mysql _get _server_info

link identifier The MySQL connection. If the link identifier is not specified, the last
link opened by nysql _connect is assumed. If no such link is found,
it will try to create one as if mysql _connect had been called with no
arguments. If no connection is found or established, an E_ WARNI NG
level error is generated.

Return Values
Returns the MySQL protocol on success or FALSE on failure.
Examples

Example 6.35 nysql get proto_i nfoexample

<?php
$link = nysql _connect ('l ocal host', 'nysql _user', 'nysql _password');
if (!$link) {
die('Could not connect: ' . nysqgl_error());
}
printf("M/SQ protocol version: %\n", nysql _get_proto_info());
2>

The above example will output something similar to:

MySQL protocol version: 10

See Also
nysql _get _client_info

nmysqgl _get host _info
nysqgl get _server _info

6.5.29 nysqgl get server _info
Copyright 1997-2019 the PHP Documentation Group.
* nysql _get _server _info
Get MySQL server info

Warning
This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this

function include:

nysqli _get_server_info
PDG : get Attri but e(PDO : ATTR_SERVER VERSI ON)

Description

501

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::getAttribute(PDO::ATTR_SERVER_VERSION)

mysqgl _info

string nysqgl _get_server_info(
resource |link_identifier
= =NULL);
Retrieves the MySQL server version.
Parameters

link identifier The MySQL connection. If the link identifier is not specified, the last
link opened by nysql _connect is assumed. If no such link is found,
it will try to create one as if mysql _connect had been called with no
arguments. If no connection is found or established, an E_ WARNI NG
level error is generated.

Return Values
Returns the MySQL server version on success or FALSE on failure.
Examples

Example 6.36 nysql get server _i nf o example

<?php
$link = nysql _connect ('l ocal host', 'nysql _user', 'nysql_password')
if (!'$link) {

die(' Could not connect: ' . nysqgl_error())

printf("M/SQL server version: %\n", nysql _get_server_info())
?>

The above example will output something similar to:

M/SQL server version: 4.0.1-al pha

See Also

nysqgl _get_client_info
mysql _get _host _info
mysql _get_proto_info
phpver si on

6.5.30 nysqgl info

Copyright 1997-2019 the PHP Documentation Group.
* nysql _info
Get information about the most recent query
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL.:

502

http://www.php.net/phpversion

mysqgl _info

choosing an API guide and related FAQ for more information. Alternatives to this
function include:

nysqli _info
Description

string nysql _i nfo(
resource |link_identifier
= =NULL);

Returns detailed information about the last query.
Parameters

link identifier The MySQL connection. If the link identifier is not specified, the last
link opened by nysql _connect is assumed. If no such link is found,
it will try to create one as if mysql _connect had been called with no
arguments. If no connection is found or established, an E_WARNI NG
level error is generated.

Return Values

Returns information about the statement on success, or FALSE on failure. See the example below for
which statements provide information, and what the returned value may look like. Statements that are not
listed will return FALSE.

Examples
Example 6.37 Relevant MySQL Statements

Statements that return string values. The numbers are only for illustrating purpose; their values will
correspond to the query.

I NSERT I NTO ... SELECT ...

String format: Records: 23 Duplicates: 0 Warnings: 0O

INSERT INTO ... VALUES (...),(...),(...)...

String format: Records: 37 Duplicates: 0 Warnings: 0O

LOAD DATA | NFI LE . ..

String format: Records: 42 Deleted: 0O Skipped: 0 Warnings: O
ALTER TABLE

String format: Records: 60 Duplicates: 0 Warnings: O

UPDATE

String format: Rows matched: 65 Changed: 65 Warnings: O

Notes
Note
nysql _i nf o returns a non-FALSE value for the INSERT ... VALUES statement
only if multiple value lists are specified in the statement.

See Also

nysqgl _affected rows
nysql _insert _id

503

http://www.php.net/faq.databases.mysql.deprecated

mysql _insert _id

mysql _st at

6.5.31 nysqgl _insert _id

Copyright 1997-2019 the PHP Documentation Group.
e mysql _insert _id
Get the ID generated in the last query
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

nmysqli _insert _id
PDO :lastlnsertld

Description
int nysql _insert_id(
resource link_identifier
= =NULL);
Retrieves the ID generated for an AUTO_INCREMENT column by the previous query (usually INSERT).

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql _connect is assumed. If no such link is found,
it will try to create one as if mysql _connect had been called with no
arguments. If no connection is found or established, an E_WARNI NG
level error is generated.

Return Values

The ID generated for an AUTO_INCREMENT column by the previous query on success, 0 if the
previous query does not generate an AUTO_INCREMENT value, or FALSE if no MySQL connection was
established.

Examples

Example 6.38 nysql i nsert _idexample

<?php
$link = nmysql _connect('local host', 'nysql_user', 'nysql_password');
if (!$link) {
die(' Could not connect: ' . nysqgl_error());
}

nmysql _sel ect _db(' nydb')

mysql _query("1 NSERT | NTO nyt abl e (product) values ('kossu')")

printf("Last inserted record has id %\ n", nysql _insert_id())
?>

504

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::lastInsertId

mysql _list_dbs

Notes

See Also

nysqgl _query
nysqgl _i nfo

Caution

nysql i nsert i d will convert the return type of the native MySQL C API
function nysql i nsert _id() toatype ofl ong (hamed intin PHP). If your
AUTO_INCREMENT column has a column type of BIGINT (64 bits) the conversion
may result in an incorrect value. Instead, use the internal MySQL SQL function
LAST_INSERT _ID() in an SQL query. For more information about PHP's maximum
integer values, please see the integer documentation.

Note

Because nysql i nsert id acts on the last performed query, be sure to call
nysql _i nsert i dimmediately after the query that generates the value.

Note

The value of the MySQL SQL function LAST | NSERT | D() always contains the
most recently generated AUTO_INCREMENT value, and is not reset between
queries.

6.5.32 nysqgl |ist dbs

Copyright 1997-2019 the PHP Documentation Group.

e« mysql _list_dbs

List databases available on a MySQL server

Description

Warning

This function was deprecated in PHP 5.4.0, and it and the entire original MySQL
extension was removed in PHP 7.0.0. Instead, use either the actively developed
MySQLi or PDO_MySQL extensions. See also the MySQL: choosing an API guide
and its related FAQ entry for additional information. Alternatives to this function
include:

SQL Query: SHOWV DATABASES

resource nysql _|ist_dbs(
resource |link_identifier

Returns a result pointer containing the databases available from the current mysgl daemon.

Parameters

[ink_identifier The MySQL connection. If the link identifier is not specified, the last

link opened by nmysql _connect is assumed. If no such link is found,

505

http://www.php.net/manual/en/language.types.integer
http://www.php.net/faq.databases.mysql.deprecated

nysqgl _list_fields

it will try to create one as if mysql _connect had been called with no
arguments. If no connection is found or established, an E_ WARNI NG
level error is generated.

Return Values

Returns a result pointer resource on success, or FALSE on failure. Use the mysqgl _t abl enane function to
traverse this result pointer, or any function for result tables, such as nysql _fetch_array.

Examples

Example 6.39 nysql _|i st _dbs example

<?php
/] Usage without nysql _|ist_dbs()
$link = nmysql _connect('local host', 'nysql_user', 'nysql_password');

$res = nysql _quer y(" SHOW DATABASES") ;

while ($row = nysql _fetch_assoc($res)) {

echo $rowf' Database'] . "\n"
}
/| Deprecated as of PHP 5.4.0
$link = nmysql _connect ('l ocal host', 'nysql _user', 'nysql_password')

$db_list = nysqgl _|ist_dbs($link)

while ($row = nmysql _fetch_object($db_list)) {
echo $row >Dat abase . "\n"
}

?>

The above example will output something similar to:

dat abasel

dat abase2

dat abase3

Notes
Note
For backward compatibility, the following deprecated alias may be used:
nmysql _|istdbs

See Also

nmysql _db_nane
nmysql _sel ect _db

6.5.33nysqgl _list _fields
Copyright 1997-2019 the PHP Documentation Group.

* nysqgl _list_fields

506

nysqgl _list_fields

List MySQL table fields
Warning

This function was deprecated in PHP 5.4.0, and it and the entire original MySQL
extension was removed in PHP 7.0.0. Instead, use either the actively developed
MySQLi or PDO_MySQL extensions. See also the MySQL: choosing an API guide
and its related FAQ entry for additional information. Alternatives to this function
include:

SQL Query: SHOWV COLUWNS FROM sonet abl e

Description

resource nysql _list_fields(
string database_nane,
string tabl e_nane,
resource link_ identifier
= =NULL)

Retrieves information about the given table name.

This function is deprecated. It is preferable to use nysql _query to issue an SQL SHOW COLUWNS FROM
table [LIKE 'nane'] statementinstead.

Parameters

dat abase_nane The name of the database that's being queried.

t abl e_nane The name of the table that's being queried.

[ink_identifier The MySQL connection. If the link identifier is not specified, the last

link opened by nysql _connect is assumed. If no such link is found,
it will try to create one as if mysql _connect had been called with no
arguments. If no connection is found or established, an E_WARNI NG
level error is generated.

Return Values
A result pointer resource on success, or FALSE on failure.

The returned result can be used with nysqgl _fi el d_fl ags, mysqgl _field_len,nysql _field_nane
and nysql _field type.

Examples

Example 6.40 Alternate to deprecated nysql |ist fields

<?php
$result = nysql _query(" SHOW COLUWS FROM sonet abl e")
if (!'$result) {
echo 'Could not run query: ' . nysqgl_error()
exit;

if (mysqgl _numrows($result) > 0) {
while ($row = nysql _fetch_assoc($result)) {
print_r($row);

507

http://www.php.net/faq.databases.mysql.deprecated

mysql _|ist_processes

The above example will output something similar to:

Array
(
[Field =>id
[Type] =>int(7)
[Null] =>
[Key] => PRI
[Default] =>
[Extra] => auto_increnent
)
Array
(
[Field] => email
[Type] => varchar (100)

[Null] =>
[Key] =>
[Default] =>
[Extra] =>
)
Notes
Note
For backward compatibility, the following deprecated alias may be used:
nysqgl _listfields
See Also

nmysql _field flags
mysql _info

6.5.34 nysqgl |ist_processes
Copyright 1997-2019 the PHP Documentation Group.
 nysql _|ist_processes
List MySQL processes
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

nysqli _thread_id
Description

resource nysql _list_processes(

508

http://www.php.net/faq.databases.mysql.deprecated

mysql _|ist_tables

resource link_identifier
= =NULL);

Retrieves the current MySQL server threads.
Parameters

[ink identifier The MySQL connection. If the link identifier is not specified, the last
link opened by nmysql _connect is assumed. If no such link is found,
it will try to create one as if mysql _connect had been called with no
arguments. If no connection is found or established, an E_ WARNI NG
level error is generated.

Return Values

A result pointer resource on success or FALSE on failure.

Examples

Example 6.41 nysql _| i st_processes example

<?php

$link = nysql _connect ('l ocal host', 'nysql _user', 'nysql _password');
$result = nysql _|ist_processes($link);

while ($row = nysql _fetch_assoc($result)){
printf("% % % % %\n", $rowf"1d"], $rowf"Host"], $rowf"db"],
$rowf " Command"], $rowf "Tine"]);
}

nysql _free_resul t($result);
2>

The above example will output something similar to:

1 | ocal host test Processlist 0
4 | ocal host nysql sleep 5

See Also

mysql _thread_id
mysql _st at

6.5.35 nmysqgl _|ist_tables
Copyright 1997-2019 the PHP Documentation Group.
 nysqgl |list_tables
List tables in a MySQL database
Warning

This function was deprecated in PHP 4.3.0, and it and the entire original MySQL
extension was removed in PHP 7.0.0. Instead, use either the actively developed

509

mysql _|ist_tables

MySQLi or PDO_MySQL extensions. See also the MySQL: choosing an API guide
and its related FAQ entry for additional information. Alternatives to this function
include:

SQL Query: SHOW TABLES FROM dbnarne

Description

resource nysql _|ist_tabl es(
string database
resource |link_identifier
= =NULL);

Retrieves a list of table names from a MySQL database.

This function is deprecated. It is preferable to use nysql _query to issue an SQL SHOW TABLES [FROM
db_nane] [LIKE 'pattern'] statementinstead.

Parameters
dat abase The name of the database
[ink_ identifier The MySQL connection. If the link identifier is not specified, the last

link opened by nysql _connect is assumed. If no such link is found,
it will try to create one as if mysql _connect had been called with no
arguments. If no connection is found or established, an E_WARNI NG
level error is generated.

Return Values
A result pointer resource on success or FALSE on failure.

Use the nysql _t abl enane function to traverse this result pointer, or any function for result tables, such
asnysql _fetch_array.

Changelog

Version Description

4.3.7 This function became deprecated.
Examples

Example 6.42 nysql _| i st _t abl es alternative example

<?php

$dbnane = ' nysql _dbnane’

if (!nysqgl _connect (' nmysql _host', 'mysql __user', 'nysqgl_password')) {
echo ' Could not connect to nysql'
exit;

}

$sql = " SHOW TABLES FROM $dbnane”
$result = nysql _query($sql);

if (!'$result) {
echo "DB Error, could not |ist tables\n"
echo ' MWSQ Error: ' . nysql _error();

510

http://www.php.net/faq.databases.mysql.deprecated

mysql _num fiel ds

exit;

}

while ($row = nmysql _fetch_row $result)) {
echo "Table: {$rowf 0] }\n";

}

nysql _free_result($result);

?>

Notes
Note
For backward compatibility, the following deprecated alias may be used:
mysql _|isttables

See Also

nysqgl _|ist_dbs
nysql _t abl enane

6.5.36 nysqgl _num fi el ds
Copyright 1997-2019 the PHP Documentation Group.
e nysqgl _numfields
Get number of fields in result
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

nmysqli _numfields
PDGSt at enent : : col unmCount

Description

int nmysqgl _numfiel ds(
resource result);

Retrieves the number of fields from a query.
Parameters

resul t The result resource that is being evaluated. This result comes from a
call to nysql _query.

Return Values
Returns the number of fields in the result set resource on success or FALSE on failure.

Examples

511

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::columnCount

mysql _num r ows

Example 6.43 A nysgl _num fi el ds example

<?php
$result = nysql _query("SELECT id, emai| FROM people WHERE id = '42'");
if (!$result) {

echo 'Could not run query: ' . nysql _error();
exit;
}
/* returns 2 because id,email === two fields */
echo nysqgl _num fields($result);
2>
Notes
Note
For backward compatibility, the following deprecated alias may be used:
nmysql _nunfi el ds
See Also

nysqgl _sel ect _db

nmysqgl _query
nysql _fetch_field
nysqgl _num r ows

6.5.37 nysgl _num_rows

Copyright 1997-2019 the PHP Documentation Group.
e mysql _num rows
Get number of rows in result
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL.:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysql i _num.rows
mysqli _stnt_num.rows
PDOSt at enment : : r onCount

Description

int nysqgl _num rows(
resource result)

Retrieves the number of rows from a result set. This command is only valid for statements like SELECT or
SHOW that return an actual result set. To retrieve the number of rows affected by a INSERT, UPDATE,
REPLACE or DELETE query, use nysql _af fected rows.

Parameters

512

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::rowCount

mysql _pconnect

resul t The result resource that is being evaluated. This result comes from a
call to mysqgl _query.

Return Values
The number of rows in a result set on success or FALSE on failure.
Examples

Example 6.44 nysql _num r ows example

<?php

$l i nk = nysql _connect ("l ocal host", "nysql _user", "nysql _password");
nysql _sel ect _db("dat abase", $link);

$result = nysql _query("SELECT * FROM tabl el", $link);
$num rows = nysql _numrows($result);

echo "$num rows Rows\n"

2>
Notes
Note
If you use nysql _unbuffered_query, mysgl num r ows will not return the
correct value until all the rows in the result set have been retrieved.
Note
For backward compatibility, the following deprecated alias may be used:
nysqgl _nunt ows
See Also

nysql _af fected rows
nmysqgl _connect

nysqgl _dat a_seek
nysqgl _sel ect _db
nmysqgl _query

6.5.38 mysqgl pconnect
Copyright 1997-2019 the PHP Documentation Group.
* nysqgl _pconnect
Open a persistent connection to a MySQL server
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:

513

mysql _pconnect

choosing an API guide and related FAQ for more information. Alternatives to this
function include:

nysql i _connect with p: host prefix
PDO : __construct with PDO. : ATTR_PERSI STENT as a driver option

Description

resource nmysql _pconnect (

string server

= =ini_get("nmysqgl.default_host"),
string usernane

= =ini_get("nmysql.default_user"),
string password

= =ini_get("nmysql.default_password"),
int client_flags

= :O) ;

Establishes a persistent connection to a MySQL server.
nysqgl _pconnect acts very much like nysql _connect with two major differences.

First, when connecting, the function would first try to find a (persistent) link that's already open with the
same host, username and password. If one is found, an identifier for it will be returned instead of opening a
new connection.

Second, the connection to the SQL server will not be closed when the execution of the script ends.
Instead, the link will remain open for future use (mysql _cl ose will not close links established by
nmysqgl _pconnect).

This type of link is therefore called 'persistent'.

Parameters

server The MySQL server. It can also include a port number. e.g.
"hostname:port" or a path to a local socket e.g. ":/path/to/socket" for the
localhost.
If the PHP directive mysql.default_host is undefined (default), then the
default value is 'localhost:3306'

user name The username. Default value is the name of the user that owns the
server process.

passwor d The password. Default value is an empty password.

client flags The cl i ent fl ags parameter can be a combination of

the following constants: 128 (enable LOAD DATA LOCAL
handling), MYySQL_CLI ENT_SSL, MySQL_CLI ENT_COVPRESS,
MYSQL_CLI ENT_I GNORE_SPACE or MYSQL_CLI ENT_I NTERACTI VE.

Return Values

Returns a MySQL persistent link identifier on success, or FALSE on failure.

Changelog
Version Description
5.5.0 This function will generate an E_DEPRECATED error.

514

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::__construct

nysql _pi ng

Notes
Note
Note, that these kind of links only work if you are using a module version of PHP.
See the Persistent Database Connections section for more information.
Warning
Using persistent connections can require a bit of tuning of your Apache and MySQL
configurations to ensure that you do not exceed the number of connections allowed
by MySQL.
Note
You can suppress the error message on failure by prepending a @ to the function
name.

See Also

nysqgl _connect
Persistent Database Connections

6.5.39 nysqgl pi ng
Copyright 1997-2019 the PHP Documentation Group.
* nysql _ping
Ping a server connection or reconnect if there is no connection
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

nmysql i _ping
Description

bool nysql _pi ng(
resource link_identifier
= =NULL);

Checks whether or not the connection to the server is working. If it has gone down, an automatic
reconnection is attempted. This function can be used by scripts that remain idle for a long while, to check
whether or not the server has closed the connection and reconnect if necessary.

Note
Automatic reconnection is disabled by default in versions of MySQL >=5.0.3.
Parameters

[ink identifier The MySQL connection. If the link identifier is not specified, the last
link opened by nysql _connect is assumed. If no such link is found,

515

http://www.php.net/manual/en/features.persistent-connections
http://www.php.net/manual/en/language.operators.errorcontrol
http://www.php.net/manual/en/features.persistent-connections
http://www.php.net/faq.databases.mysql.deprecated

mysql _query

it will try to create one as if mysql _connect had been called with no
arguments. If no connection is found or established, an E_ WARNI NG
level error is generated.

Return Values
Returns TRUE if the connection to the server MySQL server is working, otherwise FALSE.
Examples

Example 6.45 A nysql _pi ng example

<?php

set _time_limt(0);

$conn = nysql _connect (' | ocal host', 'nysqluser', 'nypass');
$db = nysql _sel ect _db(' nydb');

/* Assuming this query will take a long tinme */
$result = nysql _query($sql);
if (!'$result) {

echo 'Query #1 failed, exiting.'

exit;

}

/* Make sure the connection is still alive, if not, try to reconnect */

if (!nysql_ping($conn)) {
echo 'Lost connection, exiting after query #1'

exit;
}
nysql _free_resul t($result);
/* So the connection is still alive, let's run another query */
$result2 = nysql _query($sql 2);
2>
See Also

mysql _thread_ id
mysql |ist_processes

6.5.40 nysqgl query

Copyright 1997-2019 the PHP Documentation Group.
* nysql _query
Send a MySQL query
Warning
This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:

choosing an API guide and related FAQ for more information. Alternatives to this
function include:

nmysql i _query

516

http://www.php.net/faq.databases.mysql.deprecated

mysql _query

| PDO : query
Description

m xed nysql _query(
string query,
resource |link_identifier
= =NULL);

nmysql _query sends a unique query (multiple queries are not supported) to the currently active database
on the server that's associated with the specified | i nk_i dentifier.

Parameters

query An SQL query
The query string should not end with a semicolon. Data inside the query
should be properly escaped.

[ink_ identifier The MySQL connection. If the link identifier is not specified, the last

link opened by nysql _connect is assumed. If no such link is found,
it will try to create one as if mysql _connect had been called with no
arguments. If no connection is found or established, an E_WARNI NG
level error is generated.

Return Values

For SELECT, SHOW, DESCRIBE, EXPLAIN and other statements returning resultset, nysql _query
returns a resource on success, or FALSE on error.

For other type of SQL statements, INSERT, UPDATE, DELETE, DROP, etc, mysql _query returns TRUE
on success or FALSE on error.

The returned result resource should be passed to nysql _f et ch_array, and other functions for dealing
with result tables, to access the returned data.

Use nysqgl _num r ows to find out how many rows were returned for a SELECT statement or
nysql _af fected rows to find out how many rows were affected by a DELETE, INSERT, REPLACE, or
UPDATE statement.

nysgl _query will also fail and return FALSE if the user does not have permission to access the table(s)
referenced by the query.

Examples
Example 6.46 Invalid Query

The following query is syntactically invalid, so nysql _query fails and returns FALSE.

<?php
$result = nysql _query(' SELECT * WHERE 1=1')
if (!'$result) {

die('Invalid query: ' . nysqgl_error())
}

2>

517

http://www.php.net/PDO::query

mysql _real escape_string

Example 6.47 Valid Query

The following query is valid, so mysql _query returns a resource.

<?php

/1 This could be supplied by a user, for exanple
$firstname = 'fred';

$l ast nanme "fox';

/1 Formul ate Query

I/l This is the best way to performan SQL query

/'l For nore exanples, see nysql _real _escape_string()

$query = sprintf("SELECT firstnane, |astname, address, age FROM friends
VWHERE firstnanme=' %' AND | ast nane='%"",
nysql _real _escape_string($firstnane),
nysql _real _escape_string($l ast nane));

/1 Perform Query
$result = nysql _query($query);

/] Check result
/'l This shows the actual query sent to MySQL, and the error. Useful for debugging.
if (!'$result) {

$message = 'Invalid query: nysqgl _error() . "\n";

$nessage .= 'Wiole query: ' . $query;

di e($nessage) ;

/] Use result
/] Attenpting to print $result won't allow access to information in the resource
// One of the nysql result functions nust be used
/I See also nysql _result(), nysql _fetch_array(), nysql _fetch_row(), etc.
while ($row = nysql _fetch_assoc($result)) {
echo $rowf' firstnane'];
echo $rowf 'l astnane'];
echo $row' address'];
echo $rowf'age'];
}

/! Free the resources associated with the result set
/l This is done autonatically at the end of the script

nysql _free_result($result);
?>

See Also

nysqgl _connect

nysql _error

nysqgl real escape _string
nysql result

nysqgl _fetch assoc

nysqgl _unbuffered_query

6.5.41 nmysql real escape_string

Copyright 1997-2019 the PHP Documentation Group.

* mysql _real escape_string

518

mysql _real escape_string

Escapes special characters in a string for use in an SQL statement
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL.:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

nmysqli _real escape_string
PDQ. : quot e

Description

string nysqgl _real _escape_string(
string unescaped_string,
resource link_identifier
= =NULL);

Escapes special characters in the unescaped_st r i ng, taking into account the current character set of
the connection so that it is safe to place it in a mysql _query. If binary data is to be inserted, this function
must be used.

nmysqgl _real escape_string calls MySQL's library function mysql_real_escape_string, which prepends
backslashes to the following characters: \ x00,\ n,\r,\,"," and\ x1a.

This function must always (with few exceptions) be used to make data safe before sending a query to
MySQL.

Security: the default character set

The character set must be set either at the server level, or with the API function
nysqgl set charset foritto affect nysql real escape_string. See the
concepts section on character sets for more information.

Parameters
unescaped_string The string that is to be escaped.
[ink identifier The MySQL connection. If the link identifier is not specified, the last

link opened by nysql _connect is assumed. If no such link is found,
it will try to create one as if mysql _connect had been called with no
arguments. If no connection is found or established, an E_WARNI NG
level error is generated.

Return Values
Returns the escaped string, or FALSE on error.
Errors/Exceptions

Executing this function without a MySQL connection present will also emit E_WARNI NGlevel PHP errors.
Only execute this function with a valid MySQL connection present.

Examples

Example 6.48 Simple nysql _real _escape_stri ng example

519

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::quote

nysql _real _escape_string

<?php

/'l Connect

$link = nmysql _connect (' nysql _host', 'nysql _user', 'nysql_password')
OR di e(nysql _error())

/'l Query

$query = sprintf("SELECT * FROM users WHERE user='%"' AND password='9%s""
nysql _real _escape_string($user)
nysql _real _escape_string($password))

?>

Example 6.49 nysql real escape_string requires aconnection example

This example demonstrates what happens if a MySQL connection is not present when calling this function.

<?php
/1 W have not connected to MySQL

$l ast nane
$_| ast nane

"OReilly"
nysqgl _real _escape_string($l ast nane)

$query = "SELECT * FROM actors WHERE | ast _nane = '$_| ast nane' "

var _dunp($_| ast nane)

var _dunp($query)
2>

The above example will output something similar to:

War ni ng: nysql _real _escape_string(): No such file or directory in /this/test/script.php on line 5
War ni ng: nysql _real _escape_string(): Alink to the server could not be established in /this/test/script.php on

bool (f al se)
string(41) "SELECT * FROM actors WHERE | ast_nane = '"'"

Example 6.50 An example SQL Injection Attack

<?php

/1 We didn't check $_POST['password'], it could be anything the user wanted! For exanple
$_POST[' user nane'] 'ai dan' ;

$_POST[' password'] " OR'"'="

/! Query database to check if there are any matchi ng users
$query = "SELECT * FROM users WHERE user='{$_POST[' usernane']}' AND password='{$_POST[' password']}"'";
nysql _quer y($query);

[/l This nmeans the query sent to MySQL woul d be

echo $query;
2>

The query sent to MySQL.:

520

mysql _result

SELECT * FROM users WHERE user='ai dan' AND password="' OR''='"

This would allow anyone to log in without a valid password.

Notes

See Also

Note

A MySQL connection is required before using nysql real escape_string
otherwise an error of level E_ WARNI NGis generated, and FALSE is returned. If
[ink_identifier isn'tdefined, the last MySQL connection is used.

Note

If magic_quotes_gpc is enabled, first apply st ri psl ashes to the data. Using this
function on data which has already been escaped will escape the data twice.

Note

If this function is not used to escape data, the query is vulnerable to SQL Injection
Attacks.

Note

nysqgl _real _escape_string does not escape %and _. These are wildcards in
MySQL if combined with LI KE, GRANT, or REVCKE.

mysql _set char set
mysql _client_encodi ng

addsl| ashes
stripsl ashes

The magic_quotes_gpc directive
The magic_quotes_runtime directive

6.5.42 nysqgl result

Copyright 1997-2019 the PHP Documentation Group.

* nysql _result

Get result data

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

nysql i _dat a_seek in conjunction with nysqli fiel d seek and
nmysqli _fetch field

521

http://www.php.net/manual/en/ini.core.php#ini.magic-quotes-gpc
http://www.php.net/stripslashes
http://www.php.net/manual/en/security.database.sql-injection
http://www.php.net/manual/en/security.database.sql-injection
http://www.php.net/addslashes
http://www.php.net/stripslashes
http://www.php.net/manual/en/ini.core.php#ini.magic-quotes-gpc
http://www.php.net/manual/en/ini.core.php#ini.magic-quotes-runtime
http://www.php.net/faq.databases.mysql.deprecated

mysql _result

| PDCst at ement @ : f et chCol um

Description

string mysql _result(
resource result,
int row,
m xed field
= :O) ;

Retrieves the contents of one cell from a MySQL result set.

When working on large result sets, you should consider using one of the functions that fetch an entire row
(specified below). As these functions return the contents of multiple cells in one function call, they're MUCH
quicker than mysqgl resul t. Also, note that specifying a numeric offset for the field argument is much
quicker than specifying a fieldname or tablename.fieldname argument.

Parameters

resul t The result resource that is being evaluated. This result comes from a
callto nysql _query.

r ow The row number from the result that's being retrieved. Row numbers
start at 0.

field The name or offset of the field being retrieved.

It can be the field's offset, the field's name, or the field's table dot field
name (tablename.fieldname). If the column name has been aliased
(‘'select foo as bar from..."), use the alias instead of the column name. If
undefined, the first field is retrieved.

Return Values
The contents of one cell from a MySQL result set on success, or FALSE on failure.
Examples

Example 6.51 nysql _resul t example

<?php
$link = nmysql _connect('local host', 'nysql_user', 'nysql_password');
if (!$link) {

die(' Could not connect: ' . nysqgl_error());

if (!nysqgl _sel ect_db(' database_nane')) {
di e(' Coul d not sel ect database: ' . nysql _error());

}
$result = nysql _query(' SELECT nane FROM wor k. enpl oyee') ;

if (!$result) {
die(' Could not query:' . mysql _error());
}

echo nysql _result($result, 2); // outputs third enpl oyee's name

nysql _cl ose($link);
2>

Notes

522

http://www.php.net/PDOStatement::fetchColumn

nmysql _sel ect _db

Note

Callsto nysqgl _resul t should not be mixed with calls to other functions that deal
with the result set.

See Also

nysql _fetch_row

nysql _fetch_array
nysqgl _fetch _assoc
nysql _fetch_object

6.5.43 nysqgl _sel ect _db

Copyright 1997-2019 the PHP Documentation Group.
* mysql _sel ect _db
Select a MySQL database
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL.:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

nmysqli _sel ect _db
PDQO : _ construct (part of dsn)

Description

bool nysql _sel ect _db(
string database_nane,
resource |link_identifier
= =NULL);

Sets the current active database on the server that's associated with the specified link identifier. Every
subsequent call to mysql _query will be made on the active database.

Parameters
dat abase_nane The name of the database that is to be selected.
[ink identifier The MySQL connection. If the link identifier is not specified, the last

link opened by nysql _connect is assumed. If no such link is found,
it will try to create one as if mysql connect had been called with no
arguments. If no connection is found or established, an E_ WARNI NG
level error is generated.

Return Values
Returns TRUE on success or FALSE on failure.
Examples

Example 6.52 nysql sel ect _db example

523

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::__construct

mysql _set char set

<?php
$link = nmysql _connect('local host', 'nysql _user', 'nysql_password')
if (!$link) {
di e(' Not connected : ' . nysql _error());
}

/'l make foo the current db
$db_sel ected = nysql _sel ect _db(' foo', $link);
if (!$db_sel ected) {

die ("Can\'t use foo : ' . nysqgl_error());
bs
Notes
Note
For backward compatibility, the following deprecated alias may be used:
nmysql _sel ectdb
See Also

nmysqgl _connect
nysqgl _pconnect

nmysqgl _query

6.5.44 nysqgl set charset

Copyright 1997-2019 the PHP Documentation Group.
* nysql _set _charset
Sets the client character set
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

nmysql i _set _charset
PDO: Add char set to the connection string, such as char set =ut f 8

Description

bool nysql _set_charset (
string charset
resource link_identifier
= =NULL)

Sets the default character set for the current connection.
Parameters

char set A valid character set name.

524

http://www.php.net/faq.databases.mysql.deprecated

mysql _st at

link identifier The MySQL connection. If the link identifier is not specified, the last
link opened by nysql _connect is assumed. If no such link is found,
it will try to create one as if mysql _connect had been called with no
arguments. If no connection is found or established, an E_ WARNI NG
level error is generated.

Return Values

Returns TRUE on success or FALSE on failure.

Notes
Note
This function requires MySQL 5.0.7 or later.
Note

This is the preferred way to change the charset. Using nysql _query to set it
(such as SET NAMES ut f 8) is not recommended. See the MySQL character set
concepts section for more information.

See Also

Setting character sets in MySQL
List of character sets that MySQL supports
nmysqgl _client_encodi ng

6.5.45 nysqgl st at
Copyright 1997-2019 the PHP Documentation Group.
* nysqgl _stat
Get current system status
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL.:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

nysql i _stat
PDO : get Attri bute(PDQO : ATTR_SERVER | NFO

Description

string mysql _stat (
resource link_identifier
= =NULL);
nysql _st at returns the current server status.
Parameters

[ink_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by nysql _connect is assumed. If no such link is found,

525

http://dev.mysql.com/doc/mysql/en/charset-charsets.html
http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::getAttribute(PDO::ATTR_SERVER_INFO)

mysql _st at

it will try to create one as if mysql _connect had been called with no
arguments. If no connection is found or established, an E_ WARNI NG
level error is generated.

Return Values

Returns a string with the status for uptime, threads, queries, open tables, flush tables and queries per
second. For a complete list of other status variables, you have to use the SHOW STATUS SQL command. If
[ink _ identifier isinvalid, NULL is returned.

Examples

Example 6.53 nysql _st at example

<?php

$link = nysql _connect (' | ocal host', 'nysql _user', 'nysqgl_password');
$status = explode(' ', nysql _stat($link))

print_r($status);

2>

The above example will output something similar to:

Array

[0] => Uptine: 5380

[1] => Threads: 2

[2] => Questions: 1321299

[3] => Slow queries: 0O

[4] => Opens: 26

[5] => Flush tables: 1

[6] => Open tables: 17

[7] => Queries per second avg: 245.595

Example 6.54 Alternative nysql st at example

<?php
$li nk = nysqgl _connect (' | ocal host', 'nysql _user', 'nysql_password')
$result = nysqgl _query(' SHOWN STATUS' , $Ii nk)
while ($row = nysql _fetch_assoc($result)) {
echo $rowf' Variable_nane'] . ' ="' . $row'Value'] . "\n"
}
?>

The above example will output something similar to:

back_| og = 50

basedir = /usr/local/
bdb_cache_si ze = 8388600
bdb_I| og_buf fer_size = 32768
bdb_home = /var/db/ nysql/

526

mysql _t abl enane

bdb_max_| ock = 10000
bdb_l ogdir =
bdb_shared_data = OFF
bdb_tnpdir = /var/tnp/

See Also

nmysqgl _get _server _info
nmysqgl _|ist_processes

6.5.46 nysql _t abl enane
Copyright 1997-2019 the PHP Documentation Group.
« mysql _tabl enane
Get table name of field
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

SQL Query: SHON TABLES

Description

string nmysql _tabl enanme(
resource result,
int i);

Retrieves the table name fromaresul t.

This function is deprecated. It is preferable to use nysql _query to issue an SQL SHOW TABLES [FROM
db_nane] [LIKE 'pattern'] statement instead.

Parameters

resul t A result pointer resource that's returned from nysql |i st _tabl es.
[The integer index (row/table number)

Return Values

The name of the table on success or FALSE on failure.

Use the nysqgl _t abl enane function to traverse this result pointer, or any function for result tables, such
asnysql _fetch_array.

Changelog

Version Description

5.5.0 The mysql _t abl enane function is deprecated,
and emits an E_DEPRECATED level error.

527

http://www.php.net/faq.databases.mysql.deprecated

nmysql _thread_id

Examples

Example 6.55 nysql _t abl enanme example

<?php

nmysql _connect ("l ocal host", "mysql _user", "nysqgl _password");
$result = nysql _list_tabl es("nmydb")

$num rows = nysql _numrows($result);

for ($i = 0; $i < $numrows; $i++) {

echo "Table: ", nysqgl _tabl ename($result, $i), "\n";

}

nysql _free result($result);

?>

Notes
Note
The nysqgl _num r ows function may be used to determine the number of tables in
the result pointer.

See Also

nysql _list_tables
nysql _field table
nysqgl _db_nane

6.5.47 nysql thread id
Copyright 1997-2019 the PHP Documentation Group.
 nysql _thread_ id
Return the current thread ID

Warning
This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:
nmysqli _thread_id

Description

int nysql _thread_id(
resource link_identifier
= =NULL);

Retrieves the current thread ID. If the connection is lost, and a reconnect with mysqgl _pi ng is executed,
the thread ID will change. This means only retrieve the thread ID when needed.

Parameters

528

http://www.php.net/faq.databases.mysql.deprecated

mysql _unbuf fered_query

link identifier The MySQL connection. If the link identifier is not specified, the last
link opened by nysql _connect is assumed. If no such link is found,
it will try to create one as if mysql _connect had been called with no
arguments. If no connection is found or established, an E_ WARNI NG
level error is generated.

Return Values
The thread ID on success or FALSE on failure.
Examples

Example 6.56 nysql thread i dexample

<?php
$link = nysql _connect ('l ocal host', 'nysql _user', 'nysql _password');
$thread_id = nysqgl _thread_i d($link);
if ($thread_id){
printf("current thread id is %\n", $thread_id);
}

2>

The above example will output something similar to:

current thread id is 73

See Also
mysql _pi ng
mysql _|ist_processes

6.5.48 nysqgl _unbuffered_query
Copyright 1997-2019 the PHP Documentation Group.
e mysql _unbuffered_query
Send an SQL query to MySQL without fetching and buffering the result rows
Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

See: Buffered and Unbuffered queries

Description

resour ce nmysql _unbuffered_query(
string query,

529

http://www.php.net/faq.databases.mysql.deprecated

mysql _unbuf fered_query

resource link_identifier
= =NULL);

nysqgl _unbuffered _query sends the SQL query query to MySQL without automatically fetching and
buffering the result rows as nysql _query does. This saves a considerable amount of memory with SQL
gueries that produce large result sets, and you can start working on the result set immediately after the
first row has been retrieved as you don't have to wait until the complete SQL query has been performed.
To use nysqgl _unbuf fered_query while multiple database connections are open, you must specify the
optional parameter | i nk_i denti fi er to identify which connection you want to use.

Parameters
query The SQL query to execute.
Data inside the query should be properly escaped.
[ink_ identifier The MySQL connection. If the link identifier is not specified, the last

link opened by nysql _connect is assumed. If no such link is found,
it will try to create one as if nysql _connect had been called with no
arguments. If no connection is found or established, an E_WARNI NG
level error is generated.

Return Values

For SELECT, SHOW, DESCRIBE or EXPLAIN statements, nysql _unbuf f ered_query returns a
resource on success, or FALSE on error.

For other type of SQL statements, UPDATE, DELETE, DROP, etc, nysql _unbuf f er ed_query returns
TRUE on success or FALSE on error.

Notes
Note
The benefits of nysql _unbuf f er ed_quer y come at a cost: you cannot use
nysql _num rows and nysql _dat a_seek on a result set returned from
nysql _unbuf f er ed_query, until all rows are fetched. You also have to fetch all
result rows from an unbuffered SQL query before you can send a new SQL query to
MySQL, using the same | i nk_i dentifier.

See Also

nysql _query

530

Chapter 7 MySQL Native Driver

Table of Contents

A O =T o T PP 531
2 1413 7= = T o T PP 532
7.3 RUNIIME CONFIQUIALION ...\t e e e e e e e e r e e e e et e e et e e et e e et reeaneeenans 533
A g ToTo T a] o = 1] 1] = PN 538
7.5 PersiStENt COMNECIONS ...cvuvtiieiiiiii ettt e e et e et e e e et e e e et e e e e et e e e eat e eeeeaennes 538
A TS] = L1 (o2 PSPPSR 539
A A\ [0 (= T PP 552
7.8 MEMOIY MaANAGEIMENT .. oe ittt e e e e e e e e e e e e e e e et e e e e e e e e e ans 553
7.9 MySQL Native Driver PIUGIN APl ... e e e e e e e e aaa s 554
7.9.1 A comparison of mysqind plugins with MySQL ProXyccociuiiiiiiiiiiiieiie e 556
7.9.2 Obtaining the mysqgInd plugin APl 557
7.9.3 MySQL Native Driver Plugin ArchiteCtUrecocoiiiiiiiiiii e 557
7.9.4 The mysqInd PIUGIN AP ... e e r e e e e e e e e e e eeaen 562
7.9.5 Getting started building a mysqInd plugin ..o 564

Copyright 1997-2019 the PHP Documentation Group.

MySQL Native Driver is a replacement for the MySQL Client Library (libmysgiclient). MySQL Native Driver
is part of the official PHP sources as of PHP 5.3.0.

The MySQL database extensions MySQL extension, nysql i and PDO MYSQL all communicate with the
MySQL server. In the past, this was done by the extension using the services provided by the MySQL
Client Library. The extensions were compiled against the MySQL Client Library in order to use its client-
server protocol.

With MySQL Native Driver there is now an alternative, as the MySQL database extensions can be
compiled to use MySQL Native Driver instead of the MySQL Client Library.

MySQL Native Driver is written in C as a PHP extension.

7.1 Overview

Copyright 1997-2019 the PHP Documentation Group.
What it is not

Although MySQL Native Driver is written as a PHP extension, it is important to note that it does not provide
a new API to the PHP programmer. The programmer APIs for MySQL database connectivity are provided
by the MySQL extension, nysql i and PDO MYSQL. These extensions can now use the services of
MySQL Native Driver to communicate with the MySQL Server. Therefore, you should not think of MySQL
Native Driver as an API.

Why use it?
Using the MySQL Native Driver offers a number of advantages over using the MySQL Client Library.

The older MySQL Client Library was written by MySQL AB (now Oracle Corporation) and so was released
under the MySQL license. This ultimately led to MySQL support being disabled by default in PHP.
However, the MySQL Native Driver has been developed as part of the PHP project, and is therefore
released under the PHP license. This removes licensing issues that have been problematic in the past.

531

Installation

Also, in the past, you needed to build the MySQL database extensions against a copy of the MySQL Client
Library. This typically meant you needed to have MySQL installed on a machine where you were building
the PHP source code. Also, when your PHP application was running, the MySQL database extensions
would call down to the MySQL Client library file at run time, so the file needed to be installed on your
system. With MySQL Native Driver that is no longer the case as it is included as part of the standard
distribution. So you do not need MySQL installed in order to build PHP or run PHP database applications.

Because MySQL Native Driver is written as a PHP extension, it is tightly coupled to the workings of PHP.
This leads to gains in efficiency, especially when it comes to memory usage, as the driver uses the PHP
memory management system. It also supports the PHP memory limit. Using MySQL Native Driver leads
to comparable or better performance than using MySQL Client Library, it always ensures the most efficient
use of memory. One example of the memory efficiency is the fact that when using the MySQL Client
Library, each row is stored in memory twice, whereas with the MySQL Native Driver each row is only
stored once in memory.

Reporting memory usage

Because MySQL Native Driver uses the PHP memory management system, its
memory usage can be tracked with menory_get _usage. This is not possible with
libmysglclient because it uses the C function malloc() instead.

Special features

MySQL Native Driver also provides some special features not available when the MySQL database
extensions use MySQL Client Library. These special features are listed below:

» Improved persistent connections
» The special function nysql i _fetch_all

» Performance statistics calls: nysql i _get cache_stats,mysqgli _get client _stats,
nysqli _get connection_stats

The performance statistics facility can prove to be very useful in identifying performance bottlenecks.
MySQL Native Driver also allows for persistent connections when used with the mysql i extension.
SSL Support

MySQL Native Driver has supported SSL since PHP version 5.3.3

Compressed Protocol Support

As of PHP 5.3.2 MySQL Native Driver supports the compressed client server protocol. MySQL Native
Driver did not support this in 5.3.0 and 5.3.1. Extensions such as ext / nysqgl , ext / nysql i , that are
configured to use MySQL Native Driver, can also take advantage of this feature. Note that PDO_MYSQL
does NOT support compression when used together with mysqgind.

Named Pipes Support

Named pipes support for Windows was added in PHP version 5.4.0.

7.2 Installation

Copyright 1997-2019 the PHP Documentation Group.

Changelog

532

http://www.php.net/memory_get_usage

Runtime Configuration

Table 7.1 Changelog

Version Description

5.3.0 The MySQL Native Driver was added, with support
for all MySQL extensions (i.e., mysql, mysqli

and PDO_MYSQL). Passing in mysqgl nd to the
appropriate configure switch enables this support.

54.0 The MySQL Native Driver is now the default for

all MySQL extensions (i.e., mysqgl, mysqgli and
PDO_MYSQL). Passing in nysql nd to configure is
now optional.

5.5.0 SHA-256 Authentication Plugin support was added

Installation on Unix

The MySQL database extensions must be configured to use the MySQL Client Library. In order to use the
MySQL Native Driver, PHP needs to be built specifying that the MySQL database extensions are compiled
with MySQL Native Driver support. This is done through configuration options prior to building the PHP
source code.

For example, to build the MySQL extension, nysql i and PDO MYSQL using the MySQL Native Driver,
the following command would be given:

./configure --wth-nysqgl =nysqgl nd \
--with-nmysqgli=nysqglnd \
--W t h- pdo- nysqgl =nysql nd \
[ot her options]

Installation on Windows

In the official PHP Windows distributions from 5.3 onwards, MySQL Native Driver is enabled by default,
so no additional configuration is required to use it. All MySQL database extensions will use MySQL Native
Driver in this case.

SHA-256 Authentication Plugin support

The MySQL Native Driver requires the OpenSSL functionality of PHP to be loaded and enabled to connect
to MySQL through accounts that use the MySQL SHA-256 Authentication Plugin. For example, PHP could
be configured using:

./configure --w th-nysqgl =nysqgl nd \
--with-nmysqgli=nysqglnd \

-- Wit h- pdo- nysql =nysql nd \

--Wwit h- openssl

[ot her options]

7.3 Runtime Configuration

Copyright 1997-2019 the PHP Documentation Group.

The behaviour of these functions is affected by settings in php. i ni .

533

Runtime Configuration

Table 7.2 MySQL Native Driver Configuration Options

Name Default Changeable Changelog
mysqInd.collect_statistics |"1" PHP_INI_SYSTEM Available since PHP
5.3.0.
mysqlnd.collect_memory_pgW@itistics PHP_INI_SYSTEM Available since PHP
5.3.0.
mysqlnd.debug PHP_INI_SYSTEM Available since PHP
5.3.0.
mysqlind.log_mask 0 PHP_INI_ALL Available since PHP
5.3.0
mysqind.mempool_defaul{ 16980 PHP_INI_ALL Available since PHP
5.3.3
mysqlnd.net_read_timeout"86400" PHP_INI_ALL Available since PHP

5.3.0. Before PHP
7.2.0 the default value
was "31536000" and
the changeability was
PHP_| NI _SYSTEM

mysqlnd.net_cmd_buffer_

5i78.0 - "2048", 5.3.1 -
"4096"

PHP_INI_SYSTEM

Available since PHP
5.3.0.

mysqlnd.net_read_buffer |

Si22768"

PHP_INI_SYSTEM

Available since PHP
5.3.0.

mysqind.sha256_server_gublic_key PHP_INI_PERDIR Available since PHP
5.5.0.

mysqlnd.trace_alloc PHP_INI_SYSTEM Available since PHP
5.5.0.

mysqlnd.fetch_data_copy |0 PHP_INI_ALL Available since PHP

5.6.0.

For further details and definitions of the PHP_INI_* modes, see the http://www.php.net/manual/en/
configuration.changes.modes.

Here's a short explanation of the configuration directives.

nmysql nd. col | ect _stati sti csEnables the collection of various client statistics which
can be accessed through mysqgl i _get client stats,

boolean

nysqli _get connection_stats,mysqgli_get cache_stats and
are shown in nmysqgl nd section of the output of the phpi nf o function as

well.

This configuration setting enables all MySQL Native Driver statistics
except those relating to memory management.

nmysql nd. col | ect _nmenory_st dEnahle dlse collection of various memory statistics which
can be accessed through mysqgl i _get client_stats,

boolean

nysqli _get _connection_stats,mysqgli_get cache_stats and
are shown in mysql nd section of the output of the phpi nf o function as

well.

This configuration setting enables the memory management statistics
within the overall set of MySQL Native Driver statistics.

534

http://www.php.net/manual/en/configuration.changes.modes
http://www.php.net/manual/en/configuration.changes.modes
http://www.php.net/phpinfo
http://www.php.net/phpinfo

Runtime Configuration

nysql nd. debug string

Records communication from all extensions using nysql nd to the
specified log file.

The format of the directive is nysql nd. debug
= "optionl[, paraneter_optionl]

[

;option2[, paraneter_option2]]".

The options for the format string are as follows:

A[,file] - Appends trace output to specified file. Also ensures that data
is written after each write. This is done by closing and reopening the
trace file (this is slow). It helps ensure a complete log file should the
application crash.

a[,file] - Appends trace output to the specified file.

d - Enables output from DBUG_<N> macros for the current state. May
be followed by a list of keywords which selects output only for the
DBUG macros with that keyword. An empty list of keywords implies
output for all macros.

f[,functions] - Limits debugger actions to the specified list of functions.
An empty list of functions implies that all functions are selected.

F - Marks each debugger output line with the name of the source file
containing the macro causing the output.

i - Marks each debugger output line with the PID of the current
process.

L - Marks each debugger output line with the name of the source file
line number of the macro causing the output.

n - Marks each debugger output line with the current function nesting
depth

o[,file] - Similar to a],file] but overwrites old file, and does not append.
Ol,file] - Similar to A[,file] but overwrites old file, and does not append.

t[,N] - Enables function control flow tracing. The maximum nesting
depth is specified by N, and defaults to 200.

X - This option activates profiling.

m - Trace memory allocation and deallocation related calls.

Example:

d:t:x: O /tnp/ nysqgl nd. trace

535

Runtime Configuration

Note

This feature is only available with a debug build
of PHP. Works on Microsoft Windows if using
a debug build of PHP and PHP was built using
Microsoft Visual C version 9 and above.

nysqgl nd. | og_mask integer Defines which queries will be logged. The default 0, which disables
logging. Define using an integer, and not with PHP constants. For
example, a value of 48 (16 + 32) will log slow queries which either use
'no good index' (SERVER_QUERY_NO_GOOD_INDEX_USED = 16) or
no index at all (SERVER_QUERY_NO_INDEX_USED = 32). A value of
2043 (1 + 2 + 8 + ... + 1024) will log all slow query types.

The types are as follows: SERVER_STATUS_IN_TRANS=1,
SERVER_STATUS_AUTOCOMMIT=2,
SERVER_MORE_RESULTS_EXISTS=8,
SERVER_QUERY_NO_GOOD_INDEX_USED=16,
SERVER_QUERY_NO_INDEX_USED=32,
SERVER_STATUS_CURSOR_EXISTS=64,
SERVER_STATUS_LAST_ROW_SENT=128,
SERVER_STATUS_DB_DROPPED=256,
SERVER_STATUS_NO_BACKSLASH_ESCAPES=512, and
SERVER_QUERY_WAS_SLOW=1024.

nmysql nd. menpool _def aul t _siDefault size of the mysglnd memory pool, which is used by result sets.
integer

nysgl nd. net _read _tineout nysqgl nd andthe MySQL Client Library, | i brrysqgl cl i ent use
integer different networking APIs. nysql nd uses PHP streams, whereas
I'i bmysgl cl i ent uses its own wrapper around the operating
level network calls. PHP, by default, sets a read timeout of 60s for
streams. This is set via php. i ni ,defaul t _socket ti neout.
This default applies to all streams that set no other timeout
value. nysqgl nd does not set any other value and therefore
connections of long running queries can be disconnected after
def aul t _socket ti neout seconds resulting in an error message
“2006 - MySQL Server has gone away”. The MySQL Client Library
sets a default timeout of 24 * 3600 seconds (1 day) and waits
for other timeouts to occur, such as TCP/IP timeouts. nmysql nd
now uses the same very long timeout. The value is configurable
through a new php. i ni setting: nysqgl nd. net _read_ti neout.
nysql nd. net _read_ti nmeout gets used by any extension (ext /
nysql , ext/ mysql i, PDO MySQL) that uses nysql nd. nysqgl nd tells
PHP Streams to use nysql nd. net _read_ti neout . Please note that
there may be subtle differences between MYySQL_OPT_READ Tl MEOUT
from the MySQL Client Library and PHP Streams, for example
MYSQL_OPT_READ TI MEQUT is documented to work only for TCP/IP
connections and, prior to MySQL 5.1.2, only for Windows. PHP streams
may not have this limitation. Please check the streams documentation, if
in doubt.

nmysqgl nd. net _cnd_buf f er_si zeysql nd allocates an internal command/network buffer of
integer nysql nd. net _cnd_buf fer_si ze (in php. i ni) bytes for every

536

Runtime Configuration

connection. If a MySQL Client Server protocol command, for
example, COM_QUERY (“normal” query), does not fit into the buffer,
nysql nd will grow the buffer to the size required for sending the
command. Whenever the buffer gets extended for one connection,
conmand_buffer_too_snal | will be incremented by one.

If mysql nd has to grow the buffer beyond its initial size of
nysql nd. net _cnd_buf f er _si ze bytes for almost every connection,
you should consider increasing the default size to avoid re-allocations.

The default buffer size is 2048 bytes in PHP 5.3.0. In later versions the
default is 4096 bytes.

It is recommended that the buffer size be set to no less than 4096 bytes
because nmysql nd also uses it when reading certain communication
packet from MySQL. In PHP 5.3.0, nysql nd will not grow the

buffer if MySQL sends a packet that is larger than the current size

of the buffer. As a consequence, nysql nd is unable to decode the
packet and the client application will get an error. There are only two
situations when the packet can be larger than the 2048 bytes default of
nysql nd. net _cnd_buf f er _si ze in PHP 5.3.0: the packet transports
a very long error message, or the packet holds column meta data from
COM LI ST_FI ELD (nysql _l'ist_fields() and the meta data come
from a string column with a very long default value (>1900 bytes).

As of PHP 5.3.2 mysqlnd does not allow setting buffers smaller than
4096 bytes.

The value can also be set using mysql i _options(Iink,
MYSQLI _OPT_NET_CMD BUFFER SI ZE, si ze).

nmysql nd. net _read_buf f er _siMaximum read chunk size in bytes when reading the body of a MySQL

integer

command packet. The MySQL client server protocol encapsulates all
its commands in packets. The packets consist of a small header and

a body with the actual payload. The size of the body is encoded in the
header. mysql nd reads the body in chunks of M N(header . si ze,
nysql nd. net _read_buf fer_si ze) bytes. If a packet body is larger
than nysql nd. net _read_buf f er _si ze bytes, nysqgl nd has to call
read() multiple times.

The value can also be set using nysql i _options(Iink,
MYSQLI _OPT_NET_READ BUFFER Sl ZE, si ze).

nysql nd. sha256_server publ $HAk256 Authentication Plugin related. File with the MySQL server

string

nysql nd. trace_al | oc string

nysql nd. f et ch_dat a_copy
integer

public RSA key.

Clients can either omit setting a public RSA key, specify the key
through this PHP configuration setting or set the key at runtime using
nysql i _opti ons. If not public RSA key file is given by the client,
then the key will be exchanged as part of the standard SHA-256
Authentication Plugin authentication procedure.

Enforce copying result sets from the internal result set buffers into PHP
variables instead of using the default reference and copy-on-write logic.

537

Incompatibilities

Please, see the memory management implementation notes for further
details.

Copying result sets instead of having PHP variables reference them
allows releasing the memory occupied for the PHP variables earlier.
Depending on the user API code, the actual database quries and
the size of their result sets this may reduce the memory footprint of
mysqind.

Do not set if using PDO_MySQL. PDO_MySQL has not yet been
updated to support the new fetch mode.

7.4 Incompatibilities

Copyright 1997-2019 the PHP Documentation Group.

MySQL Native Driver is in most cases compatible with MySQL Client Library (I i brmysql). This section
documents incompatibilities between these libraries.

» Values of bi t data type are returned as binary strings (e.g. "\0" or "\x1F") with | i brmysqgl and as
decimal strings (e.g. "0" or "31") with mysqgl nd. If you want the code to be compatible with both libraries
then always return bit fields as numbers from MySQL with a query like this: SELECT bit + 0 FROM
tabl e.

7.5 Persistent Connections

Copyright 1997-2019 the PHP Documentation Group.
Using Persistent Connections

Ifmysql i is used with mysql nd, when a persistent connection is created it generates a
COM_CHANGE_USER (mysql _change_user ()) call on the server. This ensures that re-authentication of
the connection takes place.

As there is some overhead associated with the COM CHANGE USER call, it is possible to switch this off at
compile time. Reusing a persistent connection will then generate a COM Pl NG (nysql _pi ng) call to simply
test the connection is reusable.

Generation of COM_CHANGE USER can be switched off with the compile flag
MYSQLI _NO CHANGE_USER_ON_PCONNECT. For example:

shel | # CFLAGS="- DMYSQLI _NO _CHANGE_USER_ON_PCONNECT" ./configure --w th-nysql =/usr/|ocal /nysql/ --w th-nysqli=/

Or alternatively:

shel | # export CFLAGS="-DMYSQLI _NO CHANGE USER_ON_PCONNECT"
shel | # configure --whatever-option

shel | # make cl ean

shel | # make

Note that only mysql i on nysql nd uses COM_CHANCE_USER. Other extension-driver combinations use
COM_PI NGon initial use of a persistent connection.

538

Statistics

7.6 Statistics

Copyright 1997-2019 the PHP Documentation Group.
Using Statistical Data

MySQL Native Driver contains support for gathering statistics on the communication between the client and
the server. The statistics gathered are of two main types:

+ Client statistics
» Connection statistics
If you are using the mysql i extension, these statistics can be obtained through two API calls:
e mysqli_get _client_stats
 nysqli _get _connection_stats
Note

Statistics are aggregated among all extensions that use MySQL Native Driver.

For example, when compiling both ext / mysql and ext/ nysql i against MySQL
Native Driver, both function calls of ext / nysql and ext/ nysqgl i will change the
statistics. There is no way to find out how much a certain API call of any extension
that has been compiled against MySQL Native Driver has impacted a certain
statistic. You can configure the PDO MySQL Driver, ext / nysql and ext/ nysql i
to optionally use the MySQL Native Driver. When doing so, all three extensions will
change the statistics.

Accessing Client Statistics

To access client statistics, you need to call nysql i _get client st ats. The function call does not
require any parameters.

The function returns an associative array that contains the name of the statistic as the key and the
statistical data as the value.

Client statistics can also be accessed by calling the phpi nf o function.
Accessing Connection Statistics

To access connection statistics call nysqgl i _get _connecti on_st at s. This takes the database
connection handle as the parameter.

The function returns an associative array that contains the name of the statistic as the key and the
statistical data as the value.

Buffered and Unbuffered Result Sets

Result sets can be buffered or unbuffered. Using default settings, ext / nysql and ext/ nysql i work
with buffered result sets for normal (non prepared statement) queries. Buffered result sets are cached on
the client. After the query execution all results are fetched from the MySQL Server and stored in a cache
on the client. The big advantage of buffered result sets is that they allow the server to free all resources
allocated to a result set, once the results have been fetched by the client.

Unbuffered result sets on the other hand are kept much longer on the server. If you want to reduce
memory consumption on the client, but increase load on the server, use unbuffered results. If you
experience a high server load and the figures for unbuffered result sets are high, you should consider

539

http://www.php.net/phpinfo

Statistics

moving the load to the clients. Clients typically scale better than servers. “Load” does not only refer to
memory buffers - the server also needs to keep other resources open, for example file handles and
threads, before a result set can be freed.

Prepared Statements use unbuffered result sets by default. However, you can use
nmysqgli _stm store result toenable buffered result sets.

Statistics returned by MySQL Native Driver

The following tables show a list of statistics returned by the mysql i _get client_stats and
mysql i _get connection_st ats functions.

Table 7.3 Returned mysqlnd statistics: Network

Statistic

Scope

Description

Notes

byt es_sg¢

»@onnectiofNumber of bytes sent from PHP to the

MySQL server

Can be used to check the efficiency of
the compression protocol

bytes rg

rCenmectioumber of bytes received from MySQL

server

Can be used to check the efficiency of
the compression protocol

packet s |

| €ennectioNumber of MySQL Client Server protocol

packets sent

Used for debugging Client Server
protocol implementation

packet s |

| Cennect@miNumber of MySQL Client Server protocol

packets received

Used for debugging Client Server
protocol implementation

pr ot ocol

ConnettanblySQL Client Server protocol

overhead in bytes for incoming
traffic. Currently only the Packet
Header (4 bytes) is considered as
overhead. protocol_overhead_in =
packets_received * 4

Used for debugging Client Server
protocol implementation

pr ot ocol

ConpettanblySQL Client Server protocol

overhead in bytes for outgoing traffic.
Currently only the Packet Header (4
bytes) is considered as overhead.
protocol_overhead_out = packets_sent *
4

Used for debugging Client Server
protocol implementation

bytes rg

:Connectigykotahsizetof bytes of MySQL Client

Server protocol OK packets received. OK
packets can contain a status message.
The length of the status message can
vary and thus the size of an OK packet is
not fixed.

Used for debugging CS protocol
implementation. Note that the total size
in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

packet s |

| Cennect@miNaimber of MySQL Client Server protocol

OK packets received.

Used for debugging CS protocol
implementation. Note that the total size
in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

bytes rg

»ConnectigFbdtabsizkan bytes of MySQL Client

Server protocol EOF packets received.

EOF can vary in size depending on the

server version. Also, EOF can transport
an error message.

Used for debugging CS protocol
implementation. Note that the total size
in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

packet s |

_CenaémETNenfoer of MySQL Client Server protocol

EOF packets. Like with other packet

Used for debugging CS protocol
implementation. Note that the total size

540

Statistics

Statistic |Scope |Description Notes
statistics the number of packets will be in bytes includes the size of the header
increased even if PHP does not receive |packet (4 bytes, see protocol overhead).
the expected packet but, for example, an
error message.
byt es_r eCennectiorfetal bizadr byfescdfdilySQL Client Used for debugging CS protocol
Server protocol result set header packets. |implementation. Note that the total size
The size of the packets varies depending |in bytes includes the size of the header
on the payload (LOAD LOCAL | NFI LE, |packet (4 bytes, see protocol overhead).
| NSERT, UPDATE, SELECT, error
message).
packet s | CennectaiNunier loé MYSQL Client Server protocol |Used for debugging CS protocol
result set header packets. implementation. Note that the total size
in bytes includes the size of the header
packet (4 bytes, see protocol overhead).
byt es_r ¢eCennectiarfetal sizelinl bytescofyBOL Client Only useful for debugging CS protocol
Server protocol result set meta data implementation. Note that the total size
(field information) packets. Of course in bytes includes the size of the header
the size varies with the fields in the packet (4 bytes, see protocol overhead).
result set. The packet may also transport
an error or an EOF packet in case of
COM_LIST_FIELDS.
packet s | CennéectaiiNusiber of MyEQieClient Server protocol |Only useful for debugging CS protocol
result set meta data (field information) implementation. Note that the total size
packets. in bytes includes the size of the header
packet (4 bytes, see protocol overhead).
byt es_r eCennectiorfetal siae ipbytestof MySQL Client Only useful for debugging CS protocol
Server protocol result set row data implementation. Note that the total size
packets. The packet may also transport |in bytes includes the size of the header
an error or an EOF packet. You can packet (4 bytes, see protocol overhead).
reverse engineer the number of error
and EOF packets by subtracting
rows_fetched from server_nornal
androws_fetched from server_ps
from
bytes_received rset row packet.
packet s | CennectaiNuadier obMySQL Client Server protocol |Only useful for debugging CS protocol
result set row data packets and their total |implementation. Note that the total size
size in bytes. in bytes includes the size of the header
packet (4 bytes, see protocol overhead).
byt es_r eCennectiqif etabsizerie bytessef MyS®@etClient Only useful for debugging CS protocol

Server protocol OK for Prepared
Statement Initialization packets (prepared
statement init packets). The packet

may also transport an error. The packet
size depends on the MySQL version:

9 bytes with MySQL 4.1 and 12 bytes
from MySQL 5.0 on. There is no safe
way to know how many errors happened.

You may be able to guess that an error

implementation. Note that the total size
in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

541

Statistics

Statistic

Scope

Description

Notes

has occurred if, for example, you always
connect to MySQL 5.0 or newer and,

byt es_recei ved _prepare_response
1=

packets_recei ved prepare_respon
*12. See also

ps_prepar ed_never _execut ed,
ps_prepared_once_execut ed.

| packet

packet s |

| Connect@miNpmiyea of MySQlo Client Server

protocol OK for Prepared Statement
Initialization packets (prepared statement
init packets).

Only useful for debugging CS protocol
implementation. Note that the total size
in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

byt es_r eCennectiaroetad sizade bytescdfdlySQL Client Only useful for debugging CS protocol
Server protocol COM_CHANGE_USER |implementation. Note that the total size
packets. The packet may also transport |in bytes includes the size of the header
an error or EOF. packet (4 bytes, see protocol overhead).

packet s | CennectaiiNumieg ©f W/SQL Client Server protocol |Only useful for debugging CS protocol

COM_CHANGE_USER packets

implementation. Note that the total size
in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

packet s |

| EennectNamier of MySQL Client Server protocol

commands sent from PHP to MySQL.
There is no way to know which specific
commands and how many of them have
been sent. At its best you can use it to
check if PHP has sent any commands

to MySQL to know if you can consider

to disable MySQL support in your PHP
binary. There is also no way to reverse
engineer the number of errors that may
have occurred while sending data to
MySQL. The only error that is recorded is
command_buffer_too_small (see below).

Only useful for debugging CS protocol
implementation.

bytes_rg

rCenmectig]

Nambeaiof bytesraflpayload fetched by
the PHP client from mysql nd using the
text protocol.

This is the size of the actual data
contained in result sets that do not
originate from prepared statements and
which have been fetched by the PHP
client. Note that although a full result set
may have been pulled from MySQL by
nysql nd, this statistic only counts actual
data pulled from nmysql nd by the PHP
client. An example of a code sequence
that will increase the value is as follows:

$nysqgli = new nysqli();

$res = $nysqli->query("SELECT 'abc'");
$res->f et ch_assoc();

$res->cl ose();

542

Statistics

Statistic |Scope

Description

Notes

Every fetch operation will increase the
value.

The statistic will not be increased if the

result set is only buffered on the client,

but not fetched, such as in the following
example:

$nysqgli = new nysqli();
$res = $nysql i - >query(" SELECT ' abc' ");
$res->cl ose();

This statistic is available as of PHP
version 5.3.4.

byt es_r eCenmectiq

mambeaiohbytes of the payload fetched
by the PHP client from mysql nd using
the prepared statement protocol.

This is the size of the actual data
contained in result sets that originate
from prepared statements and which
has been fetched by the PHP client.
The value will not be increased if the
result set is not subsequently read by
the PHP client. Note that although a
full result set may have been pulled
from MySQL by nysql nd, this statistic
only counts actual data pulled from
nysql nd by the PHP client. See also
byt es_received _real data_nornal
This statistic is available as of PHP
version 5.3.4.

Result Set

Table 7.4 Returned mysqlnd statistics: Result Set

Statistic |Scope

Description

Notes

resul t _s€bngeetia

ridamber of queries that have generated

a result set. Examples of queries that
generate a result set: SELECT, SHOW The
statistic will not be incremented if there

is an error reading the result set header
packet from the line.

You may use it as an indirect measure for
the number of queries PHP has sent to
MySQL, for example, to identify a client
that causes a high database load.

non_r esyCongrecttiaiNambes of queries that did not generate

a result set. Examples of queries that

do not generate a result set: | NSERT,
UPDATE, LOAD DATA. The statistic will
not be incremented if there is an error
reading the result set header packet from
the line.

You may use it as an indirect measure for
the number of queries PHP has sent to
MySQL, for example, to identify a client
that causes a high database load.

no_i ndexCoanectio

rMumber of queries that have generated
a result set but did not use an index (see
also mysqld start option —log-queries-

not-using-indexes). If you want these

543

Statistics

Statistic |Scope |Description Notes
queries to be reported you can use
mysqli_report(MYSQLI_REPORT_INDEX
to make ext/mysqli throw an
exception. If you prefer a warning
instead of an exception use
mysqli_report(MYSQLI_REPORT_INDEX
A MYSQLI_REPORT_STRICT).
bad i nde€onreectiomNumber of queries that have generated |If you want these queries
a result set and did not use a good index |to be reported you can use
(see also mysqld start option —log-slow- | mysqli_report(MYSQLI_REPORT_INDEX
gueries). to make ext/mysqli throw an
exception. If you prefer a warning
instead of an exception use
mysqli_report(MYSQLI_REPORT_INDEX
AMYSQLI_REPORT_STRICT)
sl ow_gueCoarectiof5QL statements that took more Not reported through nysql i _report
than | ong_query_ti me seconds
to execute and required at least
m n_exam ned _row | imt rowsto be
examined.
buf f er edCeanectiomumber of buffered result sets returned |Examples of API calls that will
by “normal” queries. “Normal” means buffer result sets on the client:
“not prepared statement” in the following |mysqgl _query, mysql i _query,
notes. mysqli _store_result,
mysqgl i _stm get result. Buffering
result sets on the client ensures that
server resources are freed as soon as
possible and it makes result set scrolling
easier. The downside is the additional
memory consumption on the client for
buffering data. Note that mysqind (unlike
the MySQL Client Library) respects the
PHP memory limit because it uses PHP
internal memory management functions
to allocate memory. This is also the
reason why menory_get _usage reports
a higher memory consumption when
using mysqlnd instead of the MySQL
Client Library. nenory_get usage does
not measure the memory consumption of
the MySQL Client Library at all because
the MySQL Client Library does not use
PHP internal memory management
functions monitored by the function!
unbuf f e €dneectiorNumber of unbuffered result sets Examples of API calls that will not
returned by normal (non prepared buffer result sets on the client:
statement) queries. nysql i _use_result
ps_buf f eCedneeticsNumber of buffered result sets returned |Examples of API calls that will

by prepared statements. By default

prepared statements are unbuffered.

buffer result sets on the client:
mysqgli_stm _store result

544

http://www.php.net/memory_get_usage
http://www.php.net/memory_get_usage

Statistics

Statistic

Scope

Description

Notes

ps_unbuf

Cenrecti

riNamber of unbuffered result sets
returned by prepared statements.

By default prepared statements are
unbuffered.

fl ushed]

|Gonnettiol

iNtumber of result sets from normal (non
prepared statement) queries with unread
data which have been flushed silently
for you. Flushing happens only with
unbuffered result sets.

Unbuffered result sets must be fetched
completely before a new query can be
run on the connection otherwise MySQL
will throw an error. If the application does
not fetch all rows from an unbuffered
result set, mysqlnd does implicitly

fetch the result set to clear the line.

See also r ows_ski pped_nor mal ,
rows_ski pped_ps. Some possible
causes for an implicit flush:

Faulty client application

Client stopped reading after it found
what it was looking for but has made
MySQL calculate more records than
needed

Client application has stopped
unexpectedly

fl ushed]

| Eeneecttio

rMNumber of result sets from prepared
statements with unread data which have
been flushed silently for you. Flushing
happens only with unbuffered result sets.

Unbuffered result sets must be fetched
completely before a new query can be
run on the connection otherwise MySQL
will throw an error. If the application does
not fetch all rows from an unbuffered
result set, mysqind does implicitly

fetch the result set to clear the line.

See also r ows_ski pped_nor mal ,
rows_ski pped_ps. Some possible
causes for an implicit flush:

Faulty client application

Client stopped reading after it found
what it was looking for but has made
MySQL calculate more records than
needed

Client application has stopped
unexpectedly

PS_preps

"Cednectio

rNumbec of sthtements prepared but
never executed.

Prepared statements occupy server
resources. You should not prepare a
statement if you do not plan to execute it.

pS_prepa

1Cednect

rNambenoé prepared statements executed
only one.

One of the ideas behind prepared
statements is that the same query gets
executed over and over again (with
different parameters) and some parsing
and other preparation work can be
saved, if statement execution is split

545

Statistics

Statistic |Scope Description Notes
up in separate prepare and execute
stages. The idea is to prepare once
and “cache” results, for example, the
parse tree to be reused during multiple
statement executions. If you execute
a prepared statement only once the
two stage processing can be inefficient
compared to “normal” queries because
all the caching means extra work and it
takes (limited) server resources to hold
the cached information. Consequently,
prepared statements that are executed
only once may cause performance hurts.
rows_f et Coadeétiaphotatnumbenof result set rows See also
rows_fetiched_fr ¢osoucoesskly fetched from MySQL packets _received rset_row
regardless if the client application has
consumed them or not. Some of the
rows may not have been fetched by the
client application but have been flushed
implicitly.
r ows_ bufl Cenndctiarbotat humber nbsuedessfully buffered Examples of queries that will
rows_buflf ered_f f@wsoiiginatinsfrom a "normal” query buffer results: nysql i _query,
or a prepared statement. This is the mysqgli_store_result
number of rows that have been fetched
from MySQL and buffered on client. Note
that there are two distinct statistics on
rows that have been buffered (MySQL
to mysqlnd internal buffer) and buffered
rows that have been fetched by the
client application (mysqind internal buffer
to client application). If the number of
buffered rows is higher than the number
of fetched buffered rows it can mean
that the client application runs queries
that cause larger result sets than needed
resulting in rows not read by the client.
rows_f et| Coadedtiayiotal hembenof raavs fetcHext byl the
rows_fetlched_f r oclient frem ajaifferéd mrseitt set created
by a normal query or a prepared
statement.
rows_f et| Coadedtiayiotal hembenof raavs fetchéd by te
rows_fetlched_f r oclient frem apmbufferdd msatt set created
by a "normal" query or a prepared
statement.
rows_f et| Coadedtiayiotal hembepsf mwsfatch by the client
from a cursor created by a prepared
statement.
r ows_ski| @padectmrReserved for future use (currently not
rows_skilpped_ps |supported)

546

Statistics

Statistic |Scope |Description Notes
copy_on |Rrodesss aWktth, mysqlnd, variables returned by the
copy_on |wite_peextensieds point into mysqlnd internal
network result buffers. If you do not
change the variables, fetched data will
be kept only once in memory. If you
change the variables, mysqgind has to
perform a copy-on-write to protect the
internal network result buffers from being
changed. With the MySQL Client Library
you always hold fetched data twice in
memory. Once in the internal MySQL
Client Library buffers and once in the
variables returned by the extensions.
In theory mysqind can save up to 40%
memory. However, note that the memory
saving cannot be measured using
nmenory_get _usage.
expl i ci t Coneectiagffotal number of freed result sets. The free is always considered
i mpl i ci fPfocessr ¢sul t explicit but for result sets created
(only by an init command, for example,
during nysql i _options(MYSQLI _I NI T_COwW
prepared
statement
cleanup)
pr ot o_t e€onhectudiEotahnuinper of columns of a certain type | Mapping from C APl / MySQL meta data
proto_text fetchfetchadfrom a normal query (MySQL text |type to statistics name:
proto_text_fetchewtddatlyi nt
proto_text fetched short, ¢ MYSQL_TYPE_NULL -
proto_text fetched int24, proto_text_fetched_null
proto_text fetched int
proto_text fetched bigint, * WSQ_TYPE BIT-)
proto_text fetched deci mal, proto_text_fetched_bit
proto_text fetched float . MYSQL_TYPE TI NY -
proto_text fetched double, o
proto_text fetched date, proto_text fetched_tinyint
pr ot O_t ext _f et Ched_year . WSQ_ TYPE SHORT -
proto_text_fetched_tine, proto_text_fetched_short
proto_text fetched datetine,
proto_text_fetched_tinestanp o MYSQL_TYPE_I NT24 -
proto_text_fetched_string, proto_text_fetched_int24
proto_text fetched bl ob,
proto_text fetched enum e MYSQL_TYPE LONG-
proto_text fetched set, proto_text fetched_int
proto_text_fetched_geonetry,
proto_text fetched ot her * MYSQL_TYPE_LONGLONG-

proto_text fetched_bigint

MYSQL_TYPE_DECI MAL,
MYSQL_TYPE_NEWDECI MAL -

AND

proto_text fetched_ decimal

547

http://www.php.net/memory_get_usage

Statistics

Statistic

Scope

Description

Notes

« MYSQL_TYPE_FLOAT -
proto_text_fetched_float

« MYSQL_TYPE_DOUBLE -
proto_text fetched_double

 MYSQL_TYPE_DATE,
MYSQL_TYPE_NEWDATE -
proto_text fetched_date

« MYSQL_TYPE_VYEAR-
proto_text fetched_year

e MYSQL_TYPE_TI ME -
proto_text fetched_time

e MYSQL_TYPE_DATETI ME -
proto_text fetched_datetime

« MYSQL_TYPE_TI MESTAMP -
proto_text fetched_timestamp

« MYSQL_TYPE_STRI NG
MYSQL_TYPE_VARSTRI NG,
MYSQL_TYPE_ VARCHAR -
proto_text fetched_string

e MYSQL_TYPE_TI NY_BLOB,
MYSQL_TYPE_MEDI UM BLOB,
MYSQL_TYPE_LONG BLOB,
MYSQL_TYPE_BLOB -
proto_text fetched_blob

« MYSQL_TYPE_ENUM-
proto_text fetched _enum

« MYSQL_TYPE_SET -
proto_text fetched_set

e MYSQL_TYPE_GEQVETRY -
proto_text fetched _geometry

e Any MYSQL_TYPE_* not listed
before (there should be none) -
proto_text fetched_other

Note that the MYSQL_*-type constants
may not be associated with the very
same SQL column types in every version
of MySQL.

proto_bi
proto_bi
proto_bi
proto_bi

Canpedti
nary_f et
nary_f et

rtotat naonbler of columns of a certain
typedetched from a prepared statement

(eSOt ibiyargtprotocol).

nary_f et

ched_short,

For type mapping see prot o_t ext _*
described in the preceding text.

548

Statistics

Statistic |Scope |Description Notes
proto_bijnary fetched_int 24,
proto_bilnary fefched int,
proto_bilnary_ fetched_bigint,
proto_bilnary fetched_deci nal,
proto_bijnary_fetched_fl oat,
proto_bilnary_fetched_doubl e,
proto_bilnary fetfched _date,
proto_bijnary fetched year,
proto_bilnary fetched tine,
proto_bilnary fetched _datetine,
proto_bilnary fetched_ tinestanp,
proto_bilnary fetched_string,
proto_bilnary_ fetched_bl ob,
proto_bijnary fefched_enum
proto_bilnary fefched_set,
proto_bilnary fetched geonetry,
proto_bijnary fefched_ ot her
Table 7.5 Returned mysqlnd statistics: Connection
Statistic |Scope |Description Notes
connect |€onnesctigTotal number of successful / failed Reused connections and all other kinds
connect |f ai | ur e |connection attempt. of connections are included.
reconne¢Process |Total number of (real_)connect attempts |The code sequence $l i nk =
made on an already opened connection |new nysqgli(...); $link-
handle. >real _connect (...) will
cause a reconnect. But $l i nk =
new nysqli(...); $link-
>connect (...) will not because
$l i nk->connect (...) will explicitly
close the existing connection before a
new connection is established.
pconnect CenneetinT otal number of successful persistent Note that connect _success
connection attempts. holds the sum of successful
persistent and non-persistent
connection attempts. The number of
successful non-persistent connection
attempts is connect _success -
pconnect _success.
act i ve_c@oneettigihetal number of active persistent and
non-persistent connections.
act i ve_p€oanectenT otabnumber ohactive persistent The total number of active non-persistent
connections. connections is acti ve_connecti ons -
active_persistent _connections.
expl i ci t CohneetiofTotal number of explicitly closed Examples of code snippets that cause an

connections (ext/mysqli only).

explicit close :

$li nk
$li nk

new nysqgli(...); $link->close(.|.

new nysqli(...);

549

$l i nk- >connect(. ..

Statistics

Statistic

Scope

Description

Notes

i mplicif

Cohneetio

motal number of implicitly closed
connections (ext/mysqli only).

Examples of code snippets that cause an
implicit close :

e $link = new nysqli(...);
$l i nk->real _connect(...)

e unset ($link)

 Persistent connection: pooled
connection has been created with
real_connect and there may be
unknown options set - close implicitly
to avoid returning a connection with
unknown options

 Persistent connection: ping/
change_user fails and ext/mysqli
closes the connection

« end of script execution: close
connections that have not been closed
by the user

di sconne

>ConnéctirConnection failures indicated by the C

API call nysql real connect during
an attempt to establish a connection.

Itis called di sconnect cl ose because
the connection handle passed to the C
API call will be closed.

in_m ddi

Bradess o iAwmodnetticrehas been closed in

the middle of a command execution
(outstanding result sets not fetched, after
sending a query and before retrieving

an answer, while fetching data, while
transferring data with LOAD DATA).

Unless you use asynchronous queries
this should only happen if your script
stops unexpectedly and PHP shuts down
the connections for you.

init_corn

rGandecticgFTotabdumbenof init command

executions, for example,
mysql i _options(MYSQLI _I NI T_COW

The number of successful executions is
i nit_conmand_execut ed_count -
ANID t, comyand_f ai | ed_count.

init_corn

r@andecti

M etal nomber of failed init commands.

Table 7.6 Returned mysqlnd statistics: COM_* Command

Statistic |Scope |Description Notes

com _qui t ConnectiofTotal number of attempts to send a The statistics are incremented after
com.init_db, certain COM_* command from PHP to checking the line and immediately before
com queny, MySQL. sending the corresponding MySQL client
comfield_list, server protocol packet. If mysqind fails
com creat e_db, to send the packet over the wire the

com dr op_db, statistics will not be decremented. In case
com refresh, of a failure mysqglnd emits a PHP warning
com shut down, “Error while sending %s packet. PID=
com stati stics, %d.”

com prog¢ess_i nf o,

Usage examples:

550

http://www.php.net/mysql_real_connect

Statistics

Statistic |Scope |Description Notes
com connect, e Check if PHP sends certain commands
com progess_Kkill, to MySQL, for example, check if a
com debug, client sends COM_PROCESS_KI LL
com pi ng,
com ti me, » Calculate the average number of
com:del ayed insert, prepared statement executions
com change_user, by comparing COM_EXECUTE with
com bi nllog_dunp, COM_PREPARE
com t ablje_dunp,)
com connect _out | e Check if PHP has run any non- _
com regilster_sl ave, prepared SQL _statements by checking
com stm_prepar ¢, if COM_QUERY is zero
com stf_execut ¢, « Identify PHP scripts that run an
com stnt_send | ong_dat a, .
com st ¢l ose excessive number of SQL statements
com st reset ' by checking COM QUERY and
- - P COM _EXECUTE
comstnt_set_option, -
comstnt fetch,
com daenon
Miscellaneous
Table 7.7 Returned mysqlnd statistics: Miscellaneous
Statistic |Scope |Description Notes
expl i ci t Pedg@sscl ©ata)] number of close prepared A close is always considered explicit but
implicit_stnt clstatements. for a failed prepare.
mem_enal| PoocessunMemory management calls. Development only.
mem enal{ | oc_anmmpunt ,
mem ecalll oc_count,
mem ecalll oc_anmpunt ,
mem ereal | oc_count,
mem er eal | oc_ampount ,
mem ef ree_count
mem el lfoc_count,
mem mel lfoc_amount ,
mem cal lfoc_count,
mem cal lfoc_amount ,
mem r eal{l oc_count,
mem r eal{l oc_anmpunt
mem free_count
conmand | @ohhectididanmdoen lof network command buffer mysqlnd allocates an internal

extensions while sending commands
from PHP to MySQL.

command/network buffer of

mysql nd. net _cnd_buf fer_si ze
(php. i ni) bytes for every connection.
If a MySQL Client Server protocol
command, for example, COM QUERY
(normal query), does not fit into the
buffer, mysqlnd will grow the buffer

to what is needed for sending the
command. Whenever the buffer

gets extended for one connection

551

Notes

Statistic

Scope

Description

Notes

command_buffer too smal |l will be
incremented by one.

If mysqgind has to grow the

buffer beyond its initial size of

mysql nd. net _cnd_buffer_size
(php. i ni) bytes for almost every
connection, you should consider to
increase the default size to avoid re-
allocations.

The default buffer size is 2048 bytes

in PHP 5.3.0. In future versions

the default will be 4kB or larger.

The default can changed either

through the php. i ni setting

mysql nd. net _cnd_buf fer_si ze

or using

mysqli _options(MYSQLI _OPT_NET_C
int size).

It is recommended to set the buffer size
to no less than 4096 bytes because
mysqlnd also uses it when reading
certain communication packet from
MySQL. In PHP 5.3.0, mysqgind will not
grow the buffer if MySQL sends a packet
that is larger than the current size of the
buffer. As a consequence mysqgind is
unable to decode the packet and the
client application will get an error. There
are only two situations when the packet
can be larger than the 2048 bytes default
of mysqgl nd. net_cnd_buffer_size
in PHP 5.3.0: the packet transports

a very long error message or

the packet holds column meta

data from COM_LI| ST_FI ELD

(nysql _I'ist_fields)andthe meta
data comes from a string column with a
very long default value (>1900 bytes).
No bug report on this exists - it should
happen rarely.

As of PHP 5.3.2 mysqlnd does not allow
setting buffers smaller than 4096 bytes.

MD_BUFFER

connecti

on_reusg

d

7.7 Notes

Copyright 1997-2019 the PHP Documentation Group.

This section provides a collection of miscellaneous notes on MySQL Native Driver usage.

552

Memory management

» Using nysgl nd means using PHP streams for underlying connectivity. For nysql nd, the PHP streams
documentation (http://www.php.net/manual/en/book.stream) should be consulted on such details as
timeout settings, not the documentation for the MySQL Client Library.

7.8 Memory management

Copyright 1997-2019 the PHP Documentation Group.
Introduction

The MySQL Native Driver manages memory different than the MySQL Client Library. The libraries differ in
the way memory is allocated and released, how memory is allocated in chunks while reading results from
MySQL, which debug and development options exist, and how results read from MySQL are linked to PHP
user variables.

The following notes are intended as an introduction and summary to users interested at understanding the
MySQL Native Driver at the C code level.

Memory management functions used

All memory allocation and deallocation is done using the PHP memory management functions. Therefore,
the memory consumption of mysqgind can be tracked using PHP API calls, such as nenory_get usage.
Because memory is allocated and released using the PHP memory management, the changes may not
immediately become visible at the operating system level. The PHP memory management acts as a proxy
which may delay releasing memory towards the system. Due to this, comparing the memory usage of

the MySQL Native Driver and the MySQL Client Library is difficult. The MySQL Client Library is using the
operating system memory management calls directly, hence the effects can be observed immediately at
the operating system level.

Any memory limit enforced by PHP also affects the MySQL Native Driver. This may cause out of memory
errors when fetching large result sets that exceed the size of the remaining memory made available by
PHP. Because the MySQL Client Library is not using PHP memory management functions, it does not
comply to any PHP memory limit set. If using the MySQL Client Library, depending on the deployment
model, the memory footprint of the PHP process may grow beyond the PHP memory limit. But also PHP
scripts may be able to process larger result sets as parts of the memory allocated to hold the result sets
are beyond the control of the PHP engine.

PHP memory management functions are invoked by the MySQL Native Driver through a lightweight
wrapper. Among others, the wrapper makes debugging easier.

Handling of result sets

The various MySQL Server and the various client APIs differentiate between buffered and unbuffered
result sets. Unbuffered result sets are transferred row-by-row from MySQL to the client as the client
iterates over the results. Buffered results are fetched in their entirety by the client library before passing
them on to the client.

The MySQL Native Driver is using PHP Streams for the network communication with the MySQL Server.
Results sent by MySQL are fetched from the PHP Streams network buffers into the result buffer of
mysqlnd. The result buffer is made of zvals. In a second step the results are made available to the PHP
script. This final transfer from the result buffer into PHP variables impacts the memory consumption and is
mostly noticible when using buffered result sets.

By default the MySQL Native Driver tries to avoid holding buffered results twice in memory. Results are
kept only once in the internal result buffers and their zvals. When results are fetched into PHP variables

553

http://www.php.net/manual/en/book.stream
http://www.php.net/memory_get_usage

MySQL Native Driver Plugin API

by the PHP script, the variables will reference the internal result buffers. Database query results are not
copied and kept in memory only once. Should the user modify the contents of a variable holding the
database results a copy-on-write must be performed to avoid changing the referenced internal result buffer.
The contents of the buffer must not be modified because the user may decide to read the result set a
second time. The copy-on-write mechanism is implemented using an additional reference management

list and the use of standard zval reference counters. Copy-on-write must also be done if the user reads a
result set into PHP variables and frees a result set before the variables are unset.

Generally speaking, this pattern works well for scripts that read a result set once and do not modify
variables holding results. Its major drawback is the memory overhead caused by the additional reference
management which comes primarily from the fact that user variables holding results cannot be entirely
released until the mysqlnd reference management stops referencing them. The MySQL Native driver
removes the reference to the user variables when the result set is freed or a copy-on-write is performed.
An observer will see the total memory consumption grow until the result set is released. Use the statistics
to check whether a script does release result sets explicitly or the driver is does implicit releases and thus
memory is used for a time longer than necessary. Statistics also help to see how many copy-on-write
operations happened.

A PHP script reading many small rows of a buffered result set using a code snippet equal or equivalent
towhile ($row = $res->fetch_assoc()) { ... } may optimize memory consumption by
requesting copies instead of references. Albeit requesting copies means keeping results twice in memory,
it allows PHP to free the copy contained in $r ow as the result set is being iterated and prior to releasing
the result set itself. On a loaded server optimizing peak memory usage may help improving the overall
system performance although for an individual script the copy approach may be slower due to additional
allocations and memory copy operations.

The copy mode can be enforced by setting mysqgind.fetch_data_copy=1.
Monitoring and debugging

There are multiple ways of tracking the memory usage of the MySQL Native Driver. If the goal is to get
a quick high level overview or to verify the memory efficiency of PHP scripts, then check the statistics
collected by the library. The statistics allow you, for example, to catch SQL statements which generate
more results than are processed by a PHP script.

The debug trace log can be configured to record memory management calls. This helps to see when
memory is allocated or free'd. However, the size of the requested memory chunks may not be listed.

Some, recent versions of the MySQL Native Driver feature the emulation of random out of memory
situations. This feature is meant to be used by the C developers of the library or mysgind plugin authors
only. Please, search the source code for corresponding PHP configuration settings and further details. The
feature is considered private and may be modified at any time without prior notice.

7.9 MySQL Native Driver Plugin API

Copyright 1997-2019 the PHP Documentation Group.

The MySQL Native Driver Plugin APl is a feature of MySQL Native Driver, or nysql nd. Mysql nd plugins
operate in the layer between PHP applications and the MySQL server. This is comparable to MySQL
Proxy. MySQL Proxy operates on a layer between any MySQL client application, for example, a PHP
application and, the MySQL server. Mysql nd plugins can undertake typical MySQL Proxy tasks such as
load balancing, monitoring and performance optimizations. Due to the different architecture and location,
nysgl nd plugins do not have some of MySQL Proxy's disadvantages. For example, with plugins, there is
no single point of failure, no dedicated proxy server to deploy, and no new programming language to learn
(Lua).

554

MySQL Native Driver Plugin API

A nysql nd plugin can be thought of as an extension to mysql nd. Plugins can intercept the majority of
nysqgl nd functions. The nmysql nd functions are called by the PHP MySQL extensions such as ext /

nysql , ext/ mysql i, and PDO_MYSQL. As a result, it is possible for a nysqgl nd plugin to intercept all calls
made to these extensions from the client application.

Internal mysql nd function calls can also be intercepted, or replaced. There are no restrictions on
manipulating mysql nd internal function tables. It is possible to set things up so that when certain nysqgl nd
functions are called by the extensions that use nysql nd, the call is directed to the appropriate function

in the mysql nd plugin. The ability to manipulate mysql nd internal function tables in this way allows
maximum flexibility for plugins.

Mysqgl nd plugins are in fact PHP Extensions, written in C, that use the mysql nd plugin API (which is built
into MySQL Native Driver, nysqgl nd). Plugins can be made 100% transparent to PHP applications. No
application changes are needed because plugins operate on a different layer. The nysql nd plugin can be
thought of as operating in a layer below nmysql nd.

The following list represents some possible applications of mysql nd plugins.
» Load Balancing

* Read/Write Splitting. An example of this is the PECL/mysqgind_ms (Master Slave) extension. This
extension splits read/write queries for a replication setup.

 Failover

* Round-Robin, least loaded
* Monitoring

* Query Logging

e Query Analysis

* Query Auditing. An example of this is the PECL/mysqInd_sip (SQL Injection Protection) extension.
This extension inspects queries and executes only those that are allowed according to a ruleset.

» Performance
« Caching. An example of this is the PECL/mysqInd_gc (Query Cache) extension.
 Throttling

¢ Sharding. An example of this is the PECL/mysqlnd_mc (Multi Connect) extension. This extension will
attempt to split a SELECT statement into n-parts, using SELECT ... LIMIT part_1, SELECT LIMIT
part_n. It sends the queries to distinct MySQL servers and merges the result at the client.

MySQL Native Driver Plugins Available

There are a number of mysqlnd plugins already available. These include:
* PECL/mysqlnd_mc - Multi Connect plugin.

* PECL/mysgIind_ms - Master Slave plugin.

» PECL/mysqind_gc - Query Cache plugin.

* PECL/mysqgInd_pscache - Prepared Statement Handle Cache plugin.

» PECL/mysqInd_sip - SQL Injection Protection plugin.

555

A comparison of mysqlind plugins with MySQL Proxy

e PECL/mysqgind_uh - User Handler plugin.

7.9.1 A comparison of mysqlnd plugins with MySQL Proxy

Copyright 1997-2019 the PHP Documentation Group.

Mysqgl nd plugins and MySQL Proxy are different technologies using different approaches. Both are
valid tools for solving a variety of common tasks such as load balancing, monitoring, and performance
enhancements. An important difference is that MySQL Proxy works with all MySQL clients, whereas
nysqgl nd plugins are specific to PHP applications.

As a PHP Extension, a mysql nd plugin gets installed on the PHP application server, along with the rest
of PHP. MySQL Proxy can either be run on the PHP application server or can be installed on a dedicated
machine to handle multiple PHP application servers.

Deploying MySQL Proxy on the application server has two advantages:
1. No single point of failure
2. Easy to scale out (horizontal scale out, scale by client)

MySQL Proxy (and nysql nd plugins) can solve problems easily which otherwise would have required
changes to existing applications.

However, MySQL Proxy does have some disadvantages:
* MySQL Proxy is a new component and technology to master and deploy.
» MySQL Proxy requires knowledge of the Lua scripting language.

MySQL Proxy can be customized with C and Lua programming. Lua is the preferred scripting language of
MySQL Proxy. For most PHP experts Lua is a new language to learn. A nysql nd plugin can be written in
C. Itis also possible to write plugins in PHP using PECL/mysqlnd_uh.

MySQL Proxy runs as a daemon - a background process. MySQL Proxy can recall earlier decisions, as all
state can be retained. However, a nysql nd plugin is bound to the request-based lifecycle of PHP. MySQL
Proxy can also share one-time computed results among multiple application servers. A nmysql nd plugin
would need to store data in a persistent medium to be able to do this. Another daemon would need to be
used for this purpose, such as Memcache. This gives MySQL Proxy an advantage in this case.

MySQL Proxy works on top of the wire protocol. With MySQL Proxy you have to parse and reverse
engineer the MySQL Client Server Protocol. Actions are limited to those that can be achieved by
manipulating the communication protocol. If the wire protocol changes (which happens very rarely) MySQL
Proxy scripts would need to be changed as well.

Mysqgl nd plugins work on top of the C API, which mirrors the | i brrysql cl i ent client and Connector/C
APIs. This C APl is basically a wrapper around the MySQL Client Server protocol, or wire protocol, as it is
sometimes called. You can intercept all C API calls. PHP makes use of the C API, therefore you can hook
all PHP calls, without the need to program at the level of the wire protocol.

Mysqgl nd implements the wire protocol. Plugins can therefore parse, reverse engineer, manipulate and
even replace the communication protocol. However, this is usually not required.

As plugins allow you to create implementations that use two levels (C API and wire protocol), they have
greater flexibility than MySQL Proxy. If a nysqgl nd plugin is implemented using the C API, any subsequent
changes to the wire protocol do not require changes to the plugin itself.

556

http://pecl.php.net/package/mysqlnd_uh

Obtaining the mysqind plugin API

7.9.2 Obtaining the mysqlnd plugin API
Copyright 1997-2019 the PHP Documentation Group.

The nmysql nd plugin API is simply part of the MySQL Native Driver PHP extension, ext / nmysql nd.
Development started on the nysql nd plugin APl in December 20009. It is developed as part of the
PHP source repository, and as such is available to the public either via Git, or through source snapshot
downloads.

The following table shows PHP versions and the corresponding nmysql nd version contained within.

Table 7.8 The bundled mysqlnd version per PHP release

PHP Version MySQL Native Driver version
5.3.0 5.0.5
5.3.1 5.0.5
5.3.2 5.0.7
5.3.3 5.0.7
5.3.4 5.0.7

Plugin developers can determine the nmysql nd version through accessing MYSQLND VERSI ON, which is a
string of the format “mysqlnd 5.0.7-dev - 091210 - $Revision: 300535”, or through MYSQLND_VERSI ON_| D,
which is an integer such as 50007. Developers can calculate the version number as follows:

Table 7.9 MYSQLND_VERSION_ID calculation table

Version (part) Example
Major*10000 5*10000 = 50000
Minor*100 0*100=0

Patch =7
MYSQLND_VERSION_ID 50007

During development, developers should refer to the nysql nd version number for compatibility and version
tests, as several iterations of mysql nd could occur during the lifetime of a PHP development branch with a
single PHP version number.

7.9.3 MySQL Native Driver Plugin Architecture
Copyright 1997-2019 the PHP Documentation Group.
This section provides an overview of the nysql nd plugin architecture.
MySQL Native Driver Overview

Before developing nysql nd plugins, it is useful to know a little of how nysql nd itself is organized.
Mysqgl nd consists of the following modules:

Table 7.10 The mysqlnd organization chart, per module

Modules Statistics mysqlnd_statistics.c
Connection mysqlnd.c
Resultset mysqlnd_result.c

557

MySQL Native Driver Plugin Architecture

Modules Statistics mysqlnd_statistics.c
Resultset Metadata mysqind_result_meta.c
Statement mysqlnd_ps.c

Network mysqlnd_net.c

Wire protocol mysqlnd_wireprotocol.c

C Object Oriented Paradigm
At the code level, mysql nd uses a C pattern for implementing object orientation.

In C you use a struct to represent an object. Members of the struct represent object properties. Struct
members pointing to functions represent methods.

Unlike with other languages such as C++ or Java, there are no fixed rules on inheritance in the C object
oriented paradigm. However, there are some conventions that need to be followed that will be discussed
later.

The PHP Life Cycle

When considering the PHP life cycle there are two basic cycles:
* PHP engine startup and shutdown cycle

* Request cycle

When the PHP engine starts up it will call the module initialization (MINIT) function of each registered
extension. This allows each module to setup variables and allocate resources that will exist for the
lifetime of the PHP engine process. When the PHP engine shuts down it will call the module shutdown
(MSHUTDOWN) function of each extension.

During the lifetime of the PHP engine it will receive a number of requests. Each request constitutes another
life cycle. On each request the PHP engine will call the request initialization function of each extension.
The extension can perform any variable setup and resource allocation required for request processing. As
the request cycle ends the engine calls the request shutdown (RSHUTDOWN) function of each extension
so the extension can perform any cleanup required.

How a plugin works

A nysql nd plugin works by intercepting calls made to mysql nd by extensions that use nysql nd. This
is achieved by obtaining the mysql nd function table, backing it up, and replacing it by a custom function
table, which calls the functions of the plugin as required.

The following code shows how the nmysql nd function table is replaced:

/* a place to store original function table */
struct st_nysqgl nd_conn_net hods or g_net hods;

voi d mnit_register_hooks(TSRM.S_D) {
/* active function table */
struct st_nysqgl nd_conn_net hods * current_net hods
= nysql nd_conn_get _met hods() ;

/* backup original function table */
mencpy(&or g_net hods, current _net hods,
si zeof (struct st_nmnysql nd_conn_net hods) ;

558

MySQL Native Driver Plugin Architecture

/* install new nmethods */
current _net hods->query = MYSQLND_METHOD(my_conn_cl ass, query);

}

Connection function table manipulations must be done during Module Initialization (MINIT). The function
table is a global shared resource. In an multi-threaded environment, with a TSRM build, the manipulation of
a global shared resource during the request processing will almost certainly result in conflicts.

Note

Do not use any fixed-size logic when manipulating the nysql nd function table: new
methods may be added at the end of the function table. The function table may
change at any time in the future.

Calling parent methods

If the original function table entries are backed up, it is still possible to call the original function table entries
- the parent methods.

In some cases, such as for Connecti on::stnt_init(),itis vital to call the parent method prior to any
other activity in the derived method.

MYSQLND_METHOD(ny_conn_cl ass, query) (MYSQLND *conn,
const char *query, unsigned int query_len TSRS DC) {

php_printf("ny_conn_cl ass:: query(query = %)\n", query);

query = "SELECT 'query rewitten' FROM DUAL";
query_len = strlen(query);

return org_net hods. query(conn, query, query_len); /* return with call to parent */

Extending properties

A nysgl nd object is represented by a C struct. It is not possible to add a member to a C struct at run time.
Users of mysql nd objects cannot simply add properties to the objects.

Arbitrary data (properties) can be added to a mysql nd objects using an appropriate function of the
nysgl nd_pl ugi n_get _pl ugi n_<obj ect >_dat a() family. When allocating an object nysqgl nd
reserves space at the end of the object to hold a voi d * pointer to arbitrary data. mysql nd reserves
space for one voi d * pointer per plugin.

The following table shows how to calculate the position of the pointer for a specific plugin:

Table 7.11 Pointer calculations for mysqglnd

Memory address Contents

0 Beginning of the mysqgind object C struct
n End of the mysqlnd object C struct

n + (m x sizeof(void*)) void* to object data of the m-th plugin

If you plan to subclass any of the nysql nd object constructors, which is allowed, you must keep this in
mind!

559

MySQL Native Driver Plugin Architecture

The following code shows extending properties:

/* any data we want to associate */

typedef struct my_conn_properties {
unsi gned | ong query_counter;

} MY_CONN_PROPERTI ES;

/[* plugin id */
unsi gned int mny_plugin_id;

voi d mnit_register_hooks(TSRM.S_D) {
/* obtain unique plugin ID */
my_plugin_id = nmysql nd_pl ugi n_register();
/* snip - see Extending Connection: mnethods */

}

stati c My_CONN_PROPERTI ES** get_conn_properties(const MYSQLND *conn TSRMLS DC) ({
MY_CONN_PROPERTI ES** pr ops;
props = (MY_CONN_PROPERTI ES**) nysql nd_pl ugi n_get _pl ugi n_connect i on_dat a(
conn, my_plugin_id);
if (tprops [| !(*props)) {
*props = mmd_pecal | oc(1, sizeof (MyY_CONN_PROPERTI ES), conn->persistent);
(*props) - >query_counter = 0;

return props;
}

The plugin developer is responsible for the management of plugin data memory.

Use of the nysqgl nd memory allocator is recommended for plugin data. These functions are named using
the convention: d_*1 oc() . The mysqgl nd allocator has some useful features, such as the ability to use
a debug allocator in a non-debug build.

Table 7.12 When and how to subclass

When to subclass? Each instance has its |How to subclass?
own private function
table?
Connection (MYSQLND) |MINIT No mysqgind_conn_get_methads()
Resultset MINIT or later Yes mysqlnd_result_get_methpds()
(MYSQLND_RES) or object method function
table manipulation
Resultset Meta MINIT No mysqlnd_result_metadata| get_methoc
(MYSQLND_RES_METADATA)
Statement MINIT No mysqlnd_stmt_get methods()
(MYSQLND_STMT)
Network MINIT or later Yes mysqlnd_net_get_methods()
(MYSQLND_NET) or object method function
table manipulation
Wire protocol MINIT or later Yes mysqlnd_protocol_get_methods()
(MYSQLND_PROTOCOL or object method function

table manipulation

You must not manipulate function tables at any time later than MINIT if it is not allowed according to the
above table.

560

MySQL Native Driver Plugin Architecture

Some classes contain a pointer to the method function table. All instances of such a class will share the
same function table. To avoid chaos, in particular in threaded environments, such function tables must only
be manipulated during MINIT.

Other classes use copies of a globally shared function table. The class function table copy is created
together with the object. Each object uses its own function table. This gives you two options: you can
manipulate the default function table of an object at MINIT, and you can additionally refine methods of an
object without impacting other instances of the same class.

The advantage of the shared function table approach is performance. There is no need to copy a function
table for each and every object.

Table 7.13 Constructor status

Type

Allocation,
construction, reset

Can be modified?

Caller

Connection (MYSQLND)

mysqind_init()

No

mysqind_connect()

Resultset(MYSQLND_RE

SAllocation:
« Connection::result_init()

Reset and re-initialized
during:

* Result::use_result()

e Result::store_result

Yes, but call parent!

» Connection::list_fields()
« Statement::get_result()

e Statement::prepare()
(Metadata only)

* Statement::resultMetaD

Resultset Meta
(MYSQLND_RES METAL

Connection::result_meta_i
DATA)

Nis, but call parent!

Result::read_result_metad

(MYSQLND_PROTOCOL

Statement Connection::stmt_init() Yes, but call parent! Connection::stmt_init()
(MYSQLND_STMT)

Network mysqlnd_net_init() No Connection::init()
(MYSQLND_NET)

Wire protocol mysqlnd_protocol_init() |No Connection::init()

ata()

ata()

It is strongly recommended that you do not entirely replace a constructor. The constructors perform
memory allocations. The memory allocations are vital for the nysql nd plugin API and the object logic of
nysqgl nd. If you do not care about warnings and insist on hooking the constructors, you should at least call
the parent constructor before doing anything in your constructor.

Regardless of all warnings, it can be useful to subclass constructors. Constructors are the perfect place for
modifying the function tables of objects with non-shared object tables, such as Resultset, Network, Wire

Protocol.
Table 7.14 Destruction status
Type Derived method must call Destructor
parent?
Connection yes, after method execution free_contents(), end_psession()
Resultset yes, after method execution free_result()

Resultset Meta

yes, after method execution

free()

561

The mysqind plugin API

Type Derived method must call Destructor
parent?
Statement yes, after method execution dtor(), free_stmt_content()
Network yes, after method execution free()
Wire protocol yes, after method execution free()

The destructors are the appropriate place to free properties,
nysql nd_pl ugi n_get _pl ugi n_<obj ect >_dat a() .

The listed destructors may not be equivalent to the actual mysqgl nd method freeing the object itself.
However, they are the best possible place for you to hook in and free your plugin data. As with constructors
you may replace the methods entirely but this is not recommended. If multiple methods are listed in the
above table you will need to hook all of the listed methods and free your plugin data in whichever method is
called first by mysql nd.

The recommended method for plugins is to simply hook the methods, free your memory and call the parent
implementation immediately following this.

Caution

Due to a bug in PHP versions 5.3.0 to 5.3.3, plugins do not associate plugin data
with a persistent connection. This is because ext / mysql and ext/ mysql i do not
trigger all the necessary nysql nd end_psessi on() method calls and the plugin
may therefore leak memory. This has been fixed in PHP 5.3.4.

7.9.4 The mysqlnd plugin API

Copyright 1997-2019 the PHP Documentation Group.
The following is a list of functions provided in the nysql nd plugin API:
e mysqlnd_plugin_register()

* mysqlnd_plugin_count()

» mysqlnd_plugin_get_plugin_connection_data()

e mysqlnd_plugin_get plugin_result_data()

» mysqlnd_plugin_get plugin_stmt_data()

» mysqlnd_plugin_get_plugin_net_data()

e mysqlnd_plugin_get plugin_protocol_data()

» mysqlnd_conn_get_methods()

* mysqlnd_result_get _methods()

e mysqlnd_result_meta_get methods()

» mysqglnd_stmt_get _methods()

* mysqlnd_net_get_methods()

e mysqlnd_protocol_get _methods()

562

The mysqind plugin API

There is no formal definition of what a plugin is and how a plugin mechanism works.

Components often found in plugins mechanisms are:

* A plugin manager

e A plugin API

» Application services (or modules)

» Application service APIs (or module APIS)

The nysqgl nd plugin concept employs these features, and additionally enjoys an open architecture.
No Restrictions

A plugin has full access to the inner workings of nysql nd. There are no security limits or restrictions.
Everything can be overwritten to implement friendly or hostile algorithms. It is recommended you only
deploy plugins from a trusted source.

As discussed previously, plugins can use pointers freely. These pointers are not restricted in any way, and
can point into another plugin's data. Simple offset arithmetic can be used to read another plugin's data.

It is recommended that you write cooperative plugins, and that you always call the parent method. The
plugins should always cooperate with nysql nd itself.

Table 7.15 Issues: an example of chaining and cooperation

Extension

mysqlnd.query() pointer

call stack if calling parent

ext/mysqind

mysqlnd.query()

mysqlnd.query

ext/mysqind_cache

mysqlnd_cache.query()

1. mysqlnd_cache.query()

mysqlnd.query

ext/mysqgind_monitor mysqind_monitor.query() 1. mysqglnd_monitor.query()

2. mysqglnd_cache.query()

3. mysqglnd.query

In this scenario, a cache (ext / mysql nd_cache) and a monitor (ext / nysql nd_noni t or) plugin are
loaded. Both subclass Connect i on: : query() . Plugin registration happens at M NI T using the logic
shown previously. PHP calls extensions in alphabetical order by default. Plugins are not aware of each
other and do not set extension dependencies.

By default the plugins call the parent implementation of the query method in their derived version of the
method.

PHP Extension Recap

This is a recap of what happens when using an example plugin, ext / mysql nd_pl ugi n, which exposes
the mysql nd C plugin API to PHP:

» Any PHP MySQL application tries to establish a connection to 192.168.2.29

e The PHP application will either use ext / nysql , ext/ mysql i or PDO_MYSQL. All three PHP MySQL
extensions use nysql nd to establish the connection to 192.168.2.29.

563

Getting started building a mysqind plugin

* Mysqgl nd calls its connect method, which has been subclassed by ext / mysql nd_pl ugi n.

» ext/nysql nd_pl ugi n calls the userspace hook pr oxy: : connect () registered by the user.

» The userspace hook changes the connection host IP from 192.168.2.29 to 127.0.0.1 and returns the

connection established by par ent : : connect ().

e ext/nmysql nd_pl ugi n performs the equivalent of par ent : : connect (127. 0. 0. 1) by calling the

original nysql nd method for establishing a connection.

» ext/ nysql nd establishes a connection and returns to ext / mysql nd_pl ugi n. ext/

nysql nd_pl ugi n returns as well.

» Whatever PHP MySQL extension had been used by the application, it receives a connection to
127.0.0.1. The PHP MySQL extension itself returns to the PHP application. The circle is closed.

7.9.5 Getting started building a mysqlnd plugin

Copyright 1997-2019 the PHP Documentation Group.

It is important to remember that a nysql nd plugin is itself a PHP extension.

The following code shows the basic structure of the MINIT function that will be used in the typical mysql nd

plugin:

/* my_php_nysql nd_pl ugin.c */

static PHP_M NI T_FUNCTI ON(mysql nd_pl ugi n) {
/* globals, ini entries, resources, classes */

/* register nysqglnd plugin */
nmysql nd_pl ugi n_id = nmysql nd_pl ugi n_regi ster();
conn_m = nysql nd_get _conn_nmet hods() ;
nencpy(org_conn_m conn_m

si zeof (struct st_nysql nd_conn_net hods)) ;

conn_m >query = MYSQLND_METHOD(nmysql nd_pl ugi n_conn, query);

conn_m >connect = MYSQLND_METHOD(nysqgl nd_pl ugi n_conn, connect);

/* my_nysqgl nd_plugin.c */

enum func_status MYSQLND METHOD(mysql nd_pl ugi n_conn, query)(/* ...

e oo)
}

enum func_status MYSQLND_METHOX mysql nd_pl ugi n_conn, connect) (/* ...

fe oo =)
}

Task analysis: from C to userspace

cl ass proxy extends mysqgl nd_pl ugi n_connection {
public function connect($host, ...) { .. }

1) A

1) A

564

Getting started building a mysqind plugin

nmysql nd_pl ugi n_set _conn_proxy(nhew proxy());

Process:
1. PHP: user registers plugin callback
2. PHP: user calls any PHP MySQL API to connect to MySQL
3. C: ext/*mysqgl* calls mysqlnd method
4. C: mysqlnd ends up in ext/mysqglnd_plugin
5. C: ext/mysqgind_plugin
a. Calls userspace callback
b. Or original mysql nd method, if userspace callback not set
You need to carry out the following:
1. Write a class "mysqlnd_plugin_connection" in C
2. Accept and register proxy object through "mysqlnd_plugin_set_conn_proxy()"
3. Call userspace proxy methods from C (optimization - zend_interfaces.h)

Userspace object methods can either be called using cal | _user _functi on() oryou can operate at a
level closer to the Zend Engine and use zend_cal | _net hod() .

Optimization: calling methods from C using zend_call_method

The following code snippet shows the prototype for the zend_cal | _net hod function, taken from
zend_interfaces. h.

ZEND_AP| zval * zend_cal | _net hod(

zval **object_pp, zend_class_entry *obj_ce
zend_function **fn_proxy, char *functi on_nane

int function_nane_|len, zval **retval ptr_ptr

int paramcount, zval* argl, zval* arg2 TSRM.S DC
DE

Zend API supports only two arguments. You may need more, for example:

enum func_status (*func_nysql nd_conn__connect) (

MYSQLND *conn, const char *host,

const char * user, const char * passwd,

unsi gned i nt passwd_| en, const char * db

unsigned int db_|len, unsigned int port,

const char * socket, unsigned int nysql _flags TSRM.S DC

To get around this problem you will need to make a copy of zend _cal | _net hod() and add a facility for
additional parameters. You can do this by creating a set of M¥_ZEND CALL_ NMETHOD WRAPPER macros.

565

Getting started building a mysqind plugin

Calling PHP userspace

This code snippet shows the optimized method for calling a userspace function from C:

/* nmy_nysqgl nd_plugin.c */

MYSQLND_METHOD(my_conn_cl ass, connect) (
MYSQLND *conn, const char *host /* ... */ TSRML.S DC) {
enum func_status ret = FAIL;
zval * gl obal _user_conn_proxy = fetch_userspace_proxy();
if (global _user_conn_proxy) {
/* call userspace proxy */
ret = MY_ZEND_ CALL_METHOD WRAPPER(gl obal _user _conn_proxy, host, /*...*/);
} else {
/* or original nysqlnd method = do nothing, be transparent */
ret = org_nethods. connect (conn, host, user, passwd,
passwd_| en, db, db_len, port,
socket, nysqgl _flags TSRML.S_CC);
}

return ret;

Calling userspace: simple arguments

/* nmy_nysqgl nd_plugin.c */

MYSQLND_METHOD(my_conn_cl ass, connect) (

[* ... *[, const char *host, /* ...*/) {
[* ... %
if (global _user_conn_proxy) {

[* ... %

zval * zv_host ;
MAKE_STD ZVAL(zv_host);
ZVAL_STRI NG zv_host, host, 1);

MY_ZEND_CALL_METHOD WRAPPER(gl obal _user _conn_proxy, zv_retval, zv_host /*, ...*/);
zval _ptr_dtor(&zv_host);
[* .00 %/

}

[* .00 %/

Calling userspace: structs as arguments

/* my_nysqgl nd_plugin.c */

MYSQLND_METHOD(my_conn_cl ass, connect) (

MYSQLND *conn, /* ...*/) {

[* ... %

if (global _user_conn_proxy) {
[* ... %
zval * zv_conn;
ZEND_REQ STER_RESOURCE(zv_conn, (void *)conn, |e_nysqgl nd_pl ugi n_conn);
MY_ZEND_CALL_METHOD WRAPPER(gl obal _user _conn_proxy, zv_retval, zv_conn, zv_host /*,
zval _ptr_dtor(&zv_conn);
[* ... %

[|

I

566

Getting started building a mysqind plugin

The first argument of many nysql nd methods is a C "object". For example, the first argument of the
connect() method is a pointer to MYSQLND. The struct MYSQLND represents a nysql nd connection

object.

The mysqgl nd connection object pointer can be compared to a standard I/O file handle. Like a standard 1/O
file handle a mysqgl nd connection object shall be linked to the userspace using the PHP resource variable

type.

From C to userspace and back

cl ass proxy extends nysql nd_pl ugi n_connection {
public function connect($conn, $host, ...) {
/* "pre" hook */
printf("Connecting to host = "'%'\n", $host);
debug_print _backtrace();
return parent::connect($conn);

}

public function query($conn, $query) {
/* "post" hook */
$ret = parent::query($conn, $query);
printf("Query = "'9%'\n", $query);
return $ret;

}

nysql nd_pl ugi n_set _conn_proxy(new proxy());

PHP users must be able to call the parent implementation of an overwritten method.

As a result of subclassing it is possible to refine only selected methods and you can choose to have "pre”

or "post" hooks.

Buildin class: mysglnd_plugin_connection::connect()

/* my_nysqgl nd_pl ugi n_cl asses.c */

PHP_METHOD(" nysqgl nd_pl ugi n_connecti on", connect) {
[* ... sinplified ... */
zval * mysql nd_rsrc;
MYSQLND* conn;
char* host; int host_|en;
if (zend_parse_paranet er s(ZEND_NUM ARGS() TSRMLS CC, "rs",
&mysql nd_rsrc, &host, &host_l|en) == FAILURE) {
RETURN_NULL() ;
}
ZEND_FETCH RESOURCE(conn, MYSQ.ND* conn, &nysqlnd_rsrc, -1,
"Mysqgl nd Connection", |e_mysqgl nd_pl ugi n_conn);

i f (PASS == org_net hods. connect (conn, host, /* sinplified!
RETVAL_TRUE;
el se

RETVAL _FALSE;

*/

TSRMLS CC))

567

568

Chapter 8 Common Problems with MySQL and PHP

e Error: Maxi mum Execution Time Exceeded: Thisis a PHP limit; go into the php. i ni file and set
the maximum execution time up from 30 seconds to something higher, as needed. It is also not a bad
idea to double the RAM allowed per script to 16MB instead of 8MB.

e Fatal error: Call to unsupported or undefined function nysql_connect()
i n ...:This means that your PHP version isn't compiled with MySQL support. You can either compile
a dynamic MySQL module and load it into PHP or recompile PHP with built-in MySQL support. This
process is described in detail in the PHP manual.

e Error: Undefined reference to 'unconpress': This means that the client library is compiled
with support for a compressed client/server protocol. The fix is to add - | z last when linking with -
I mysqgl client.

569

570

	MySQL and PHP
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Introduction to the MySQL PHP API
	Chapter 2 Overview of the MySQL PHP drivers
	2.1 Introduction
	2.2 Terminology overview
	2.3 Choosing an API
	2.4 Choosing a library
	2.5 Concepts
	2.5.1 Buffered and Unbuffered queries
	2.5.2 Character sets

	Chapter 3 MySQL Improved Extension
	3.1 Overview
	3.2 Quick start guide
	3.2.1 Dual procedural and object-oriented interface
	3.2.2 Connections
	3.2.3 Executing statements
	3.2.4 Prepared Statements
	3.2.5 Stored Procedures
	3.2.6 Multiple Statements
	3.2.7 API support for transactions
	3.2.8 Metadata

	3.3 Installing/Configuring
	3.3.1 Requirements
	3.3.2 Installation
	3.3.2.1 Installation on Linux
	3.3.2.2 Installation on Windows Systems
	PHP 5.3.0 and newer
	PHP 5.0, 5.1, 5.2

	3.3.3 Runtime Configuration
	3.3.4 Resource Types

	3.4 The mysqli Extension and Persistent Connections
	3.5 Predefined Constants
	3.6 Notes
	3.7 The MySQLi Extension Function Summary
	3.8 Examples
	3.8.1 MySQLi extension basic examples

	3.9 The mysqli class
	3.9.1 mysqli::$affected_rows, mysqli_affected_rows
	3.9.2 mysqli::autocommit, mysqli_autocommit
	3.9.3 mysqli::begin_transaction, mysqli_begin_transaction
	3.9.4 mysqli::change_user, mysqli_change_user
	3.9.5 mysqli::character_set_name, mysqli_character_set_name
	3.9.6 mysqli::close, mysqli_close
	3.9.7 mysqli::commit, mysqli_commit
	3.9.8 mysqli::$connect_errno, mysqli_connect_errno
	3.9.9 mysqli::$connect_error, mysqli_connect_error
	3.9.10 mysqli::__construct, mysqli::connect, mysqli_connect
	3.9.11 mysqli::debug, mysqli_debug
	3.9.12 mysqli::dump_debug_info, mysqli_dump_debug_info
	3.9.13 mysqli::$errno, mysqli_errno
	3.9.14 mysqli::$error_list, mysqli_error_list
	3.9.15 mysqli::$error, mysqli_error
	3.9.16 mysqli::$field_count, mysqli_field_count
	3.9.17 mysqli::get_charset, mysqli_get_charset
	3.9.18 mysqli::$client_info, mysqli::get_client_info, mysqli_get_client_info
	3.9.19 mysqli::$client_version, mysqli_get_client_version
	3.9.20 mysqli::get_connection_stats, mysqli_get_connection_stats
	3.9.21 mysqli::$host_info, mysqli_get_host_info
	3.9.22 mysqli::$protocol_version, mysqli_get_proto_info
	3.9.23 mysqli::$server_info, mysqli::get_server_info, mysqli_get_server_info
	3.9.24 mysqli::$server_version, mysqli_get_server_version
	3.9.25 mysqli::get_warnings, mysqli_get_warnings
	3.9.26 mysqli::$info, mysqli_info
	3.9.27 mysqli::init, mysqli_init
	3.9.28 mysqli::$insert_id, mysqli_insert_id
	3.9.29 mysqli::kill, mysqli_kill
	3.9.30 mysqli::more_results, mysqli_more_results
	3.9.31 mysqli::multi_query, mysqli_multi_query
	3.9.32 mysqli::next_result, mysqli_next_result
	3.9.33 mysqli::options, mysqli_options
	3.9.34 mysqli::ping, mysqli_ping
	3.9.35 mysqli::poll, mysqli_poll
	3.9.36 mysqli::prepare, mysqli_prepare
	3.9.37 mysqli::query, mysqli_query
	3.9.38 mysqli::real_connect, mysqli_real_connect
	3.9.39 mysqli::real_escape_string, mysqli::escape_string, mysqli_real_escape_string
	3.9.40 mysqli::real_query, mysqli_real_query
	3.9.41 mysqli::reap_async_query, mysqli_reap_async_query
	3.9.42 mysqli::refresh, mysqli_refresh
	3.9.43 mysqli::release_savepoint, mysqli_release_savepoint
	3.9.44 mysqli::rollback, mysqli_rollback
	3.9.45 mysqli::rpl_query_type, mysqli_rpl_query_type
	3.9.46 mysqli::savepoint, mysqli_savepoint
	3.9.47 mysqli::select_db, mysqli_select_db
	3.9.48 mysqli::send_query, mysqli_send_query
	3.9.49 mysqli::set_charset, mysqli_set_charset
	3.9.50 mysqli::set_local_infile_default, mysqli_set_local_infile_default
	3.9.51 mysqli::set_local_infile_handler, mysqli_set_local_infile_handler
	3.9.52 mysqli::$sqlstate, mysqli_sqlstate
	3.9.53 mysqli::ssl_set, mysqli_ssl_set
	3.9.54 mysqli::stat, mysqli_stat
	3.9.55 mysqli::stmt_init, mysqli_stmt_init
	3.9.56 mysqli::store_result, mysqli_store_result
	3.9.57 mysqli::$thread_id, mysqli_thread_id
	3.9.58 mysqli::thread_safe, mysqli_thread_safe
	3.9.59 mysqli::use_result, mysqli_use_result
	3.9.60 mysqli::$warning_count, mysqli_warning_count

	3.10 The mysqli_stmt class
	3.10.1 mysqli_stmt::$affected_rows, mysqli_stmt_affected_rows
	3.10.2 mysqli_stmt::attr_get, mysqli_stmt_attr_get
	3.10.3 mysqli_stmt::attr_set, mysqli_stmt_attr_set
	3.10.4 mysqli_stmt::bind_param, mysqli_stmt_bind_param
	3.10.5 mysqli_stmt::bind_result, mysqli_stmt_bind_result
	3.10.6 mysqli_stmt::close, mysqli_stmt_close
	3.10.7 mysqli_stmt::__construct
	3.10.8 mysqli_stmt::data_seek, mysqli_stmt_data_seek
	3.10.9 mysqli_stmt::$errno, mysqli_stmt_errno
	3.10.10 mysqli_stmt::$error_list, mysqli_stmt_error_list
	3.10.11 mysqli_stmt::$error, mysqli_stmt_error
	3.10.12 mysqli_stmt::execute, mysqli_stmt_execute
	3.10.13 mysqli_stmt::fetch, mysqli_stmt_fetch
	3.10.14 mysqli_stmt::$field_count, mysqli_stmt_field_count
	3.10.15 mysqli_stmt::free_result, mysqli_stmt_free_result
	3.10.16 mysqli_stmt::get_result, mysqli_stmt_get_result
	3.10.17 mysqli_stmt::get_warnings, mysqli_stmt_get_warnings
	3.10.18 mysqli_stmt::$insert_id, mysqli_stmt_insert_id
	3.10.19 mysqli_stmt::more_results, mysqli_stmt_more_results
	3.10.20 mysqli_stmt::next_result, mysqli_stmt_next_result
	3.10.21 mysqli_stmt::$num_rows, mysqli_stmt::num_rows, mysqli_stmt_num_rows
	3.10.22 mysqli_stmt::$param_count, mysqli_stmt_param_count
	3.10.23 mysqli_stmt::prepare, mysqli_stmt_prepare
	3.10.24 mysqli_stmt::reset, mysqli_stmt_reset
	3.10.25 mysqli_stmt::result_metadata, mysqli_stmt_result_metadata
	3.10.26 mysqli_stmt::send_long_data, mysqli_stmt_send_long_data
	3.10.27 mysqli_stmt::$sqlstate, mysqli_stmt_sqlstate
	3.10.28 mysqli_stmt::store_result, mysqli_stmt_store_result

	3.11 The mysqli_result class
	3.11.1 mysqli_result::$current_field, mysqli_field_tell
	3.11.2 mysqli_result::data_seek, mysqli_data_seek
	3.11.3 mysqli_result::fetch_all, mysqli_fetch_all
	3.11.4 mysqli_result::fetch_array, mysqli_fetch_array
	3.11.5 mysqli_result::fetch_assoc, mysqli_fetch_assoc
	3.11.6 mysqli_result::fetch_field_direct, mysqli_fetch_field_direct
	3.11.7 mysqli_result::fetch_field, mysqli_fetch_field
	3.11.8 mysqli_result::fetch_fields, mysqli_fetch_fields
	3.11.9 mysqli_result::fetch_object, mysqli_fetch_object
	3.11.10 mysqli_result::fetch_row, mysqli_fetch_row
	3.11.11 mysqli_result::$field_count, mysqli_num_fields
	3.11.12 mysqli_result::field_seek, mysqli_field_seek
	3.11.13 mysqli_result::free, mysqli_result::close, mysqli_result::free_result, mysqli_free_result
	3.11.14 mysqli_result::$lengths, mysqli_fetch_lengths
	3.11.15 mysqli_result::$num_rows, mysqli_num_rows

	3.12 The mysqli_driver class
	3.12.1 mysqli_driver::embedded_server_end, mysqli_embedded_server_end
	3.12.2 mysqli_driver::embedded_server_start, mysqli_embedded_server_start
	3.12.3 mysqli_driver::$report_mode, mysqli_report

	3.13 The mysqli_warning class
	3.13.1 mysqli_warning::__construct
	3.13.2 mysqli_warning::next

	3.14 The mysqli_sql_exception class
	3.15 Aliases and deprecated Mysqli Functions
	3.15.1 mysqli_bind_param
	3.15.2 mysqli_bind_result
	3.15.3 mysqli_client_encoding
	3.15.4 mysqli_connect
	3.15.5 mysqli::disable_reads_from_master, mysqli_disable_reads_from_master
	3.15.6 mysqli_disable_rpl_parse
	3.15.7 mysqli_enable_reads_from_master
	3.15.8 mysqli_enable_rpl_parse
	3.15.9 mysqli_escape_string
	3.15.10 mysqli_execute
	3.15.11 mysqli_fetch
	3.15.12 mysqli_get_cache_stats
	3.15.13 mysqli_get_client_stats
	3.15.14 mysqli_get_links_stats
	3.15.15 mysqli_get_metadata
	3.15.16 mysqli_master_query
	3.15.17 mysqli_param_count
	3.15.18 mysqli_report
	3.15.19 mysqli_rpl_parse_enabled
	3.15.20 mysqli_rpl_probe
	3.15.21 mysqli_send_long_data
	3.15.22 mysqli::set_opt, mysqli_set_opt
	3.15.23 mysqli_slave_query

	3.16 Changelog

	Chapter 4 MySQL Functions (PDO_MYSQL)
	4.1 PDO_MYSQL DSN

	Chapter 5 Mysql_xdevapi
	5.1 Installing/Configuring
	5.1.1 Requirements
	5.1.2 Installation
	5.1.3 Runtime Configuration
	5.1.4 Building / Compiling From Source

	5.2 Predefined Constants
	5.3 Examples
	5.4 Mysql_xdevapi Functions
	5.4.1 expression
	5.4.2 getSession

	5.5 BaseResult interface
	5.5.1 BaseResult::getWarnings
	5.5.2 BaseResult::getWarningsCount

	5.6 Collection class
	5.6.1 Collection::add
	5.6.2 Collection::addOrReplaceOne
	5.6.3 Collection::__construct
	5.6.4 Collection::count
	5.6.5 Collection::createIndex
	5.6.6 Collection::dropIndex
	5.6.7 Collection::existsInDatabase
	5.6.8 Collection::find
	5.6.9 Collection::getName
	5.6.10 Collection::getOne
	5.6.11 Collection::getSchema
	5.6.12 Collection::getSession
	5.6.13 Collection::modify
	5.6.14 Collection::remove
	5.6.15 Collection::removeOne
	5.6.16 Collection::replaceOne

	5.7 CollectionAdd class
	5.7.1 CollectionAdd::__construct
	5.7.2 CollectionAdd::execute

	5.8 CollectionFind class
	5.8.1 CollectionFind::bind
	5.8.2 CollectionFind::__construct
	5.8.3 CollectionFind::execute
	5.8.4 CollectionFind::fields
	5.8.5 CollectionFind::groupBy
	5.8.6 CollectionFind::having
	5.8.7 CollectionFind::limit
	5.8.8 CollectionFind::lockExclusive
	5.8.9 CollectionFind::lockShared
	5.8.10 CollectionFind::offset
	5.8.11 CollectionFind::sort

	5.9 CollectionModify class
	5.9.1 CollectionModify::arrayAppend
	5.9.2 CollectionModify::arrayInsert
	5.9.3 CollectionModify::bind
	5.9.4 CollectionModify::__construct
	5.9.5 CollectionModify::execute
	5.9.6 CollectionModify::limit
	5.9.7 CollectionModify::patch
	5.9.8 CollectionModify::replace
	5.9.9 CollectionModify::set
	5.9.10 CollectionModify::skip
	5.9.11 CollectionModify::sort
	5.9.12 CollectionModify::unset

	5.10 CollectionRemove class
	5.10.1 CollectionRemove::bind
	5.10.2 CollectionRemove::__construct
	5.10.3 CollectionRemove::execute
	5.10.4 CollectionRemove::limit
	5.10.5 CollectionRemove::sort

	5.11 ColumnResult class
	5.11.1 ColumnResult::__construct
	5.11.2 ColumnResult::getCharacterSetName
	5.11.3 ColumnResult::getCollationName
	5.11.4 ColumnResult::getColumnLabel
	5.11.5 ColumnResult::getColumnName
	5.11.6 ColumnResult::getFractionalDigits
	5.11.7 ColumnResult::getLength
	5.11.8 ColumnResult::getSchemaName
	5.11.9 ColumnResult::getTableLabel
	5.11.10 ColumnResult::getTableName
	5.11.11 ColumnResult::getType
	5.11.12 ColumnResult::isNumberSigned
	5.11.13 ColumnResult::isPadded

	5.12 CrudOperationBindable interface
	5.12.1 CrudOperationBindable::bind

	5.13 CrudOperationLimitable interface
	5.13.1 CrudOperationLimitable::limit

	5.14 CrudOperationSkippable interface
	5.14.1 CrudOperationSkippable::skip

	5.15 CrudOperationSortable interface
	5.15.1 CrudOperationSortable::sort

	5.16 DatabaseObject interface
	5.16.1 DatabaseObject::existsInDatabase
	5.16.2 DatabaseObject::getName
	5.16.3 DatabaseObject::getSession

	5.17 DocResult class
	5.17.1 DocResult::__construct
	5.17.2 DocResult::fetchAll
	5.17.3 DocResult::fetchOne
	5.17.4 DocResult::getWarnings
	5.17.5 DocResult::getWarningsCount

	5.18 Driver class
	5.18.1 Driver::__construct

	5.19 Exception class
	5.20 Executable interface
	5.20.1 Executable::execute

	5.21 ExecutionStatus class
	5.21.1 ExecutionStatus::__construct

	5.22 Expression class
	5.22.1 Expression::__construct

	5.23 FieldMetadata class
	5.23.1 FieldMetadata::__construct

	5.24 Result class
	5.24.1 Result::__construct
	5.24.2 Result::getAutoIncrementValue
	5.24.3 Result::getGeneratedIds
	5.24.4 Result::getWarnings
	5.24.5 Result::getWarningsCount

	5.25 RowResult class
	5.25.1 RowResult::__construct
	5.25.2 RowResult::fetchAll
	5.25.3 RowResult::fetchOne
	5.25.4 RowResult::getColumnCount
	5.25.5 RowResult::getColumnNames
	5.25.6 RowResult::getColumns
	5.25.7 RowResult::getWarnings
	5.25.8 RowResult::getWarningsCount

	5.26 Schema class
	5.26.1 Schema::__construct
	5.26.2 Schema::createCollection
	5.26.3 Schema::dropCollection
	5.26.4 Schema::existsInDatabase
	5.26.5 Schema::getCollection
	5.26.6 Schema::getCollectionAsTable
	5.26.7 Schema::getCollections
	5.26.8 Schema::getName
	5.26.9 Schema::getSession
	5.26.10 Schema::getTable
	5.26.11 Schema::getTables

	5.27 SchemaObject interface
	5.27.1 SchemaObject::getSchema

	5.28 Session class
	5.28.1 Session::close
	5.28.2 Session::commit
	5.28.3 Session::__construct
	5.28.4 Session::createSchema
	5.28.5 Session::dropSchema
	5.28.6 Session::executeSql
	5.28.7 Session::generateUUID
	5.28.8 Session::getClientId
	5.28.9 Session::getSchema
	5.28.10 Session::getSchemas
	5.28.11 Session::getServerVersion
	5.28.12 Session::killClient
	5.28.13 Session::listClients
	5.28.14 Session::quoteName
	5.28.15 Session::releaseSavepoint
	5.28.16 Session::rollback
	5.28.17 Session::rollbackTo
	5.28.18 Session::setSavepoint
	5.28.19 Session::sql
	5.28.20 Session::startTransaction

	5.29 SqlStatement class
	5.29.1 SqlStatement::bind
	5.29.2 SqlStatement::__construct
	5.29.3 SqlStatement::execute
	5.29.4 SqlStatement::getNextResult
	5.29.5 SqlStatement::getResult
	5.29.6 SqlStatement::hasMoreResults

	5.30 SqlStatementResult class
	5.30.1 SqlStatementResult::__construct
	5.30.2 SqlStatementResult::fetchAll
	5.30.3 SqlStatementResult::fetchOne
	5.30.4 SqlStatementResult::getAffectedItemsCount
	5.30.5 SqlStatementResult::getColumnCount
	5.30.6 SqlStatementResult::getColumnNames
	5.30.7 SqlStatementResult::getColumns
	5.30.8 SqlStatementResult::getGeneratedIds
	5.30.9 SqlStatementResult::getLastInsertId
	5.30.10 SqlStatementResult::getWarnings
	5.30.11 SqlStatementResult::getWarningsCount
	5.30.12 SqlStatementResult::hasData
	5.30.13 SqlStatementResult::nextResult

	5.31 Statement class
	5.31.1 Statement::__construct
	5.31.2 Statement::getNextResult
	5.31.3 Statement::getResult
	5.31.4 Statement::hasMoreResults

	5.32 Table class
	5.32.1 Table::__construct
	5.32.2 Table::count
	5.32.3 Table::delete
	5.32.4 Table::existsInDatabase
	5.32.5 Table::getName
	5.32.6 Table::getSchema
	5.32.7 Table::getSession
	5.32.8 Table::insert
	5.32.9 Table::isView
	5.32.10 Table::select
	5.32.11 Table::update

	5.33 TableDelete class
	5.33.1 TableDelete::bind
	5.33.2 TableDelete::__construct
	5.33.3 TableDelete::execute
	5.33.4 TableDelete::limit
	5.33.5 TableDelete::offset
	5.33.6 TableDelete::orderby
	5.33.7 TableDelete::where

	5.34 TableInsert class
	5.34.1 TableInsert::__construct
	5.34.2 TableInsert::execute
	5.34.3 TableInsert::values

	5.35 TableSelect class
	5.35.1 TableSelect::bind
	5.35.2 TableSelect::__construct
	5.35.3 TableSelect::execute
	5.35.4 TableSelect::groupBy
	5.35.5 TableSelect::having
	5.35.6 TableSelect::limit
	5.35.7 TableSelect::lockExclusive
	5.35.8 TableSelect::lockShared
	5.35.9 TableSelect::offset
	5.35.10 TableSelect::orderby
	5.35.11 TableSelect::where

	5.36 TableUpdate class
	5.36.1 TableUpdate::bind
	5.36.2 TableUpdate::__construct
	5.36.3 TableUpdate::execute
	5.36.4 TableUpdate::limit
	5.36.5 TableUpdate::orderby
	5.36.6 TableUpdate::set
	5.36.7 TableUpdate::where

	5.37 Warning class
	5.37.1 Warning::__construct

	5.38 XSession class
	5.38.1 XSession::__construct

	Chapter 6 Original MySQL API
	6.1 Installing/Configuring
	6.1.1 Requirements
	6.1.2 Installation
	6.1.2.1 Installation on Linux Systems
	6.1.2.2 Installation on Windows Systems
	PHP 5.0.x, 5.1.x, 5.2.x
	PHP 5.3.0+

	6.1.2.3 MySQL Installation Notes

	6.1.3 Runtime Configuration
	6.1.4 Resource Types

	6.2 Changelog
	6.3 Predefined Constants
	6.4 Examples
	6.4.1 MySQL extension overview example

	6.5 MySQL Functions
	6.5.1 mysql_affected_rows
	6.5.2 mysql_client_encoding
	6.5.3 mysql_close
	6.5.4 mysql_connect
	6.5.5 mysql_create_db
	6.5.6 mysql_data_seek
	6.5.7 mysql_db_name
	6.5.8 mysql_db_query
	6.5.9 mysql_drop_db
	6.5.10 mysql_errno
	6.5.11 mysql_error
	6.5.12 mysql_escape_string
	6.5.13 mysql_fetch_array
	6.5.14 mysql_fetch_assoc
	6.5.15 mysql_fetch_field
	6.5.16 mysql_fetch_lengths
	6.5.17 mysql_fetch_object
	6.5.18 mysql_fetch_row
	6.5.19 mysql_field_flags
	6.5.20 mysql_field_len
	6.5.21 mysql_field_name
	6.5.22 mysql_field_seek
	6.5.23 mysql_field_table
	6.5.24 mysql_field_type
	6.5.25 mysql_free_result
	6.5.26 mysql_get_client_info
	6.5.27 mysql_get_host_info
	6.5.28 mysql_get_proto_info
	6.5.29 mysql_get_server_info
	6.5.30 mysql_info
	6.5.31 mysql_insert_id
	6.5.32 mysql_list_dbs
	6.5.33 mysql_list_fields
	6.5.34 mysql_list_processes
	6.5.35 mysql_list_tables
	6.5.36 mysql_num_fields
	6.5.37 mysql_num_rows
	6.5.38 mysql_pconnect
	6.5.39 mysql_ping
	6.5.40 mysql_query
	6.5.41 mysql_real_escape_string
	6.5.42 mysql_result
	6.5.43 mysql_select_db
	6.5.44 mysql_set_charset
	6.5.45 mysql_stat
	6.5.46 mysql_tablename
	6.5.47 mysql_thread_id
	6.5.48 mysql_unbuffered_query

	Chapter 7 MySQL Native Driver
	7.1 Overview
	7.2 Installation
	7.3 Runtime Configuration
	7.4 Incompatibilities
	7.5 Persistent Connections
	7.6 Statistics
	7.7 Notes
	7.8 Memory management
	7.9 MySQL Native Driver Plugin API
	7.9.1 A comparison of mysqlnd plugins with MySQL Proxy
	7.9.2 Obtaining the mysqlnd plugin API
	7.9.3 MySQL Native Driver Plugin Architecture
	7.9.4 The mysqlnd plugin API
	7.9.5 Getting started building a mysqlnd plugin

	Chapter 8 Common Problems with MySQL and PHP

